References
Butler, M., Huzel, N., Barnab, N., Gray, T., & Bajno, L. (1999). Linoleic acid improves the robustness of cells in agitated cultures, 27–36.
Clincke, M.-F., Guedon, E., Yen, F. T., Ea, L., Universite, N., Ogier, V., … Goergen, J.-L. (n.d.). Effect of Surfactant Pluronic F-68 on CHO Cell Growth , Metabolism , Production , and Glycosylation of Human Recombinant IFN- c in Mild Operating Conditions, 181–190. https://doi.org/10.1002/btpr.503
Coleman, E. (2020). Establishment of a Novel Pichia Pastoris Host Production Platform by.
Combs, G. F. (2012). The vitamins: Fundamental aspects in nutrition and health . San Diego: Elsevier Academic Press.
Cooper, R. A. (1978). Influence of Increased Membrane Cholesterol on Membrane Fluidity and Cell Function in Human Red Blood Cells.Journal of Supramolecular Structure .
Crowell, L. E., Crowell, L. E., Raymond, A., St, H. E., Engineering, C., Doyle, P. S., & Crowell, L. E. (2020). Accelerating process development for biologics on an automated , pharmacy-scale manufacturing system by by.
Dalvie, N. C., Brady, J. R., Crowell, L. E., Tracey, M. K., Biedermann, A. M., Kaur, K., … Love, J. C. (2020). Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus. BioRx , 1–51.
Degreif, D., Cucu, B., Budin, I., Thiel, G., & Bertl, A. (2019). Lipid determinants of endocytosis and exocytosis in budding yeast. BBA - Molecular and Cell Biology of Lipids , 1864 (7), 1005–1016. https://doi.org/10.1016/j.bbalip.2019.03.007
FSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2011). Scientific Opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA Journal ,9 (9), 2353.
Gagnon, M., Hiller, G., Luan, Y. T., Kittredge, A., Defelice, J., & Drapeau, D. (2011). High-End pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO Fed-batch cultures.Biotechnology and Bioengineering , 108 (6), 1328–1337. https://doi.org/10.1002/bit.23072
Galbraith, S. C., Bhatia, H., Liu, H., & Yoon, S. (2018). Media formulation optimization: current and future opportunities.Current Opinion in Chemical Engineering , 22 , 42–47. https://doi.org/10.1016/j.coche.2018.08.004
Guo, C., Huang, Y., Zheng, H., Tang, L., He, J., Xiang, L., … Jiang, H. (2012). Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Experimental and Therapeutic Medicine , 1063–1068. https://doi.org/10.3892/etm.2012.719
Inan, M., & Meagher, M. M. (2001). Non-repressing carbon sources for alcohol oxidase (AOX1) Promoter of Pichia pastoris, 92 (6), 585–589.
Jordan, M., Voisard, D., Berthoud, A., & Tercier, L. (2013). Cell culture medium improvement by rigorous shuffling of components using media blending, 31–40. https://doi.org/10.1007/s10616-012-9462-1
Kennedy, M., & Krouse, D. (1999). Strategies for improving fermentation medium performance: a review. Journal of Industrial Microbiology and Biotechnology , (23), 456–475.
Kuryatov, A., Mukherjee, J., & Lindstrom, J. (2013). Chemical Chaperones Exceed the Chaperone Effects of RIC-3 in Promoting Assembly of Functional a 7 AChRs. PLoS ONE , 8 (4), 1–11. https://doi.org/10.1371/journal.pone.0062246
Loebrich, S., Clark, E., Ladd, K., Takahashi, S., Brousseau, A., Kitchener, S., … Ryll, T. (2019). Comprehensive manipulation of glycosylation profiles across development scales. MAbs ,11 (2), 335–349. https://doi.org/10.1080/19420862.2018.1527665
Love, J. C., Love, K. R., & Barone, P. W. (2012). Enabling global access to high-quality biopharmaceuticals. Current Opinion in Chemical Engineering , 2 (4), 383–390. https://doi.org/10.1016/j.coche.2013.09.002
Lu, T. L., Pugach, O., Somerville, R., Rosenberg, S. A., Kochenderfer, J. N., Better, M., & Feldman, S. A. (2016). A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.Human Gene Therapy Methods , 27 (6), 209–219. https://doi.org/10.1089/hgtb.2016.120
Mahammad, S., & Parmryd, I. (2015). Cholesterol depletion using methyl-β-cyclodextrin. In Methods in membrane lipids (pp. 91–102).
Matthews, C. B., Kuo, A., Love, K. R., & Love, J. C. (2017a). Development of a general defined medium for Pichia pastoris, (July), 103–113. https://doi.org/10.1002/bit.26440
Matthews, C. B., Kuo, A., Love, K. R., & Love, J. C. (2017b). Development of a general defined medium for Pichia pastoris, (July), 103–113. https://doi.org/10.1002/bit.26440
McGillicuddy, N., Floris, P., Albrecht, S., & Bones, J. (2018). Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnology Letters ,40 (1), 5–21. https://doi.org/10.1007/s10529-017-2437-8
Mohmad-Saberi, S. E., Hashim, Y. Z. H. Y., Mel, M., Amid, A., Ahmad-Raus, R., & Packeer-Mohamed, V. (2013). Metabolomics profiling of extracellular metabolites in CHO-K1 cells cultured in different types of growth media. Cytotechnology , 65 (4), 577–586. https://doi.org/10.1007/s10616-012-9508-4
Moser, J. W., Prielhofer, R., Gerner, S. M., Graf, A. B., Wilson, I. B. H., Mattanovich, D., & Dragosits, M. (2017). Implications of evolutionary engineering for growth and recombinant protein production in methanol ‑ based growth media in the yeast Pichia pastoris.Microbial Cell Factories , 1–16. https://doi.org/10.1186/s12934-017-0661-5
Pereira, S., Kildegaard, H. F., & Andersen, M. R. (2018). Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients. Biotechnology Journal ,13 (3), 1–13. https://doi.org/10.1002/biot.201700499
Ritacco, Frank V; Yongqi Wu, A. K. (2018). Cell Culture Media for Recombinant Protein Expression in Chinese Hamster Ovary ( CHO ) Cells : History , Key Components , and Optimization Strategies. https://doi.org/10.1002/btpr.2706
Ritacco, F. V., Wu, Y., & Khetan, A. (2018). Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies.Biotechnology Progress , 34 (6), 1407–1426. https://doi.org/10.1002/btpr.2706
Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J., & Oliveira, R. (2012). Comparison of commercial serum-free media for CHO-K1 cell growth and monoclonal antibody production. International Journal of Pharmaceutics , 437 (1–2), 303–305. https://doi.org/10.1016/j.ijpharm.2012.08.002
Rouiller, Y., Périlleux, A., Collet, N., Jordan, M., Stettler, M., & Broly, H. (2013). A high-throughput media design approach for high performance mammalian fed-batch cultures, (June), 501–511.
Schnellbaecher, A., Binder, D., Bellmaine, S., & Zimmer, A. (2019). Vitamins in cell culture media: Stability and stabilization strategies.Biotechnology and Bioengineering , 116 (6), 1537–1555. https://doi.org/10.1002/bit.26942
Sorkun, M. C., Khetan, A., & Er, S. (2019). AqSolDB , a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds, 2019 (July), 1–8. https://doi.org/10.1038/s41597-019-0151-1
Uppala, J. K., Gani, A. R., & Ramaiah, K. V. A. (2017). Chemical chaperone , TUDCA unlike PBA , mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death.Scientific , 1 (January), 1–13. https://doi.org/10.1038/s41598-017-03940-1
Villadsen, J. (2015). Redox Balances and Consistency Check of Experiments. In Fundamental Bioengineering (pp. 17–38).
Wakayama, K., Yamaguchi, S., Takeuchi, A., Mizumura, T., Ozawa, S., Tomizuka, N., … Nakagawa, T. (2016). Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. Journal of Bioscience and Bioengineering , 122 (5), 545–549. https://doi.org/10.1016/j.jbiosc.2016.03.022
Yamamoto, T., & Ishihara, K. (n.d.). Stability of Glutathione in Solution. Developments in Food Engineering , 209–211.
Zakharova, E. M., & Minashina, I. K. (2015). Review of Multidimensional Optimization Methods. Mathematical Models, Computational Methods ,60 (6), 625–636. https://doi.org/10.1134/S1064226915060194
Zhang, H., Wang, H., & Liu, M. (2013). Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody, 363–378. https://doi.org/10.1007/s10616-012-9488-4