LITERATURE CITED
Anderson, R.M., and R.M. May, 1992: Infectious Diseases of Humans. Oxfird, UK: Oxford University Press.
Bieber, C., and T. Ruf, 2005: Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol.42 , 1203–1213, DOI: 10.1111/j.1365-2664.2005.01094.x.
Blome, S., K. Franzke, and M. Beer, 2020: African swine fever – A review of current knowledge. Virus Res. 287 , 198099, DOI: 10.1016/j.virusres.2020.198099.
Blome, S., C. Gabriel, and M. Beer, 2013: Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res.173 , 122–130, DOI: 10.1016/j.virusres.2012.10.026.
Boklund, A., B. Cay, K. Depner, Z. Földi, V. Guberti, M. Masiulis, A. Miteva, S. More, E. Olsevskis, P. Šatrán, M. Spiridon, K. Stahl, H.H. Thulke, A. Viltrop, G. Wozniakowski, A. Broglia, J. Cortinas Abrahantes, S. Dhollander, A. Gogin, F. Verdonck, L. Amato, A. Papanikolaou, and C. Gortázar, 2018: Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J.16 , DOI: 10.2903/j.efsa.2018.5494.
Bonnet, S.I., E. Bouhsira, N. De Regge, J. Fite, F. Etor, M. Garigliany, F. Jori, and L. Lempereur, 2020: Putative role of arthropod vectors in African Swine fever virus transmission in relation to their bio-ecological properties. Viruses 12 , 778.
Carlson, J., M. Fischer, L. Zani, M. Eschbaumer, W. Fuchs, T. Mettenleiter, M. Beer, and S. Blome, 2020: Stability of african swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9 , 977.
Chenais, E., K. Depner, V. Guberti, K. Dietze, A. Viltrop, and K. Ståhl, 2019: Epidemiological considerations on African swine fever in Europe 2014-2018. Porc. Heal. Manag. 5 , 1–10, DOI: 10.1186/s40813-018-0109-2.
de Carvalho Ferreira, H.C., J.A. Backer, E. Weesendorp, D. Klinkenberg, J.A. Stegeman, and W.L.A. Loeffen, 2013: Transmission rate of African swine fever virus under experimental conditions. Vet. Microbiol.165 , 296–304, DOI: 10.1016/j.vetmic.2013.03.026.
De Carvalho Ferreira, H.C., E. Weesendorp, S. Quak, J.A. Stegeman, and W.L.A. Loeffen, 2014: Suitability of faeces and tissue samples as a basis for non-invasive sampling for African swine fever in wild boar.Vet. Microbiol. 172 , 449–454, DOI: 10.1016/j.vetmic.2014.06.016.
Depner, K., C. Gortazar, V. Guberti, M. Masiulis, S. More, E. Oļševskis, H. Thulke, A. Viltrop, G. Woźniakowski, J. Cortiñas Abrahantes, A. Gogin, F. Verdonck, and S. Dhollander, 2017: Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J.15 , 1–59, DOI: 10.2903/j.efsa.2017.5068.
Eblé, P.L., T.J. Hagenaars, E. Weesendorp, S. Quak, H.W. Moonen-Leusen, and W.L.A. Loeffen, 2019: Transmission of African Swine Fever Virus via carrier (survivor) pigs does occur. Vet. Microbiol. 237 , 108345, DOI: 10.1016/j.vetmic.2019.06.018.
Fischer, M., J. Hühr, S. Blome, F.J. Conraths, and C. Probst, 2020: Stability of african swine fever virus in carcasses of domestic pigs and wild boar experimentally infected. Viruses 12 , 1118.
Gabriel, C., S. Blome, A. Malogolovkin, S. Parilov, D. Kolbasov, J.P. Teifke, and M. Beer, 2011: Characterization of African swine fever virus caucasus isolate in European wild boars. Emerg. Infect. Dis.17 , 2342–2345, DOI: 10.3201/eid1712.110430.
Gaillard, J., M. Festa-bianchet, and N.G. Yoccoz, 1998: Population dynamics of large herbivores variable recruitment with constant adult survival. Trends Ecol. Evol. 01695347 , 249–251.
Gallardo, C., A. Soler, R. Nieto, C. Cano, V. Pelayo, M.A. Sánchez, G. Pridotkas, J. Fernandez-Pinero, V. Briones, and M. Arias, 2017: Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transbound. Emerg. Dis.64 , 300–304, DOI: 10.1111/tbed.12346.
Gallardo, C., A. Soler, I. Rodze, R. Nieto, C.C. Jovita, and F.M. Arias, 2019: Attenuated and non‐haemadsorbing (non‐HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017.Transbound. Emerg. Dis. 66 , 1399–1404, DOI: 10.1111/tbed.13132.
Guberti, V., S. Khomenko, M. Masiulis, and S. Kerba, 2019: African swine fever in wild boar: ecology and biosecurity. rome, FAO, OIE and EC.
Herm, R., H. Kirik, A. Vilem, and L. Zani, 2021: No evidence for African swine fever virus DNA in haematophagous arthropods collected at wild boar baiting sites in Estonia. Transbound. Emerg. Dis. in press , DOI: 10.1111/tbed.14013.
Keeling, M.J., and P. Rohani, 2008: Modeling Infectious Diseases. Princeton University Press.
Kreyszig, E., 1979: Advanced Engineering Mathematics. Wiley and Sons.
Lange, M., V. Guberti, and H. Thulke, 2018: Understanding ASF spread and emergency control concepts in wild boar populations using individual-based modelling and spatio-temporal surveillance data Department of Ecological Modelling. EFSA J. DOI: 10.2903/sp.efsa.2018.EN-1521.
Lange, M., A. Reichold, and H. Thulke, 2021: Modelling advanced knowledge of African swine fever , resulting surveillance patterns at the population level and impact on reliable exit strategy definition.EFSA J. 18 , 1–61, DOI: 10.2903/sp.efsa.2021.EN-6429.
Leaper, R., G. Massei, M.L. Gorman, and R. Aspinall, 1999: The feasibility of reintroducing Wild Boar (Sus scrofa) to Scotland.Mamm. Rev. 29 , 239–258, DOI: 10.1046/j.1365-2907.1999.2940239.x.
Lu, G., J. Pan, and G. Zhang, 2020: African swine fever virus in Asia: Its rapid spread and potential threat to unaffected countries. J. Infect. 80 , 350–371, DOI: 10.1016/j.jinf.2019.11.011.
Mazur-Panasiuk, N., J. Żmudzki, and G. Woźniakowski, 2019: African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. J. Vet. Res.63 , 303–310, DOI: 10.2478/jvetres-2019-0058.
Mebus, C., M. Arias, J.M. Pineda, J. Tapiador, and C. House, 1997: Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem. 59 , 555–559, DOI: 10.1016/S0308-8146(97)00006-X.
Morelle, K., J. Bubnicki, M. Churski, J. Gryz, and T. Podgórski, 2020: Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Front. Ecol. Environ. 7 , 1–9, DOI: 10.3389/fvets.2020.00378.
Nielsen, S.S., J. Alvarez, D.J. Bicout, P. Calistri, K. Depner, J.A. Drewe, B. Garin-bastuji, J. Luis, G. Rojas, C.G. Schmidt, M. Herskin, V. Michel, M. Angel, M. Chueca, P. Pasquali, H.C. Roberts, L.H. Sihvonen, H. Spoolder, K. Stahl, A. Velarde, C. Winckler, C. Ivanciu, A. Papanikolaou, Y. Van Der Stede, S. Blome, V. Guberti, F. Loi, S. More, E. Olsevskis, H.H. Thulke, A. Viltrop, V. Michel, and M. Angel, 2021: ASF Exit Strategy : Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J. 19 , DOI: 10.2903/j.efsa.2021.6419.
Nsoesie, E.O., R.J. Beckman, and M. V Marathe, 2012: Sensitivity analysis of an individual-based model for simulation of influenza epidemics. PLoS One 7 , e45414, DOI: 10.1371/journal.pone.0045414.
Nurmoja, I., A. Petrov, C. Breidenstein, L. Zani, J.H. Forth, M. Beer, M. Kristian, A. Viltrop, and S. Blome, 2017: Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound. Emerg. Dis.64 , 2034–2041, DOI: 10.1111/tbed.12614.
Nurmoja, I., K. Schulz, C. Staubach, C. Sauter-Louis, K. Depner, F.J. Conraths, and A. Viltrop, 2017: Development of African swine fever epidemic among wild boar in Estonia-two different areas in the epidemiological focus. Sci. Rep. 7 , 1–12, DOI: 10.1038/s41598-017-12952-w.
O’Neill, X., A. White, F. Ruiz-Fons, and C. Gortázar, 2020: Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci. Rep. 10 , 1–10, DOI: 10.1038/s41598-020-62736-y.
Oļševskis, E., K. Schulz, C. Staubach, M. Seržants, K. Lamberga, D. Pūle, J. Ozoliņš, F. Josef, and C. Sauter-louis, 2020: African swine fever in Latvian wild boar — A step closer to elimination.Transbound. Emerg. Dis. 2615–2629, DOI: 10.1111/tbed.13611.
Pautienius, A., J. Grigas, S. Pileviciene, R. Zagrabskaite, J. Buitkuviene, G. Pridotkas, R. Stankevicius, Z. Streimikyte, A. Salomskas, D. Zienius, and A. Stankevicius, 2018: Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014-2017. Virol. J. 15 , 1–8, DOI: 10.1186/s12985-018-1090-8.
Penrith, M.L., 2020: Current status of African swine fever. CABI Agric. Biosci. 1 , 1–26, DOI: 10.1186/s43170-020-00011-w.
Pepin, K.M., A.J. Golnar, Z. Abdo, and T. Podgórski, 2020: Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecol. Evol. 10 , 2846–2859, DOI: 10.1002/ece3.6100.
Petrov, A., J.H. Forth, L. Zani, M. Beer, and S. Blome, 2018: No evidence for long-term carrier status of pigs after African swine fever virus infection. Transbound. Emerg. Dis. 65 , 1318–1328, DOI: 10.1111/tbed.12881.
Pitts, N., and T. Whitnall, 2019: Impact of African swine fever on global markets. Agric. Commod. 9 , 52–54.
Probst, C., A. Globig, B. Knoll, F.J. Conraths, and K. Depner, 2017: Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever.R. Soc. Open Sci. 4 , DOI: 10.1098/rsos.170054.
Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, 2008: Global Sensitivity Analysis. Chichester, UK: Wiley and Sons.
Sánchez-Vizcaíno, J.M., L. Mur, J.C. Gomez-Villamandos, and L. Carrasco, 2015: An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 152 , 9–21, DOI: 10.1016/j.jcpa.2014.09.003.
Ståhl, K., S. Sternberg-Lewerin, S. Blome, A. Viltrop, M.L. Penrith, and E. Chenais, 2019: Lack of evidence for long term carriers of African swine fever virus - a systematic review. Virus Res. 272 , 197725, DOI: 10.1016/j.virusres.2019.197725.
Toïgo, C., S. Servanty, J.M. Gaillard, S. Brandt, and E. Baubet, 2008: Disentangling natural from hunting mortality in an intensively hunted wild boar population. J. Wildl. Manage. 72 , 1532–1539, DOI: 10.2193/2007-378.
Truvé, J., J. Lemel, and B. Söderberg, 2004: Dispersal in relation to population density in wild boar (Sus scrofa). Galemys16 , 75–82.
Wilensky, U., 1999: Netlogo. Northwestern University, Evanston. . Center for Connected Learning and Computer-Based Modeling.
Zani, L., J.H. Forth, L. Fo, I. Nurmoja, S. Leidenberger, J. Henke, C. Jolene, C. Breidenstein, A. Viltrop, D. Höper, C. Sauter-louis, M. Beer, and S. Blome, 2018: Deletion at the 5 ’ -end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 8 , 1–11, DOI: 10.1038/s41598-018-24740-1.