References
[1] Mcinnes I B, Schett G. The pathogenesis of rheumatoid
arthritis[J]. The New England journal of medicine, 2011, 365(23):
2205-2219.
[2] Sparks J A. Rheumatoid Arthritis[J]. Annals of internal
medicine, 2019, 170(1).
[3] Srivastava R K, Dar H Y, Mishra P K. Immunoporosis: Immunology
of Osteoporosis-Role of T Cells[J]. Frontiers in immunology, 2018,
9: 657.
[4] Jiang X, Wang S, Zhou C, et al. Comprehensive TCR repertoire
analysis of CD4 T-cell subsets in rheumatoid arthritis[J]. Journal
of autoimmunity, 2020, 109: 102432.
[5] Qiu R, Zhou L, Ma Y, et al. Regulatory T Cell Plasticity and
Stability and Autoimmune Diseases[J]. Clinical reviews in allergy &
immunology, 2020, 58(1): 52-70.
[6] Scheinecker C, Göschl L, Bonelli M. Treg cells in health and
autoimmune diseases: New insights from single cell analysis[J].
Journal of autoimmunity, 2020, 110: 102376.
[7] Notley C A, Ehrenstein M R. The yin and yang of regulatory T
cells and inflammation in RA[J]. Nature reviews. Rheumatology, 2010,
6(10): 572-577.
[8] Xiao X-Y, Li Y-T, Jiang X, et al. EZH2 deficiency attenuates
Treg differentiation in rheumatoid arthritis[J]. Journal of
autoimmunity, 2020, 108: 102404.
[9] Rubtsov Y P, Rasmussen J P, Chi E Y, et al. Regulatory T
cell-derived interleukin-10 limits inflammation at environmental
interfaces[J]. Immunity, 2008, 28(4): 546-558.
[10] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell
development by the transcription factor Foxp3[J]. Science (New York,
N.Y.), 2003, 299(5609): 1057-1061.
[11] Krol J, Loedige I, Filipowicz W. The widespread regulation of
microRNA biogenesis, function and decay[J]. Nature reviews.
Genetics, 2010, 11(9): 597-610.
[12] Lu T X, Rothenberg M E. MicroRNA[J]. The Journal of allergy
and clinical immunology, 2018, 141(4): 1202-1207.
[13] Zhou Q, Haupt S, Kreuzer J T, et al. Decreased expression of
miR-146a and miR-155 contributes to an abnormal Treg phenotype in
patients with rheumatoid arthritis[J]. Annals of the rheumatic
diseases, 2015, 74(6): 1265-1274.
[14] Kim D, Nguyen Q T, Lee J, et al. Anti-inflammatory Roles of
Glucocorticoids Are Mediated by Foxp3 Regulatory T Cells via a
miR-342-Dependent Mechanism[J]. Immunity, 2020, 53(3).
[15] Scherm M G, Serr I, Zahm A M, et al. miRNA142-3p targets Tet2
and impairs Treg differentiation and stability in models of type 1
diabetes[J]. Nature communications, 2019, 10(1): 5697.
[16] Xie M, Wang J, Gong W, et al. NF-κB-driven miR-34a impairs
Treg/Th17 balance via targeting Foxp3[J]. Journal of autoimmunity,
2019, 102.
[17] Zhou L-L, Zhu Y-M, Qian F-Y, et al. MicroRNA‑143‑3p contributes
to the regulation of pain responses in collagen‑induced
arthritis[J]. Molecular medicine reports, 2018, 18(3): 3219-3228.
[18] Hwang S-M, Sharma G, Verma R, et al. Inflammation-induced Id2
promotes plasticity in regulatory T cells[J]. Nature communications,
2018, 9(1): 4736.
[19] Brand D D, Latham K A, Rosloniec E F. Collagen-induced
arthritis[J]. Nature protocols, 2007, 2(5): 1269-1275.
[20] Yang P, Qian F, Zhang M, et al. Zishen Tongluo formula
ameliorates collagen-induced arthritis in mice by modulation of
Th17/Treg balance[J]. Journal of ethnopharmacology, 2020, 250:
112428.
[21] Yang P, Zhang M, Wang X, et al. MicroRNA let-7g-5p alleviates
murine collagen-induced arthritis by inhibiting Th17 cell
differentiation[J]. Biochemical pharmacology, 2020, 174: 113822.
[22] Seeuws S, Jacques P, Van Praet J, et al. A multiparameter
approach to monitor disease activity in collagen-induced
arthritis[J]. Arthritis research & therapy, 2010, 12(4): R160.
[23] De Molon R S, Thurlings R M, Walgreen B, et al. Systemic
Resolvin E1 (RvE1) Treatment Does Not Ameliorate the Severity of
Collagen-Induced Arthritis (CIA) in Mice: A Randomized, Prospective, and
Controlled Proof of Concept Study[J]. Mediators of inflammation,
2019, 2019: 5689465.
[24] Kang L-J, Kwon E-S, Lee K M, et al. 3’-Sialyllactose as an
inhibitor of p65 phosphorylation ameliorates the progression of
experimental rheumatoid arthritis[J]. British journal of
pharmacology, 2018, 175(23): 4295-4309.
[25] Bai Y, Li Y, Marion T, et al. Resistant starch intake
alleviates collagen-induced arthritis in mice by modulating gut
microbiota and promoting concomitant propionate production[J].
Journal of autoimmunity, 2021, 116: 102564.
[26] Jin S, Sun S, Ling H, et al. Protectin DX restores Treg/T17
cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome
via miR-20a[J]. Cell death & disease, 2021, 12(3): 280.
[27] Stypinska B, Wajda A, Walczuk E, et al. The Serum Cell-Free
microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients[J].
Journal of clinical medicine, 2020, 9(1).
[28] Yang Z, Wang J, Pan Z, et al. miR-143-3p regulates cell
proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating
the Ras/p38 MAPK signaling pathway in rheumatoid arthritis[J].
Experimental and therapeutic medicine, 2018, 15(4): 3781-3790.
[29] Specjalski K, Maciejewska A, Pawłowski R, et al. Changes in the
Expression of MicroRNA in the Buildup Phase of Wasp Venom Immunotherapy:
A Pilot Study[J]. International archives of allergy and immunology,
2016, 170(2).
[30] Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, et al.
Differential intestinal anti-inflammatory effects of Lactobacillus
fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on
microRNAs expression and microbiota composition[J]. Molecular
nutrition & food research, 2017, 61(11).
[31] Miyoshi M, Liu S. Collagen-Induced Arthritis Models[J].
Methods in molecular biology (Clifton, N.J.), 2018, 1868: 3-7.
[32] Jin S, Chen H, Li Y, et al. Maresin 1 improves the Treg/Th17
imbalance in rheumatoid arthritis through miR-21[J]. Annals of the
rheumatic diseases, 2018, 77(11): 1644-1652.
[33] Sun H, Gao W, Pan W, et al. Tim3 Foxp3 Treg Cells Are Potent
Inhibitors of Effector T Cells and Are Suppressed in Rheumatoid
Arthritis[J]. Inflammation, 2017, 40(4): 1342-1350.
[34] Zhang X, Zhang X, Zhuang L, et al. Decreased regulatory T-cell
frequency and interleukin-35 levels in patients with rheumatoid
arthritis[J]. Experimental and therapeutic medicine, 2018, 16(6):
5366-5372.
[35] Vitales-Noyola M, Layseca-Espinosa E, Baranda L, et al.
Analysis of Sodium Chloride Intake and Treg/Th17 Lymphocytes in Healthy
Individuals and Patients with Rheumatoid Arthritis or Systemic Lupus
Erythematosus[J]. Journal of immunology research, 2018, 2018:
9627806.
[36] Diefenhardt P, Nosko A, Kluger M A, et al. IL-10 Receptor
Signaling Empowers Regulatory T Cells to Control Th17 Responses and
Protect from GN[J]. Journal of the American Society of Nephrology :
JASN, 2018, 29(7): 1825-1837.
[37] Jofra T, Galvani G, Cosorich I, et al. Experimental colitis in
IL-10-deficient mice ameliorates in the absence of PTPN22[J].
Clinical and experimental immunology, 2019, 197(3): 263-275.
[38] Donate P B, Alves De Lima K, Peres R S, et al. Cigarette smoke
induces in Th17 cells that enhance osteoclastogenesis in inflammatory
arthritis[J]. Proceedings of the National Academy of Sciences of the
United States of America, 2021, 118(1).
[39] Evangelatos G, Fragoulis G E, Koulouri V, et al. MicroRNAs in
rheumatoid arthritis: From pathogenesis to clinical impact[J].
Autoimmunity reviews, 2019, 18(11): 102391.
[40] Zhang L, Wu H, Zhao M, et al. Clinical significance of miRNAs
in autoimmunity[J]. Journal of autoimmunity, 2020, 109: 102438.
[41] Zhou J, Chaudhry H, Zhong Y, et al. Dysregulation in microRNA
expression in peripheral blood mononuclear cells of sepsis patients is
associated with immunopathology[J]. Cytokine, 2015, 71(1).
[42] Hong B-K, You S, Yoo S-A, et al. MicroRNA-143 and -145 modulate
the phenotype of synovial fibroblasts in rheumatoid arthritis[J].
Experimental & molecular medicine, 2017, 49(8): e363.
[43] Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental
pathways for the generation of pathogenic effector TH17 and regulatory T
cells[J]. Nature, 2006, 441(7090): 235-238.
[44] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from
microRNA sequences to function[J]. Nucleic acids research, 2019,
47(D1): D155-D162.
[45] Fromm B, Keller A, Yang X, et al. Quo vadis microRNAs?[J].
Trends in genetics : TIG, 2020, 36(7): 461-463.
[46] Xu M, Pokrovskii M, Ding Y, et al. c-MAF-dependent regulatory T
cells mediate immunological tolerance to a gut pathobiont[J].
Nature, 2018, 554(7692): 373-377.
[47] Neumann C, Blume J, Roy U, et al. c-Maf-dependent T cell
control of intestinal T17 cells and IgA establishes host-microbiota
homeostasis[J]. Nature immunology, 2019, 20(4): 471-481.
[48] Gabryšová L, Alvarez-Martinez M, Luisier R, et al. c-Maf
controls immune responses by regulating disease-specific gene networks
and repressing IL-2 in CD4 T cells[J]. Nature immunology, 2018,
19(5): 497-507.