Bibliography
1. Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30: 409–425. doi:10.1146/annurev.mi.30.100176.002205 2. Aharoni A, Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS. The “evolvability” of promiscuous protein functions. Nat Genet. 2005;37: 73–76. doi:10.1038/ng1482 3. Schreiber G, Keating AE. Protein binding specificity versus promiscuity. Curr Opin Struct Biol. 2011;21: 50–61. doi:10.1016/j.sbi.2010.10.002 4. Spiller B, Gershenson A, Arnold FH, Stevens RC. A structural view of evolutionary divergence. Proc Natl Acad Sci USA. 1999;96: 12305–12310. doi:10.1073/pnas.96.22.12305 5. Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324: 203–207. doi:10.1126/science.1169375 6. Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79: 471–505. doi:10.1146/annurev-biochem-030409-143718 7. Li S, Cao Y, Geng F. Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates. Evol Bioinform Online. 2017;13: 1176934317716089. doi:10.1177/1176934317716089 8. Sharma UK, Sharma N, Kumar R, Sinha AK. Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids. 2013;44: 1031–1037. doi:10.1007/s00726-012-1437-1 9. Boucher G, Robin S, Fargeas V, Dintinger T, Mathé-Allainmat M, Lebreton J, et al. Serum albumin-catalyzed trigger system by using a tandem kemp elimination/beta-elimination reaction. Chembiochem. 2005;6: 807–810. doi:10.1002/cbic.200400255 10. Albanese DCM, Gaggero N. Albumin as a promiscuous biocatalyst in organic synthesis. RSC Adv. 2015;5: 10588–10598. doi:10.1039/C4RA11206G 11. Wu W-B, Xu J-M, Wu Q, Lv D-S, Lin X-F. Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media. Adv Synth Catal. 2006;348: 487–492. doi:10.1002/adsc.200505342 12. Ardanaz SM, Borucki EL, Velez Rueda AJ, Parisi G, Iribarren AM, Iglesias LE. Bovine serum albumin-catalysed cross aldol condensation: Influence of ketone structure. Process Biochemistry. 2019; doi:10.1016/j.procbio.2019.08.003 13. Kragh-Hansen U. Molecular and practical aspects of the enzymatic properties of human serum albumin and of albumin-ligand complexes. Biochim Biophys Acta. 2013;1830: 5535–5544. doi:10.1016/j.bbagen.2013.03.015 14. Ardanaz SM, Velez Rueda AJ, Parisi G, Iribarren AM, Iglesias LE. A mild procedure for enone preparation catalysed by bovine serum albumin in a green and easily available medium. Catal Lett. 2018;148: 1750–1757. doi:10.1007/s10562-018-2386-4 15. van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24: 300–307. doi:10.2133/dmpk.24.300 16. di Masi A, Gullotta F, Bolli A, Fanali G, Fasano M, Ascenzi P. Ibuprofen binding to secondary sites allosterically modulates the spectroscopic and catalytic properties of human serum heme-albumin. FEBS J. 2011;278: 654–662. doi:10.1111/j.1742-4658.2010.07986.x 17. Yang F, Zhang Y, Liang H. Interactive association of drugs binding to human serum albumin. Int J Mol Sci. 2014;15: 3580–3595. doi:10.3390/ijms15033580 18. Kragh-Hansen U, Chuang VTG, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25: 695–704. 19. Watanabe H, Tanase S, Nakajou K, Maruyama T, Kragh-Hansen U, Otagiri M. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity. Biochem J. 2000;349 Pt 3: 813–819. doi:10.1042/bj3490813 20. Spanidis Y, Priftis A, Stagos D, Stravodimos GA, Leonidas DD, Spandidos DA, et al. Oxidation of human serum albumin exhibits inter-individual variability after an ultra-marathon mountain race. Exp Ther Med. 2017;13: 2382–2390. doi:10.3892/etm.2017.4268 21. Sakurai Y, Ma S-F, Watanabe H, Yamaotsu N, Hirono S, Kurono Y, et al. Esterase-like activity of serum albumin: characterization of its structural chemistry using p-nitrophenyl esters as substrates. Pharm Res. 2004;21: 285–292. doi:10.1023/B:PHAM.0000016241.84630.06 22. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic residues in enzyme active sites. J Mol Biol. 2002;324: 105–121. doi:10.1016/s0022-2836(02)01036-7 23. Gutteridge A, Thornton JM. Understanding nature’s catalytic toolkit. Trends Biochem Sci. 2005;30: 622–629. doi:10.1016/j.tibs.2005.09.006 24. Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol. 2006;10: 498–508. doi:10.1016/j.cbpa.2006.08.011 25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2 26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22: 4673–4680. doi:10.1093/nar/22.22.4673 27. Touw WG, Baakman C, Black J, te Beek TAH, Krieger E, Joosten RP, et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43: D364-8. doi:10.1093/nar/gku1028 28. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–321. doi:10.1093/sysbio/syq010 29. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8: e1002764. doi:10.1371/journal.pgen.1002764 30. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 2018;35: 773–777. doi:10.1093/molbev/msx335 31. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics. 1997;13: 555–556. doi:10.1093/bioinformatics/13.5.555 32. Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics. 1997;13: 235–238. doi:10.1093/bioinformatics/13.3.235 33. Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10: 168. doi:10.1186/1471-2105-10-168 34. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pK Predictions. J Chem Theory Comput. 2011;7: 525–537. doi:10.1021/ct100578z 35. Chen L, Perlina A, Lee CJ. Positive selection detection in 40,000 human immunodeficiency virus (HIV) type 1 sequences automatically identifies drug resistance and positive fitness mutations in HIV protease and reverse transcriptase. J Virol. 2004;78: 3722–3732. doi:10.1128/jvi.78.7.3722-3732.2004 36. Studer RA, Penel S, Duret L, Robinson-Rechavi M. Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res. 2008;18: 1393–1402. doi:10.1101/gr.076992.108 37. Ha C-E, Bhagavan NV. Novel insights into the pleiotropic effects of human serum albumin in health and disease. Biochim Biophys Acta. 2013;1830: 5486–5493. doi:10.1016/j.bbagen.2013.04.012 38. Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1999;1441: 131–140. doi:10.1016/S1388-1981(99)00148-1 39. Li M, McAuley E, Zhang Y, Kong L, Yang F, Zhou Z, et al. Comparison of binding characterization of two antiviral drugs to human serum albumin. Chem Biol Drug Des. 2014;83: 576–582. doi:10.1111/cbdd.12270 40. Benedetti F, Berti F, Bidoggia S. Aldolase activity of serum albumins. Org Biomol Chem. 2011;9: 4417–4420. doi:10.1039/c0ob01219j 41. Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M. Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J Struct Biol. 2007;157: 348–355. doi:10.1016/j.jsb.2006.08.015 42. Bhattacharya AA, Grüne T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol. 2000;303: 721–732. doi:10.1006/jmbi.2000.4158 43. Grimsley GR, Scholtz JM, Pace CN. A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 2009;18: 247–251. doi:10.1002/pro.19 44. Harris TK, Turner GJ. Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life. 2002;53: 85–98. doi:10.1080/15216540211468 45. Gora A, Brezovsky J, Damborsky J. Gates of enzymes. Chem Rev. 2013;113: 5871–5923. doi:10.1021/cr300384w 46. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8: e1002708. doi:10.1371/journal.pcbi.1002708 47. Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SCE, et al. Conformational diversity analysis reveals three functional mechanisms in proteins. PLoS Comput Biol. 2017;13: e1005398. doi:10.1371/journal.pcbi.1005398 48. Drmanovic Z, Voyatzi S, Kouretas D, Sahpazidou D, Papageorgiou A, Antonoglou O. Albumin possesses intrinsic enolase activity towards dihydrotestosterone which can differentiate benign from malignant breast tumors. Anticancer Res. 1999;19: 4113–4124. 49. Masson P, Froment M-T, Darvesh S, Schopfer LM, Lockridge O. Aryl acylamidase activity of human serum albumin witho -nitrotrifluoroacetanilide as the substrate. J Enzyme Inhib Med Chem. 2007;22: 463–469. doi:10.1080/14756360701383932 50. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997;82: 3246–3250. doi:10.1210/jcem.82.10.4276 51. Petersen CE, Scottolini AG, Cody LR, Mandel M, Reimer N, Bhagavan NV. A point mutation in the human serum albumin gene results in familial dysalbuminaemic hyperthyroxinaemia. J Med Genet. 1994;31: 355–359. doi:10.1136/jmg.31.5.355 52. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA. 2005;102: 14338–14343. doi:10.1073/pnas.0504070102 53. Sekula B, Zielinski K, Bujacz A. Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. Int J Biol Macromol. 2013;60: 316–324. doi:10.1016/j.ijbiomac.2013.06.004 54. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol. 2012;52: 174–182. doi:10.1016/j.molimm.2012.05.011 55. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57: 787–796. doi:10.1080/15216540500404093 56. Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998;5: 827–835. doi:10.1038/1869 57. Reed RG. Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J Biol Chem. 1986;261: 15619–15624. 58. Hamilton JA, Era S, Bhamidipati SP, Reed RG. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. Proc Natl Acad Sci USA. 1991;88: 2051–2054. doi:10.1073/pnas.88.6.2051