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For treating both relativistic effect and electron correlation,
the spin-free exact two-component and spin-dependent first-
order Douglas-Kroll-Hess (sf-X2C-so-DKH1) Hamiltonian
and the state-interaction (SI) method are combined to cal-
culate the spin-orbit coupling (SOC) on multi-configuration
electron correlation theory. Here, SOC is evaluated via SI
among the spin-free states from the complete active space
self-consistent field (CASSCF) calculation, and the dynamic
electron correlation could be reckoned via the high-level
multi-reference electron correlation method. Work equa-
tions to evaluate SOC matrix elements over spin-adapted
Gelfand states in the framework of the graphic unitary group
approach (GUGA) are presented. Benchmark calculations
have verified the validity of the present implementation. As
a pilot application, the internally contracted MRCI (icMRCI)
with the inclusion of SOC calculation produces the reason-
able equilibrium bond length and the harmonic vibrational
frequency of the ground state of AuO, as well as the transi-

tion energy of X2z, <2 My .
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1 | INTRODUCTION

Precise molecular electronic structure calculation asks for treating both electron correlation and relativistic effect
elaborately.[1, 2] Electron correlation problem arises from the one-electron approximation for solving many-body
Schrodinger or Dirac equation, which neglects the spontaneous interaction of electrons. Thus, there is a small energy
difference (so-called electron correlation energy) between the calculated energy and the exact energy (full configu-
ration interaction result) for a given finite basis set. Enormous methods have been developed to treat the electron
correlation,[1] in which the two-step multi-configuration electronic correlation theory has proven to be successful in
studying the strongly correlated molecules.[3] In such methods, the electron correlation is usually divided into the
static and the dynamic correlation. The static correlation is first calculated by multi-configuration self-consistent-field
(MCSCF) theory, then multi-reference electron correlation calculations as multi-reference configuration interaction
(MRCI)[4, 5, 6] or multi-reference second-order perturbation theory (MRPT2)[7, 8, 9, 10] are performed to handle the
dynamic correlation.

Relativistic effect relates to many physical phenomena as zero-field splitting, spin-forbidden reactions, and inter-
system crossing, etc.[2] In the past twenty years, an important progress in dealing with the relativistic effect in the
molecular electronic structure theory is the introduction of exact two-component (X2C) relativistic Hamiltonian.[11,
12, 13, 14] If the relativistic effect is not too strong, it is advantageous to separate the relativistic Hamiltonian into
spin-free and spin-dependent terms.[15, 16] The spin-free term handles the scalar relativistic effect and have been
treated variationally to infinite order by the spin-free X2C (sf-X2C) Hamiltonian. The spin-dependent term that de-
scribes the spin-orbit coupling (SOC), could truncate to finite order as the first-order Douglas-Kroll-Hess (so-DKH1)
Hamiltonian.[16] The sf-X2C Hamiltonian can be implemented easily in the existing quantum chemistry package by
slightly modifying one-electron term, and thus self-consistent-field (SCF) calculation have included the scalar relativis-
tic effect naturally. On the contrary, calculating the spin-dependent term has many choices and requires more effort.
One may include SOC in the SCF calculation by using complex-valued spinors. One may only use sf-X2C Hamiltonian
in SCF but dealing with SOC in the electron correlation calculation. The later scheme has been implemented in the
Beijing Density Functional (BDF) package,[17, 18, 19, 20] based on the equation-of-motion coupled-cluster (EOM-CC)
theory[21] and time-dependent density functional (TDDFT) theory.[22] However, those implementations only focus
on the single-reference correlation methods, limiting its usage on the weakly correlated systems. For the strongly
correlated molecules, only the multi-configuration calculation is reliable. Therefore, it is highly desired to implement
the sf-X2C+so-DKH1 Hamiltonian on multi-configuration calculation.

We have developed an multi-reference electron correlation package named Xi'an-Cl,[23, 24, 25, 26, 27] which
has been interfaced with BDF. Xi'an-Cl supports uncontracted and internally contracted MRCI calculations,[26, 27]
as well as several MRPT2 algorithms as multi-state n-electron valence state second order perturbation theory (MS-
NEVPT2)[27] and static-dynamic-static second order perturbation theory (SDS-PT2).[10] It is interesting to go further
to deal with the relativistic effect. For calculating the Hamiltonian matrix elements, Xi’an-Cl uses the graphical uni-
tary group approach (GUGA)[28, 29, 30, 31, 32], which expands the configuration interaction (Cl) space on Gelfand
states[33]. Unlike the Slater Determinant that is the eigenfunction of $,, Gelfand state is the eigenfunction of the $2
operator. However, calculation of the Hamiltonian matrix element on the Gelfand state is not as direct as using Slater
Determinant. Herein, we would first present an algorithm to calculate the SOC matrix element based on GUGA and
give all work equations. Moreover, the sf-X2C-so-DKH1 Hamiltonian and the state interaction (SI) method are used
to consider SOC on the level of multi-configuration electron correlation theory. The present work provides a new

choice for treating the electron correlation and the relativistic effect in the molecular electronic structure calculation.

This work organizes as follows. In Sec. |l, we first introduce the Sl approach to calculate SOC, then work equations



for evaluating the SOC matrix elements on Gelfand states are presented. In Sec. lll, benchmark calculations are
performed to check the validity of our implementation. The concluding remarks and perspectives will be given in Sec.
IV.

2 | THEORY

2.1 | The state interaction approach

Starting from the spin-separated sf-X2C+so-DKH1 Hamiltonian in the second-quantized form,[15, 16]
H = Hsr + Hso (1)
here, Hsr and H,, are the spin-free and spin-dependent Hamiltonian as,

. 1 .
_ Xx2¢ - F ot
Hsr = pgq [hsf lpgapaq + 5 pqgrs(prlqs)apaqasa, (2)

Hso = Z [Hso,1e]pq3;aq
pq

= Z ([hso,1e]pq + [Fso,1e]pq) a;aq (3)
pq

where p, g, r, and s are the spin orbitals, (pr|gs) are two-electron integrals written in Mulliken’s notation, [hfffqu
are spin-free one-electron integrals. The [Hy,1¢]pq are effective one-electron SOC integrals that are summation
of one-electron SOC integral [hso 1615 and mean-field integral [Fso 16154, respectively (see section 1 in Supporting
Information). The mean-field SOC integral is used to handle the two-electron SOC interaction. Thus, we do not need
to consider two-electron SOC term explicitly. The detailed discussion for deducing the sf-X2C-so-DKH1 Hamiltonian
could be found in Ref. [15] and [16]. A simple introduction to sf-X2C-so-DKH1 Hamiltonian is also presented in
section 1 of supporting information for clarity.

In the Sl approach, the Hamiltonian matrix in a configuration interaction space expanded by a set of electronic
states {¥;(S),I =1,2,---, M} is diagonalized,

Hse Y1 (S)) = Er|¥1(S)) (4)
¥1(8)) = D" Curlwu(S)) (5)
U
where ¥; (S) is linear combination of configuration state functions y, (S),u = 1,2,-- -, NI. S is the total spin of the

state ¥ (S) . If GUGA is used, y, (S) is Gelfand state and is represented as the step vector,[28, 34, 31, 35]

lyu(S)) =1(d)S) (6)
=|(di,dz, -+ ,dn)S) )
where n is number of molecular orbitals. d; (i = 1,2, -- -, n) is a step on the orbital i. Because ¥ is the eigenstate of

H,r, the diagonal element of the Hamiltonian matrix is energy Er and Hs, only contributes to the off-diagonal element



as
(Y1 (S'M')|H|Y¥,(SM)) = 61,65 sEr
+(¥1(S'M")|Hso ¥, (SM)), (8)
in whichM = §5,8-1,---,1-8,-8. ¥7(SM) is introduced to distinguish the spin-component of a state ¥;(S).

Y7 (S) can be obtained from multi-configuration electron correlation calculation such as complete active space self-
consistent-field calculation (CASSCF), MRCI or MRPT2. In this work, the SOC matrix elements are evaluated over
states from the CASSCF calculation.[36, 37] The diagonal element of Hamiltonian could be energies from CASSCF, or
the higher level multi-reference electron correlation calculations as MRCI, MRPT2. The advantage of the present SI
scheme is that the computational effort of SOC is small, and the higher-level methods have considered the dynamic
electron correlation.

2.2 | The SOC matrix element over Gelfand states

The spin-orbit coupling Hamiltonian is written in form of second quantization as,

Hso= Y. > (=D (iclg™M (1)1 Sy liT)Eig jr 9)
iojt ¥
here, io is the orthonormal spin orbital with o = J_r%, i=1,2,---,nand y =0,+1. The index o is used to distinguish

the spin-up and spin-down orbitals. £, . is the generator of U(2n) group,
Ein,jr = a?aajr (10)

in which a;ra and a;. are the creation operator and the annihilation operator, respectively. The (ioc 1ED (ry )y Sylit)is
a general form of the one-electron SOC integral which can be calculated from the Breit-Pauli Hamiltonian,[38, 39] or
from so-DKH1 Hamiltonian.[15, 16, 21] In this work, we adopt the so-DKH1 Hamiltonian implemented in BDF (Egn.
3).

The matrix element of the Hs, operator over Gelfand states is written as

((d)'S'M'|Hso | (d) SM)
= 2 2 ENEED (M) Lo 1Sy I (11)

iojt v

(@) |Eigje | (d) SM)
= 2 2 CTEN ()i )
i Y

((d)'S'M'IFV (i, )| (d) SM) (12)
AV (Gf) = ) (0 1Sy 17) Ere o (13)

The term ((d)’S’M’le(” (i,/))|(d)SM) in equation 12 is the coupling coefficient that can be evaluated in terms of



the U(n+1) generator as,[40]

((d)'S'M'|FV (i, ) (d)SM) =

-1
Somasygay 1 [0S 1 S\fs s
=1 z 101 ’
Ve\-m" v M]3 1 Swa

((d) 41 Sne1 Mnsr |8 petine1j + %Eijl(d)nﬂ Sper1Mpir)
in which the E;; = ¥; Ejs j» is the generator of the U(n) group, and
€in+lin+1j = Einv1Env1j — Ejj
From Egn. 14 and the Wigner-Eckart Theorem (Eqn. 16),

((d)'S'"M'IE" (i, /)| (d) SM)

= (DM (

S’ 1 S ..

) ) () S'INFD G S)
My M
the reduced matrix element is calculated as

() SNFD () 1(d)S)

= (cySmarsmz ]S 1
‘/8 2 72 sn+1

(7,

1

(@)1 Snet Musr € nstinetj + %Eijl(d)nﬂ Sni1Mni1)
Therefore, the SOC matrix elements can be calculated from the reduced matrix element as
((d)'S'M’|Hso|(d)SM)
= D =M GED () 1) ( fw 1 S)
i - y ™M

(@S NFV (1)) 11(d)S)

The selection rule of the SOC matrix element is obtained from the triangular conditions of the 6j symbol,

S'-S§=0,+TbutnotS =S5S+#0

(14)

(15)

(16)

(17)

(18)

(19)



This selection rules restrict the step vectors of Bra and Ket state on the (n + 1)th orbital as,

S+%.  §=S d,=1du=1

S = S-3. §=S.  d,=2du=2 20)
S+3. §=S+1, d, =2dp=1
S-3. §=S-1 d, =1du =2

The coupling coefficient (Eqn. 14) can be calculated from

, 1
((d)n+1Sne1 Mt |€inetine1j + EEl'jl(d)nH Sni1Mni1)

j-1
=wO AR dd)[ [ | w(c.dd) 1w (8" dd)

r=i+1

n
L[] w®e” drd) 1w ™ (Dre. dyy i) (21)

r=j+1

fori <j,and

1

((d")n+1Sne1 Mpi l€in+1;ne1, + EEU|(d)n+1 Snt1Mni1)
i1

=w b dd) [ | wh(c,did) 1w (8%, d/d)

r=j+1

n
1] wh e . did)IwD (Drr. d),1dnir) (22)

r=i+1

for i > j. In the Eqn. 21 and 22, w () (AR), w () (BL), w() (AL), w() (BR), and W) (Dg,) are so called segment
factors in GUGA, [35] which are presented in Table S1 in SI. Only two types of factors, Dg; — C” — BR — ¢’ — AL and
Dgr; — C” — BR — ¢’ — AR need to be calculated. The factor Dg, — lies on the dummy (n + 1) th orbital. Due to the
Hamiltonian matrix is Hermit, only S’ = S and S’ = S — 1 are considered in calculation, which give rise to the segment
factors Dg, (11)— and Dg, (12)-. Egn. 17, 18, 21, and 22 constitute all work equations in our approach to calculate
the SOC matrix element.

3 | RESULTS AND DISCUSSION

Benchmark calculations were performed to check the validity of our implementation. In all calculations, the diagonal
elements of Hamiltonian matrix were calculated on CASSCF or MRCI, while the off-diagonal elements (the SOC ma-
trix elements) were evaluated over states from CASSCF. For the MRCI calculation, the Celani and Werner's internally
contracted multi-reference configuration interaction with single and double excitations (CW-icMRCISD) in Xi'an-Cl
package was used.[41, 26, 27] The Pople correction (CW-icMRCISD+Q) was applied to correct the size-consistent
error.[42] We use the same molecular orbitals for the different spin states to calculate the SOC integral, that is, all
states with the different spin and spatial symmetries are optimized in the state-averaged CASSCF (SA-CASSCF) cal-
culation with equal weights. The atomic natural orbital at the polarized valance triple zeta (ANO-TZVP) level of basis
set developed by Roos et. al. are used in all calculations.[43] The reference calculations are performed by MOLCAS
(Version 8.0),[44, 36] Molpro (Version 2015),[45, 46] and GAMESS (Version 2020-R1).[47, 37] with the same basis



set. Notice the relativistic Hamiltonian and methods used to consider SOC in other programs are different from those
used in our approach. We will give detailed information in each benchmark calculation.

3.1 | SOC splitting of 2P state of Halogen atoms

The ground state of the Halogen atom is 2P with the configuration of np>. The 2P state splits into 2P/, and 2Py 5,
and the splitting energy is always used as a prototype to check the SOC effect. Table 1 depicts the energy gap of
2P3/2 and 2P1/2 of Halogen atoms calculated with several different methods as well as the experimental data from
NIST.[48] All of the first three calculations, BDF, MOLCAS, and Molpro are the Sl calculations based on the CASSCF
wave functions (denoted as CASSI). The active space is chosen as complete active space (40, 7e). The SHCI result
takes from Ref. [49], in which SOC was calculated on the heat bath configuration interaction with the stochastic
perturbation (SHCI) method. The EOM-CC result takes from Ref. [21] that considers the SOC on equation-of-motion
coupled-cluster (EOM-CC) theory. In all calculations, the sf-X2C is applied to consider the spin-free term. The so-
DKH1 Hamiltonian is used in BDF, SHCI and EOM-CC for the SOC interaction. In MOLCAS and Molpro calculations,
atomic mean field integrals (AMFI) and the Breit-Pauli operator are used to consider SOC, respectively.

TABLE 1 Spin-orbit splitting of 2P3/2 and 2P1/2 states of Halogen
atoms

Atom BDF MOLCAS Molpro SHCI2 EOM-CCP Expt.
F 405 405 404 399 398 404
cl 829 828 840 866 876 882
Br 3434 3413 3454 3691 3648 3685

I 7032 6973 8444 7487 7754 7603

a Ref. [49], active spaces (1000, 17e) and (1210,17¢) are used for Brand |,
respectively. The active space (40,7¢) gives splitting energies 3428 and
7021 cm~! for Br and |, respectively.

b Ref. [21]

As seen in Table 1, all calculations agree well with the experimental data from NIST, especially for the lightest
atom F, where the absolute errors for the first three calculations are within 1 cm~'. Errors increase with the enlarging
of nuclear charge, indicating by the absolute errors have the order F<Cl<Br<I. The SHCI and EOM-CC calculations
produce better results for the Br and | atoms than the three CASSI calculations. The reason is that the SOC interactions
of Br and | are strong, and CASSI is insufficient to reproduce the SOC interaction at very high precision because of
too small active space. The SHCI calculation that used much large active space, yields the splitting energies 3691 and
7487 cm~! for Br and |, agreeing well with the data from NIST. The EOM-CC results are also fairly well for Br and |
due to the excitation amplitudes are relaxed in the SOC calculation,[21] being equivalent to enlarge the active space.
However, errors of CASSI for Br and | are within 12%, which is acceptable in considering CASSI is much cheaper than
SHCI and EOM-CC.

Both BDF and MOLCAS underestimate the splitting energy of the | atom, while Molpro tends to overestimate
it. Since all the first three calculations are CASSI, such difference arises from the different relativistic Hamiltonian in

calculation. In BDF, the sf-X2C+so-DKH1 Hamiltonian is used, and the two-electron contribution is considered via a



mean-field approach, which is similar to the AMFI used in MOLCAS. However, Molpro applies the BP Hamiltonian and
two-electron term is also invoked as the mean-field approach. Theoretically, sf-X2C-so-DKH1 is superior to the BP
Hamiltonian because both scaler relativistic effect and SOC are considered more precisely, especially for the | atom.

3.2 | Excitation energies of 3P;,,' D, and ' S, state of the group IVA atoms

Table 2 presents the excitation energies of the first four excited states of the group IVA elements. The spin-free 3P
state is three-fold degenerate. The ! D state is five-fold degenerate. For preserving the spatial degeneracy of the spin-
free states, we adopt the C; point group in calculation, in which the 'S and ' D states have the Ag symmetry while the
3p state appears in the A, irreps. Thus, six roots (1 root for 'S and 5 roots for ' D ) are considered in the Ag irreps, and
three roots (3 P) are considered in the A, irreps. Since dynamic correlation was important in calculating the excitation
energies, CW-icMRCISD+Q were performed to calculate the spin-free states via the Xi'an-Cl package. MOLCAS is
used in the reference calculation, in which energies of spin-free states are calculated by multi-state complete active
space second-order perturbation theory (MS-CASPT2), and SOC is evaluated by CASSI.

TABLE 2 Excitation energy of first four excited states
of the group IVA atoms?

Atom  Method 3P 3p, Do S0

C MRCI 15 45 10552 22574
CASPT2 15 45 10591 20959

Expt. 16 43 10192 21645

Si MRCI 66 193 6431 15941
CASPT2 67 195 6747 14350

Expt. 77 223 6298 15394

Ge MRCI 493 1275 9580 17199
CASPT2 488 1226 8830 18229

Expt. 557 1609 7125 16376

Sn MRCI 1454 3059 8807 17252
CASPT2 1443 3057 9021 18045

Expt. 1691 3427 8612 17162

@ MRCI is CW-icMRCISD and SOC is considered as CASSI.

CASPT2 is MS-CASPT2 and SOC is considered as CASSI.
The active space is (40, 6e).

The excitation energy of the 3P, and 3P, states is mainly determined by SOC splitting of the spin-free 3P state,
thus our calculation and MOLCAS vyield similar results for excitation energies of the 3P; and 3P, states as illustrated
in Table 2. Moreover, energy errors of the first two states are small for C and Si but are large for Ge and Sn. Similar to
the result of the Halogen atoms, both our and MOLCAS calculations tend to underestimate the excitation energies of

the 3P; and 3P, states of the relatively heavier atoms Ge and Sn.



As seen in Table 2, excitation energy errors of ' Dy and ' Sy are not as systematic as those of 3P; 5. The "Dy and
1Sy are not coupling directly due to the selection rule, but both of them are coupling weakly with the 3P state. Due to
zero-field splitting pushes the ground 3 P, state to the lower energy, the calculated excitation energies of ' Dy and ' S
should be mainly determined by the zero-field splitting of 3P and energy levels of the spin-free 'D and ' S states. The
energy differences between MRCI and CASPT2 mainly arise from the different excitation energies of spin-free states
because the calculated zero-field splitting of the 3P state are close in two methods. Although the absolute energy
errors are different, both MRCI and CASPT2 yield quantitatively correct excitation energies of the ' Dy and ' S states.

3.3 | SOCbetween the 'A; and 3B states of the XH, molecules

SOC between the' A; and 3B states of XH, (X=C, Si, Ge, Sn, and Pb) had been calculated by Fedorov and Gordon
to exam the two-electron SOC (2e-SOC) contribution.[37] In the present work, we only calculate one-electron SOC
interaction (1e-SOC) explicitly, and the 2e-SOC contribution is considered by the mean-field approximation in the
one-electron SOC integrals (denoted as 1e+soMF). Therefore, it is interesting to compare the mean-field scheme with
the algorithm that fully includes the 2e-SOC contribution. Table 3 presents the SOC matrix elements of 3B; -1 A; of
the XH2 molecules calculated with BDF, MOLCAS, and GAMESS, in which GAMESS can calculate the 2e-SOC term
explicitly on the CASSCF level of theory. MOLCAS uses AMFI to consider 2e-SOC. For comparison, we also performed
the SOC calculation only considering the 1e-SOC in BDF and GAMESS, which are labelled as 1e and 1e-BP in table

3, respectively. Geometries of XH,, in calculation are taken from Ref. [50].

TABLE 3 SOC matrix element between the ' A; and 3B, states
of the XH, molecules

Molecule 1e@ le+soMF2  AMFIP 1e-BP¢ 1le+2e-BP¢

CH, 17 10 9 17 9

SiH, 47 37 37 48 37
GeH, 292 261 258 326 280
SnH, 675 630 626 742 685

PoH, 2296 2207 2162 22424  2140¢

2 1e, BDF calculation with only 1e-SOC term. 1e+soMF, BDF calcu-
lation with 1e-SOC and mean-field 2e-SOC.

b AMFI, atomic mean-field integral approach calculated by MOL-
CAS.

¢ 1e-BP, GAMESS calculation with only 1e-SOC term. 1e+2e-BP,
GAMESS calculation with 1e-SOC and full 2e-SOC. BP Hamiltonian
was used.

d Ref. [37]. WTBS basis set.

As seen in Table 3, SOC matrix elements calculated from the mean-field approach are in line with results that fully
include 2e-SOC contribution. For CH, and SiH,, SOC matrix elements calculated by BDF and MOLCAS are close to
results from GAMESS (full 2e-SOC). For heavier elements Ge, Sn, and Pb, the BDF results agree with MOLCAS within



10

tens of cm~" but have large discrepancies with GAMESS. These large discrepancies are caused by the different SOC
operators rather than the different methods in considering 2e-SOC, that is, the BP operator used in GAMESS that
tends to give the stronger SOC interaction than the so-DHK1 Hamiltonian. Notice that the relative contribution of the
2e-SOC term is large in the full SOC matrix elements as CH,, and SiH,, thus 2e-SOC is more important in calculating
the light elements. Since the mean-field approach is cheap and only introduces a small computational overhead in the
SOC integral, thus it always should take into account 2e-SOC for system as pure organic molecules.

3.4 | Spectroscopic parameters of the X 2ﬂ3/2 and 211, /2 states of AuO

There are many experimental and theoretical studies on the spectra of the AuO molecule.[51, 52, 53, 54, 55] The
relativistic effect plays a significant role in determining the spectroscopic parameters of AuO. As a pilot application,
potential energy curve of the 21 state of AuQ is calculated by CW-icMRCISD+Q. Then, SOC is evaluated by CASSI. In
the CW-icMRCISD+Q calculation, the active space is selected as the molecular orbital composed of the 2s, 2p orbital
of O and 5d, 6s of Au. A larger active space made up of O 2p, 3p, and Au 5d, 6s is used in the SOC calculation. Besides,
the 4=~ state is included in the SOC calculation because benchmark indicates this state is coupling strongly with the
21 state.

As seen in Table 4, the ground XZI'I3/2 state of AuO has the equilibrium bond length of 1.867 A with the harmonic
vibrational frequency of 633 cm™', being close to 1.861 A and 624 cm™" obtained via the CASPT2 calculation with
the inclusion of SOC from O'Brien, Oberlink and Roos.[54] The first excited 2I'I1/2 state has a longer r, of 1.887 Aand
a smaller w, of 587 cm™', and the CASPT2 results are 1.886 A and 597 cm™', respectively. The only experimental data
for the equilibrium bond length of the 2I'I1/2 state is 1.917+ 10A from Ichino et al.[52]. However, the experimental r, of
XZI'I”Z is somehow controversial. Okabayashi and co-workers obtained r, = 1.8487 A by analysing the pure rotational
spectrum of the ground XZI'I3/2 state,[53] but O'Brien et al. got a longer bond length of 1.906 A from resolving
the near-infrared electronic spectrum.[51] Both CW-icMRCISD+Q and CASPT2 calculations support Okabayashi et
al.’s result, that is, the ground state of AuO should has a short equilibrium bond length near 1.85 A. Moreover, the
vibrational frequency 633 cm~" from our calculation is close to the newest experimental value 640 cm™' from Xiang
et al.[55] Although the CCSD(T) and internally contracted MRCI calculations from Ichino et al. gave r. = 1.907 A [52]
agreeing well with O'Brien’s data,[51] these two calculations not only used effective core potential (ECP) to treat
relativistic effect but also did not consider the SOC effect. On the contrary, both the CW-icMRCISD+Q and CASPT2
calculations used the full electron basis set and considered the relativistic effect elaborately, thus results should be
more reliable. This conclusion is also supported by the calculated transition energy 1541 cm~! of X2|'|3/2 2 My /2,
which is close to the value of 1440 + 80 cm™" estimated from the experimental photoelectron spectra.[52]

4 | CONCLUSION

SOC is calculated in the framework of multi-configuration electronic correlation theory. The work equations to evalu-
ate SOC matrix elements over the Gelfand states in GUGA are presented. As the first implementation, the Sl approach
is utilized in which off-diagonal elements of the Hamiltonian matrix are SOC among the spin-free states calculated on
the CASSCEF level of theory, and the diagonal elements can be energies from CASSCF, MRCI or MRPT2 calculations,
etc. In particular, MRCI and MRPT2 can include the dynamic correlation that is important in the highly precise elec-
tronic structure calculation. Besides, the present work uses the sf-X2C-so-DKH1 Hamiltonian in the BDF package

to consider the scalar relativistic effect and the SOC interaction. Due to the 2e-SOC term has been included in the



TABLE 4 Spectroscopy parameters of the X32/2 and 2I'I1/2 states of AuO

X?M3, My

re we re we Te
CW-icMRCISD+Q  1.867 633 1.889 581 1541
CASPT22 1.861 624 1.884 597 1393
Exp. 1.8487> 625P 1.917(10)4 590(70)4 1440+80¢

1.9069¢ 646¢

a Ref. [54].
b Ref. [53].
¢ Ref. [51].
d Ref. [52].
e Ref. [55].

SOC integrals via the molecular mean-field approach, both light and heavy elements can be treated by the present
program.

The low-lying states of Halogen and the group IVA atoms are calculated and compared with results from other
calculations, verified the validity of our implementation. Our method is superior to those implementations using the
BP Hamiltonian, which tends to overestimates the SOC interaction of heavy atoms and also could not be used in
the variational calculation. As a pilot application, spectroscopic parameters of two lowest-energy states of AuO are
calculated. Our results agree with results calculated on CASPT2 with SOC. Both our and CASPT2 calculations indicate
that only full-electron relativistic calculation could produce the reasonable equilibrium bond length of the ground state
of AuO. Moreover, our calculation produced a transition energy 1541 cm™" of X2I'I3/2 -2 My, that is in accordance
with the experimental data of 1440 +80 cm™'.

The work equations used to calculate the SOC matrix elements could extend to the MRCI or MRPT2 wave func-
tions. The Xi'an-Cl package implements a flexible internally contracted MRCISD and several MRPT2.[27] All these
methods can be used to considering the SOC effects on the Sl approach. Furthermore, the variational calculation of
SOC is also possible either on the CASSCF level or on the MRCI level. These works are in progress, and we will report

our results in the future.
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GRAPHICAL ABSTRACT

The sf-X2C-so-DKH1 Hamiltonian and state-interaction approach are used to

sf-X2C-so-DKHI + State-interaction evaluate the spin-orbit coupling on multi-configuration electron correlation the-
H=Hys+ Ho ory. The calculated spectroscopic parameters of two lowest states of AuO demon-
Hp|¥1(S)) = Ef|¥1(S))
Hyy = 61505sEr + (U1(8'M") [ Hoo | 5 (SM)) strate that the present algorithm products the comparable results with the ex-
’ . R, — 18671 perimental data.
w = 633em™!
R H
i I5dlem™!
X%y, 2



