References
1. Armitano, J., Mejean, V., and C. Jourlin-Castelli, Gram-negative
bacteria can also form pellicles. Environ Microbiol Rep, 6 (6):
p. 534-44, (2014).
2. Flemming, H.C. and Wingender, J. The biofilm matrix. Nat Rev
Microbiol, 2010. 8 (9): p. 623-33.
3. Wolcott, R. and S. Dowd, The Role of Biofilms: Are We Hitting the
Right Target? Plastic and Reconstructive Surgery, 127 : p.
28S-35S (2011).
4. Lewis, K., Multidrug tolerance of biofilms and persister cells. Curr
Top Microbiol Immunol, 2008. 322 : p. 107-31.
5. Costerton, J.W., Stewart, P.S., and Greenberg, E.P.. Bacterial
Biofilms: A Common Cause of Persistent Infections. Science,284 (5418): p. 1318-1322 (1999).
6. Vorachit, Lam K., Jayanetra .P, Costerton J. W., Electron microscopy
study of the mode of growth of Pseudomonas pseudomallei in vitro and in
vivo. Journal of Tropical Medicine and Hygiene, 98 (6): p.
379-391 (1995).
7. Kamjumphol, W., Kamjumphol, W., Chareonsudjai, P., Taweechaisupapong,
S., and Chareonsudjai, S. Morphological Alteration and Survival ofBurkholderia pseudomallei in Soil Microcosms. The American
journal of tropical medicine and hygiene, 93 (5): p. 1058-1065
(2015).
8. Mangalea, M.R., Plumley, B.A., and Borlee, B.R., Nitrate Sensing and
Metabolism Inhibit Biofilm Formation in the Opportunistic PathogenBurkholderia pseudomallei by Reducing the Intracellular
Concentration of c-di-GMP. Frontiers in Microbiology, 8 (1353)
(2017).
9. Long, P., et al., Melioidosis, Singapore, 2003–2014. Emerging
Infectious Disease journal, 24 (1): p. 140 (2018).
10. Duangurai, T., Indrawattana N., and Pumirat P., Burkholderia
pseudomallei Adaptation for Survival in Stressful Conditions. BioMed
research international, 2018 : p. 3039106-3039106 (2018).
11. Inglis, T.J. and J.L. Sagripanti, Environmental factors that affect
the survival and persistence of Burkholderia pseudomallei . Appl
Environ Microbiol, 72 (11): p. 6865-75 (2006).
12. Aziz, A., et al., Comparative genomics confirms a rare melioidosis
human-to-human transmission event and reveals incorrect phylogenomic
reconstruction due to polyclonality. Microb Genom, 6 (2) (2020).
13. Wiersinga, W.J., et al., Melioidosis: insights into the
pathogenicity of Burkholderia pseudomallei . Nature Reviews
Microbiology, 4 (4): p. 272-282 (2006).
14. Chantratita, N., et al., Antimicrobial resistance to ceftazidime
involving loss of penicillin-binding protein 3 in Burkholderia
pseudomallei . Proceedings of the National Academy of Sciences,108 (41): p. 17165 (2011).
15. Cheng, A.C. and B.J. Currie, Melioidosis: epidemiology,
pathophysiology, and management. Clin Microbiol Rev, 18 (2): p.
383-416 (2005).
16. Perumal Samy, R., Stiles, B.G, Sethi, G., Lim, L.H.K. Melioidosis:
Clinical impact and public health threat in the tropics. PLoS neglected
tropical diseases, 11 (5): p. e0004738-e0004738 (2017).
17. Barsoumian, A.E., et al., Clinical infectious outcomes associated
with biofilm-related bacterial infections: a retrospective chart review.
BMC Infectious Diseases, 15 (1): p. 223 (2015).
18. Panomket, P., Wongsana, P., Wanram, S., Wongratanacheewin, S.Burkholderia pseudomallei biofilm plays a key role in chronic
inflammation in c57bl/6 mice. Southeast Asian J Trop Med Public Health,48 (1): p. 73-82. (2017).
19. Pumirat, P., et al., Global transcriptional profiling ofBurkholderia pseudomallei under salt stress reveals differential
effects on the Bsa type III secretion system. BMC Microbiol,10 : p. 171. (2010).
20. Hamad, M.A., et al., Adaptation and antibiotic tolerance of
anaerobic Burkholderia pseudomallei . Antimicrob Agents Chemother,55 (7): p. 3313-23 (2011).
21. Tabunhan, S., et al., Characterization of a novel two-component
system response regulator involved in biofilm formation and a low-iron
response of Burkholderia pseudomallei . Southeast Asian J Trop Med
Public Health, 45 (5): p. 1065-79 (2014).
22. Reamtong, O., et al., Altered proteome of a Burkholderia
pseudomallei mutant defective in short-chain dehydrogenase affects cell
adhesion, biofilm formation and heat stress tolerance. PeerJ,8 : p. e8659 (2020).
23. Alwis, P.A., et al., Disruption of the Burkholderia
pseudomallei two-component signal transduction system BbeR-BbeS leads
to increased extracellular DNA secretion and altered biofilm formation.
Veterinary Microbiology, 242 : p. 108603 (2020).
24. Gloag, E.S., et al., Self-organization of bacterial biofilms is
facilitated by extracellular DNA. Proceedings of the National Academy of
Sciences, 110 (28): p. 11541-11546 (2013).
25. Pakkulnan, R., et al., Extracellular DNA facilitates bacterial
adhesion during Burkholderia pseudomallei biofilm formation. PloS
one, 14 (3): p. e0213288-e0213288. (2019).
26. Austin, C.R., et al., A Burkholderia pseudomallei colony
variant necessary for gastric colonization. mBio, 6 (1). (2015).
27. Cloutier, M., Muru K., Ravicoularamina G. and Gauthier C.
Polysaccharides from Burkholderia
p. 10.1128/microbiolspec.MB-0011-2014. (2015).
29. Khan, M.M., et al., Temporal proteomic profiling reveals changes
that support Burkholderia biofilms. Pathogens and disease,77 (2): p. 005. (2019).
30. Cherny, K.E. and K. Sauer,. Untethering and Degradation of the
Polysaccharide Matrix Are Essential Steps in the Dispersion Response ofPseudomonas aeruginosa Biofilms. J Bacteriol, 202 (3).
(2020).
31. Li, Y., et al., BdlA, DipA and induced dispersion contribute to
acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS
Pathog, 10 (6): p. e1004168. (2014).
32. Cherny, K.E. and K. Sauer,. Pseudomonas aeruginosa Requires
the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA
To Disperse from the Biofilm. Journal of Bacteriology, 201 (18):
p. e00059-19. (2019).
33. Nait Chabane, Y., et al., Characterisation of pellicles formed by
Acinetobacter baumannii at the air-liquid interface. PloS one,.9 (10): p. e111660-e111660. (2014).
34. Eladawy, M., et al., Effects of Lysozyme, Proteinase K, and
Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas
aeruginosa. Interdiscip Perspect Infect Dis, 2020 : p. 6156720
(2020).
35. Brett, P.J., D. DeShazer, and D.E. Woods, Burkholderia thailandensis
sp. nov., a Burkholderia pseudomallei -like species. Int J Syst
Bacteriol, 48 Pt 1 : p. 317-20. (1998).
36. DeShazer, D., Brett P.J, Carlyon R., Woods D.E,. Mutagenesis ofBurkholderia pseudomallei with Tn5-OT182: isolation of motility
mutants and molecular characterization of the flagellin structural gene.
J Bacteriol, 179 (7): p. 2116-25. (1997).
37. Norris, M.H., et al., The Burkholderia pseudomallei Deltaasd
mutant exhibits attenuated intracellular infectivity and imparts
protection against acute inhalation melioidosis in mice. Infect Immun,79 (10): p. 4010-8 (2011)
38. Propst, K.L., et al., A Burkholderia pseudomallei deltapurM
mutant is avirulent in immunocompetent and immunodeficient animals:
candidate strain for exclusion from select-agent lists. Infection and
immunity, 78 (7): p. 3136-3143 (2010).
39. Moore, R.A., DeShazer D., Reckseidler, S., Weissman, A., Woods,
D.E.. Efflux-mediated aminoglycoside and macrolide resistance inBurkholderia pseudomallei . Antimicrobial agents and chemotherapy,43 (3): p. 465-470. (1999).
40. Warawa, J.M., et al., Role for the Burkholderia pseudomalleicapsular polysaccharide encoded by the wcb operon in acute disseminated
melioidosis. Infect Immun, 77 (12): p. 5252-61 (2009).
41. Peacock, S.J., et al., Comparison of Ashdown’s medium, Burkholderia
cepacia medium, and Burkholderia pseudomallei selective agar for
clinical isolation of Burkholderia pseudomallei . J Clin
Microbiol, 43 (10): p. 5359-61. (2005).
42. Ong, C.E.L., et al., Presence of Burkholderia pseudomallei in
Soil and Paddy Rice Water in a Rice Field in Northeast Thailand, but Not
in Air and Rainwater. Am J Trop Med Hyg, 97 (6): p. 1702-1705.
(2017).
43. Bheemanahalli, R., et al., Temperature thresholds for spikelet
sterility and associated warming impacts for sub-tropical rice.
Agricultural and Forest Meteorology, 221 : p. 122-130 (2016).
44. Mackowiak, P.A., Wasserman, S.S., and Levine, M.M., A critical
appraisal of 98.6 degrees F, the upper limit of the normal body
temperature, and other legacies of Carl Reinhold August Wunderlich.
Jama, 268 (12): p. 1578-80 (1992).
45. Montanaro, L., et al., Extracellular DNA in biofilms. Int J Artif
Organs, 34 (9): p. 824-31 (2011).
46. Keithley, S.E. and Kirisits, M.J. An improved protocol for
extracting extracellular polymeric substances from granular filter
media. Water Research, 129 : p. 419-427. (2018).
47. Kim, H.S., et al., Bacterial genome adaptation to niches: divergence
of the potential virulence genes in three Burkholderia species of
different survival strategies. BMC Genomics, 6 : p. 174 (2005).
48. Tetz, G.V., Artemenko, N.K., and Tetz, V.V., Effect of DNase and
antibiotics on biofilm characteristics. Antimicrobial agents and
chemotherapy, 53 (3): p. 1204-1209 (2009).
49. Wolfmeier, H., Pletzer, D., Mansour, S. C., and Hancock R.E.W. New
Perspectives in Biofilm Eradication. ACS Infect Dis, 4 (2): p.
93-106. (2018).
50. Swartjes, J.J.T.M., et al., A Functional DNase I Coating to Prevent
Adhesion of Bacteria and the Formation of Biofilm. Advanced Functional
Materials, 23 (22): p. 2843-2849 (2013).
51. Kaplan, J.B., et al., Enzymatic detachment of Staphylococcus
epidermidis biofilms. Antimicrob Agents Chemother, 48 (7): p.
2633-6 (2004).
52. Anuntagool, N., Naigowit, P., Petkanchanapong, V., Aramsri, P.
Monoclonal antibody-based rapid identification of Burkholderia
pseudomallei in blood culture fluid from patients with
community-acquired septicaemia. Journal of medical microbiology,.49 : p. 1075-8 (2001).
53. Wiersinga, W.J., et al., Melioidosis. Nature reviews. Disease
primers, 4 : p. 17107-17107 (2018).
54. Anutrakunchai, C., et al., Impact of nutritional stress on drug
susceptibility and biofilm structures of Burkholderia
pseudomallei and Burkholderia thailandensis grown in static and
microfluidic systems. PloS one, 13 (3): p. e0194946-e0194946
(2018).
55. Smith, M.D., Angus, B. J., Wuthiekanun, V., White, N.J., Arabinose
assimilation defines a nonvirulent biotype of Burkholderia
pseudomallei . Infect Immun, 65 (10): p. 4319-21 (1997).
56. Eberl, L., Quorum sensing in the genus Burkholderia . Int J
Med Microbiol, 296 (2-3): p. 103-10 (2006).
57. Rutherford, S.T. and Bassler, B.L., Bacterial quorum sensing: its
role in virulence and possibilities for its control. Cold Spring Harbor
perspectives in medicine, 2 (11): p. a012427 (2012).
58. Leiman, S.A., et al., D-amino acids indirectly inhibit biofilm
formation in Bacillus subtilis by interfering with protein synthesis. J
Bacteriol, 195 (23): p. 5391-5 (2013).
59. Tseng, B.S., et al., Quorum Sensing Influences Burkholderia
thailandensis Biofilm Development and Matrix Production. Journal of
Bacteriology, 198 (19): p. 2643. (2016).
60. Magana, M., et al., Options and Limitations in Clinical
Investigation of Bacterial Biofilms. Clinical microbiology reviews,31 (3): p. e00084-16 (2018).
61. Limmathurotsakul, D., et al., Role of Burkholderia
pseudomallei biofilm formation and lipopolysaccharide in relapse of
melioidosis. Clin Microbiol Infect, 20 (11): p. O854-6 (2014).
62. Sawasdidoln, C., et al., Growing Burkholderia pseudomallei in
biofilm stimulating conditions significantly induces antimicrobial
resistance. PLoS One, 5 (2): p. e9196 (2010).
63. DeShazer, D., et al., Bacteriophage-associated genes responsible for
the widely divergent phenotypes of variants of Burkholderia
pseudomallei strain MSHR5848. Journal of medical microbiology,68 (2): p. 263-278. (2019).
64. Currie, B.J., Fisher D. A., Anstey N.M., Jacups S.P., Melioidosis:
acute and chronic disease, relapse and re-activation. Trans R Soc Trop
Med Hyg, 94 (3): p. 301-4 (2000).
65. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., Lewis, K., Persister
cells and tolerance to antimicrobials. FEMS Microbiol Lett,230 (1): p. 13-8 (2004).
66. Chambless, J.D., Hunt ,S.M., and Stewart, P.S., A three-dimensional
computer model of four hypothetical mechanisms protecting biofilms from
antimicrobials. Appl Environ Microbiol,. 72 (3): p. 2005-13.
(2006)
67. Gloag, E.S., et al., Self-organization of bacterial biofilms is
facilitated by extracellular DNA. Proceedings of the National Academy of
Sciences, 110 (28): p. 11541 (2013).
68. Paytubi, S., Cansado, C., Madrid, C., and Balsalobre, C., Nutrient
Composition Promotes Switching between Pellicle and Bottom Biofilm in
Salmonella. Frontiers in microbiology,. 8 : p. 2160-2160 (2017)
69. Fiebig, A., Role of Caulobacter Cell Surface Structures in
Colonization of the Air-Liquid Interface. Journal of Bacteriology,.201 (18): p. e00064-19 (2019).
70. Koo, H., M.L. Falsetta, and M.I. Klein, The exopolysaccharide
matrix: a virulence determinant of cariogenic biofilm. Journal of dental
research, 92 (12): p. 1065-1073 (2013).
71. Moore, R.A., et al., Efflux-mediated aminoglycoside and macrolide
resistance in Burkholderia pseudomallei . Antimicrob Agents
Chemother, 43 (3): p. 465-70 (1999).
72. O’Toole, G.A., Microtiter Dish Biofilm Formation Assay. JoVE, (47):
p. e2437 (2011).
73. DuBois, M., et al., Colorimetric Method for Determination of Sugars
and Related Substances. Analytical Chemistry, 28 (3): p. 350-356
(1956).