1. Jensen RA.
Enzyme recruitment in evolution of new function. Annu Rev Microbiol.
1976;30: 409–425. doi:10.1146/annurev.mi.30.100176.002205
2. Aharoni A,
Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS. The
“evolvability” of promiscuous protein functions. Nat Genet. 2005;37:
73–76. doi:10.1038/ng1482
3. Schreiber G,
Keating AE. Protein binding specificity versus promiscuity. Curr Opin
Struct Biol. 2011;21: 50–61. doi:10.1016/j.sbi.2010.10.002
4. Spiller B,
Gershenson A, Arnold FH, Stevens RC. A structural view of evolutionary
divergence. Proc Natl Acad Sci USA. 1999;96: 12305–12310.
doi:10.1073/pnas.96.22.12305
5. Tokuriki N,
Tawfik DS. Protein dynamism and evolvability. Science. 2009;324:
203–207. doi:10.1126/science.1169375
6. Khersonsky O,
Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary
perspective. Annu Rev Biochem. 2010;79: 471–505.
doi:10.1146/annurev-biochem-030409-143718
7. Li S, Cao Y,
Geng F. Genome-Wide Identification and Comparative Analysis of Albumin
Family in Vertebrates. Evol Bioinform Online. 2017;13: 1176934317716089.
doi:10.1177/1176934317716089
8. Sharma UK,
Sharma N, Kumar R, Sinha AK. Biocatalysts for multicomponent Biginelli
reaction: bovine serum albumin triggered waste-free synthesis of
3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids. 2013;44: 1031–1037.
doi:10.1007/s00726-012-1437-1
9. Boucher G,
Robin S, Fargeas V, Dintinger T, Mathé-Allainmat M, Lebreton J, et al.
Serum albumin-catalyzed trigger system by using a tandem kemp
elimination/beta-elimination reaction. Chembiochem. 2005;6: 807–810.
doi:10.1002/cbic.200400255
10. Albanese DCM,
Gaggero N. Albumin as a promiscuous biocatalyst in organic synthesis.
RSC Adv. 2015;5: 10588–10598. doi:10.1039/C4RA11206G
11. Wu W-B, Xu
J-M, Wu Q, Lv D-S, Lin X-F. Promiscuous Acylases-Catalyzed Markovnikov
Addition of N-Heterocycles to Vinyl Esters in Organic Media. Adv Synth
Catal. 2006;348: 487–492. doi:10.1002/adsc.200505342
12. Ardanaz SM,
Borucki EL, Velez Rueda AJ, Parisi G, Iribarren AM, Iglesias LE. Bovine
serum albumin-catalysed cross aldol condensation: Influence of ketone
structure. Process Biochemistry. 2019;
doi:10.1016/j.procbio.2019.08.003
13. Kragh-Hansen
U. Molecular and practical aspects of the enzymatic properties of human
serum albumin and of albumin-ligand complexes. Biochim Biophys Acta.
2013;1830: 5535–5544. doi:10.1016/j.bbagen.2013.03.015
14. Ardanaz SM,
Velez Rueda AJ, Parisi G, Iribarren AM, Iglesias LE. A mild procedure
for enone preparation catalysed by bovine serum albumin in a green and
easily available medium. Catal Lett. 2018;148: 1750–1757.
doi:10.1007/s10562-018-2386-4
15. van der Vusse
GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet.
2009;24: 300–307. doi:10.2133/dmpk.24.300
16. di Masi A,
Gullotta F, Bolli A, Fanali G, Fasano M, Ascenzi P. Ibuprofen binding to
secondary sites allosterically modulates the spectroscopic and catalytic
properties of human serum heme-albumin. FEBS J. 2011;278: 654–662.
doi:10.1111/j.1742-4658.2010.07986.x
17. Yang F, Zhang
Y, Liang H. Interactive association of drugs binding to human serum
albumin. Int J Mol Sci. 2014;15: 3580–3595. doi:10.3390/ijms15033580
18. Kragh-Hansen
U, Chuang VTG, Otagiri M. Practical aspects of the ligand-binding and
enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25:
695–704.
19. Watanabe H,
Tanase S, Nakajou K, Maruyama T, Kragh-Hansen U, Otagiri M. Role of
arg-410 and tyr-411 in human serum albumin for ligand binding and
esterase-like activity. Biochem J. 2000;349 Pt 3: 813–819.
doi:10.1042/bj3490813
20. Spanidis Y,
Priftis A, Stagos D, Stravodimos GA, Leonidas DD, Spandidos DA, et al.
Oxidation of human serum albumin exhibits inter-individual variability
after an ultra-marathon mountain race. Exp Ther Med. 2017;13:
2382–2390. doi:10.3892/etm.2017.4268
21. Sakurai Y, Ma
S-F, Watanabe H, Yamaotsu N, Hirono S, Kurono Y, et al. Esterase-like
activity of serum albumin: characterization of its structural chemistry
using p-nitrophenyl esters as substrates. Pharm Res. 2004;21: 285–292.
doi:10.1023/B:PHAM.0000016241.84630.06
22. Bartlett GJ,
Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic residues in
enzyme active sites. J Mol Biol. 2002;324: 105–121.
doi:10.1016/s0022-2836(02)01036-7
23. Gutteridge A,
Thornton JM. Understanding nature’s catalytic toolkit. Trends Biochem
Sci. 2005;30: 622–629. doi:10.1016/j.tibs.2005.09.006
24. Khersonsky O,
Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic
aspects. Curr Opin Chem Biol. 2006;10: 498–508.
doi:10.1016/j.cbpa.2006.08.011
25. Altschul SF, Gish
W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J
Mol Biol. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2
26. Thompson JD,
Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids
Res. 1994;22: 4673–4680. doi:10.1093/nar/22.22.4673
27. Touw WG,
Baakman C, Black J, te Beek TAH, Krieger E, Joosten RP, et al. A series
of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43:
D364-8. doi:10.1093/nar/gku1028
28. Guindon S,
Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–321.
doi:10.1093/sysbio/syq010
29. Murrell B,
Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL.
Detecting individual sites subject to episodic diversifying selection.
PLoS Genet. 2012;8: e1002764. doi:10.1371/journal.pgen.1002764
30. Weaver S,
Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey
2.0: A modern web application for characterizing selective and other
evolutionary processes. Mol Biol Evol. 2018;35: 773–777.
doi:10.1093/molbev/msx335
31. Yang Z. PAML:
a program package for phylogenetic analysis by maximum likelihood.
Bioinformatics. 1997;13: 555–556. doi:10.1093/bioinformatics/13.5.555
32. Rambaut A,
Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA
sequence evolution along phylogenetic trees. Bioinformatics. 1997;13:
235–238. doi:10.1093/bioinformatics/13.3.235
33. Le Guilloux V,
Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand
pocket detection. BMC Bioinformatics. 2009;10: 168.
doi:10.1186/1471-2105-10-168
34. Olsson MHM,
Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment
of Internal and Surface Residues in Empirical pK Predictions. J Chem
Theory Comput. 2011;7: 525–537. doi:10.1021/ct100578z
35. Chen L,
Perlina A, Lee CJ. Positive selection detection in 40,000 human
immunodeficiency virus (HIV) type 1 sequences automatically identifies
drug resistance and positive fitness mutations in HIV protease and
reverse transcriptase. J Virol. 2004;78: 3722–3732.
doi:10.1128/jvi.78.7.3722-3732.2004
36. Studer RA,
Penel S, Duret L, Robinson-Rechavi M. Pervasive positive selection on
duplicated and nonduplicated vertebrate protein coding genes. Genome
Res. 2008;18: 1393–1402. doi:10.1101/gr.076992.108
37. Ha C-E,
Bhagavan NV. Novel insights into the pleiotropic effects of human serum
albumin in health and disease. Biochim Biophys Acta. 2013;1830:
5486–5493. doi:10.1016/j.bbagen.2013.04.012
38. Curry S, Brick
P, Franks NP. Fatty acid binding to human serum albumin: new insights
from crystallographic studies. Biochimica et Biophysica Acta (BBA) -
Molecular and Cell Biology of Lipids. 1999;1441: 131–140.
doi:10.1016/S1388-1981(99)00148-1
39. Li M, McAuley
E, Zhang Y, Kong L, Yang F, Zhou Z, et al. Comparison of binding
characterization of two antiviral drugs to human serum albumin. Chem
Biol Drug Des. 2014;83: 576–582. doi:10.1111/cbdd.12270
40. Benedetti F,
Berti F, Bidoggia S. Aldolase activity of serum albumins. Org Biomol
Chem. 2011;9: 4417–4420. doi:10.1039/c0ob01219j
41. Yang F, Bian
C, Zhu L, Zhao G, Huang Z, Huang M. Effect of human serum albumin on
drug metabolism: structural evidence of esterase activity of human serum
albumin. J Struct Biol. 2007;157: 348–355.
doi:10.1016/j.jsb.2006.08.015
42. Bhattacharya
AA, Grüne T, Curry S. Crystallographic analysis reveals common modes of
binding of medium and long-chain fatty acids to human serum albumin. J
Mol Biol. 2000;303: 721–732. doi:10.1006/jmbi.2000.4158
43. Grimsley GR,
Scholtz JM, Pace CN. A summary of the measured pK values of the
ionizable groups in folded proteins. Protein Sci. 2009;18: 247–251.
doi:10.1002/pro.19
44. Harris TK,
Turner GJ. Structural basis of perturbed pKa values of catalytic groups
in enzyme active sites. IUBMB Life. 2002;53: 85–98.
doi:10.1080/15216540211468
45. Gora A,
Brezovsky J, Damborsky J. Gates of enzymes. Chem Rev. 2013;113:
5871–5923. doi:10.1021/cr300384w
46. Chovancova E,
Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. CAVER
3.0: a tool for the analysis of transport pathways in dynamic protein
structures. PLoS Comput Biol. 2012;8: e1002708.
doi:10.1371/journal.pcbi.1002708
47. Monzon AM, Zea
DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SCE, et al.
Conformational diversity analysis reveals three functional mechanisms in
proteins. PLoS Comput Biol. 2017;13: e1005398.
doi:10.1371/journal.pcbi.1005398
48. Drmanovic Z,
Voyatzi S, Kouretas D, Sahpazidou D, Papageorgiou A, Antonoglou O.
Albumin possesses intrinsic enolase activity towards dihydrotestosterone
which can differentiate benign from malignant breast tumors. Anticancer
Res. 1999;19: 4113–4124.
49. Masson P,
Froment M-T, Darvesh S, Schopfer LM, Lockridge O. Aryl acylamidase
activity of human serum albumin witho -nitrotrifluoroacetanilide
as the substrate. J Enzyme Inhib Med Chem. 2007;22: 463–469.
doi:10.1080/14756360701383932
50. Wada N, Chiba
H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in
codon 218 of the albumin gene in a distinct phenotype of familial
dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin
Endocrinol Metab. 1997;82: 3246–3250. doi:10.1210/jcem.82.10.4276
51. Petersen CE,
Scottolini AG, Cody LR, Mandel M, Reimer N, Bhagavan NV. A point
mutation in the human serum albumin gene results in familial
dysalbuminaemic hyperthyroxinaemia. J Med Genet. 1994;31: 355–359.
doi:10.1136/jmg.31.5.355
52. Drummond DA,
Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins
evolve slowly. Proc Natl Acad Sci USA. 2005;102: 14338–14343.
doi:10.1073/pnas.0504070102
53. Sekula B,
Zielinski K, Bujacz A. Crystallographic studies of the complexes of
bovine and equine serum albumin with 3,5-diiodosalicylic acid. Int J
Biol Macromol. 2013;60: 316–324. doi:10.1016/j.ijbiomac.2013.06.004
54. Majorek KA,
Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, et al.
Structural and immunologic characterization of bovine, horse, and rabbit
serum albumins. Mol Immunol. 2012;52: 174–182.
doi:10.1016/j.molimm.2012.05.011
55. Fasano M,
Curry S, Terreno E, Galliano M, Fanali G, Narciso P, et al. The
extraordinary ligand binding properties of human serum albumin. IUBMB
Life. 2005;57: 787–796. doi:10.1080/15216540500404093
56. Curry S,
Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin
complexed with fatty acid reveals an asymmetric distribution of binding
sites. Nat Struct Biol. 1998;5: 827–835. doi:10.1038/1869
57. Reed RG.
Location of long chain fatty acid-binding sites of bovine serum albumin
by affinity labeling. J Biol Chem. 1986;261: 15619–15624.
58. Hamilton JA,
Era S, Bhamidipati SP, Reed RG. Locations of the three primary binding
sites for long-chain fatty acids on bovine serum albumin. Proc Natl Acad
Sci USA. 1991;88: 2051–2054. doi:10.1073/pnas.88.6.2051