References
1. Armitano, J., Mejean, V., and C. Jourlin-Castelli, Gram-negative bacteria can also form pellicles. Environ Microbiol Rep, 6 (6): p. 534-44, (2014).
2. Flemming, H.C. and Wingender, J. The biofilm matrix. Nat Rev Microbiol, 2010. 8 (9): p. 623-33.
3. Wolcott, R. and S. Dowd, The Role of Biofilms: Are We Hitting the Right Target? Plastic and Reconstructive Surgery, 127 : p. 28S-35S (2011).
4. Lewis, K., Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol, 2008. 322 : p. 107-31.
5. Costerton, J.W., Stewart, P.S., and Greenberg, E.P.. Bacterial Biofilms: A Common Cause of Persistent Infections. Science,284 (5418): p. 1318-1322 (1999).
6. Vorachit, Lam K., Jayanetra .P, Costerton J. W., Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. Journal of Tropical Medicine and Hygiene, 98 (6): p. 379-391 (1995).
7. Kamjumphol, W., Kamjumphol, W., Chareonsudjai, P., Taweechaisupapong, S., and Chareonsudjai, S. Morphological Alteration and Survival ofBurkholderia pseudomallei in Soil Microcosms. The American journal of tropical medicine and hygiene, 93 (5): p. 1058-1065 (2015).
8. Mangalea, M.R., Plumley, B.A., and Borlee, B.R., Nitrate Sensing and Metabolism Inhibit Biofilm Formation in the Opportunistic PathogenBurkholderia pseudomallei by Reducing the Intracellular Concentration of c-di-GMP. Frontiers in Microbiology, 8 (1353) (2017).
9. Long, P., et al., Melioidosis, Singapore, 2003–2014. Emerging Infectious Disease journal, 24 (1): p. 140 (2018).
10. Duangurai, T., Indrawattana N., and Pumirat P., Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BioMed research international, 2018 : p. 3039106-3039106 (2018).
11. Inglis, T.J. and J.L. Sagripanti, Environmental factors that affect the survival and persistence of Burkholderia pseudomallei . Appl Environ Microbiol, 72 (11): p. 6865-75 (2006).
12. Aziz, A., et al., Comparative genomics confirms a rare melioidosis human-to-human transmission event and reveals incorrect phylogenomic reconstruction due to polyclonality. Microb Genom, 6 (2) (2020).
13. Wiersinga, W.J., et al., Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei . Nature Reviews Microbiology, 4 (4): p. 272-282 (2006).
14. Chantratita, N., et al., Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei . Proceedings of the National Academy of Sciences,108 (41): p. 17165 (2011).
15. Cheng, A.C. and B.J. Currie, Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev, 18 (2): p. 383-416 (2005).
16. Perumal Samy, R., Stiles, B.G, Sethi, G., Lim, L.H.K. Melioidosis: Clinical impact and public health threat in the tropics. PLoS neglected tropical diseases, 11 (5): p. e0004738-e0004738 (2017).
17. Barsoumian, A.E., et al., Clinical infectious outcomes associated with biofilm-related bacterial infections: a retrospective chart review. BMC Infectious Diseases, 15 (1): p. 223 (2015).
18. Panomket, P., Wongsana, P., Wanram, S., Wongratanacheewin, S.Burkholderia pseudomallei biofilm plays a key role in chronic inflammation in c57bl/6 mice. Southeast Asian J Trop Med Public Health,48 (1): p. 73-82. (2017).
19. Pumirat, P., et al., Global transcriptional profiling ofBurkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol,10 : p. 171. (2010).
20. Hamad, M.A., et al., Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei . Antimicrob Agents Chemother,55 (7): p. 3313-23 (2011).
21. Tabunhan, S., et al., Characterization of a novel two-component system response regulator involved in biofilm formation and a low-iron response of Burkholderia pseudomallei . Southeast Asian J Trop Med Public Health, 45 (5): p. 1065-79 (2014).
22. Reamtong, O., et al., Altered proteome of a Burkholderia pseudomallei mutant defective in short-chain dehydrogenase affects cell adhesion, biofilm formation and heat stress tolerance. PeerJ,8 : p. e8659 (2020).
23. Alwis, P.A., et al., Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Veterinary Microbiology, 242 : p. 108603 (2020).
24. Gloag, E.S., et al., Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences, 110 (28): p. 11541-11546 (2013).
25. Pakkulnan, R., et al., Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation. PloS one, 14 (3): p. e0213288-e0213288. (2019).
26. Austin, C.R., et al., A Burkholderia pseudomallei colony variant necessary for gastric colonization. mBio, 6 (1). (2015).
27. Cloutier, M., Muru K., Ravicoularamina G. and Gauthier C. Polysaccharides from Burkholderia
p. 10.1128/microbiolspec.MB-0011-2014. (2015).
29. Khan, M.M., et al., Temporal proteomic profiling reveals changes that support Burkholderia biofilms. Pathogens and disease,77 (2): p. 005. (2019).
30. Cherny, K.E. and K. Sauer,. Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response ofPseudomonas aeruginosa Biofilms. J Bacteriol, 202 (3). (2020).
31. Li, Y., et al., BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog, 10 (6): p. e1004168. (2014).
32. Cherny, K.E. and K. Sauer,. Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA To Disperse from the Biofilm. Journal of Bacteriology, 201 (18): p. e00059-19. (2019).
33. Nait Chabane, Y., et al., Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PloS one,.9 (10): p. e111660-e111660. (2014).
34. Eladawy, M., et al., Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis, 2020 : p. 6156720 (2020).
35. Brett, P.J., D. DeShazer, and D.E. Woods, Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei -like species. Int J Syst Bacteriol, 48 Pt 1 : p. 317-20. (1998).
36. DeShazer, D., Brett P.J, Carlyon R., Woods D.E,. Mutagenesis ofBurkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol, 179 (7): p. 2116-25. (1997).
37. Norris, M.H., et al., The Burkholderia pseudomallei Deltaasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect Immun,79 (10): p. 4010-8 (2011)
38. Propst, K.L., et al., A Burkholderia pseudomallei deltapurM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infection and immunity, 78 (7): p. 3136-3143 (2010).
39. Moore, R.A., DeShazer D., Reckseidler, S., Weissman, A., Woods, D.E.. Efflux-mediated aminoglycoside and macrolide resistance inBurkholderia pseudomallei . Antimicrobial agents and chemotherapy,43 (3): p. 465-470. (1999).
40. Warawa, J.M., et al., Role for the Burkholderia pseudomalleicapsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis. Infect Immun, 77 (12): p. 5252-61 (2009).
41. Peacock, S.J., et al., Comparison of Ashdown’s medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei . J Clin Microbiol, 43 (10): p. 5359-61. (2005).
42. Ong, C.E.L., et al., Presence of Burkholderia pseudomallei in Soil and Paddy Rice Water in a Rice Field in Northeast Thailand, but Not in Air and Rainwater. Am J Trop Med Hyg, 97 (6): p. 1702-1705. (2017).
43. Bheemanahalli, R., et al., Temperature thresholds for spikelet sterility and associated warming impacts for sub-tropical rice. Agricultural and Forest Meteorology, 221 : p. 122-130 (2016).
44. Mackowiak, P.A., Wasserman, S.S., and Levine, M.M., A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. Jama, 268 (12): p. 1578-80 (1992).
45. Montanaro, L., et al., Extracellular DNA in biofilms. Int J Artif Organs, 34 (9): p. 824-31 (2011).
46. Keithley, S.E. and Kirisits, M.J. An improved protocol for extracting extracellular polymeric substances from granular filter media. Water Research, 129 : p. 419-427. (2018).
47. Kim, H.S., et al., Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics, 6 : p. 174 (2005).
48. Tetz, G.V., Artemenko, N.K., and Tetz, V.V., Effect of DNase and antibiotics on biofilm characteristics. Antimicrobial agents and chemotherapy, 53 (3): p. 1204-1209 (2009).
49. Wolfmeier, H., Pletzer, D., Mansour, S. C., and Hancock R.E.W. New Perspectives in Biofilm Eradication. ACS Infect Dis, 4 (2): p. 93-106. (2018).
50. Swartjes, J.J.T.M., et al., A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm. Advanced Functional Materials, 23 (22): p. 2843-2849 (2013).
51. Kaplan, J.B., et al., Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother, 48 (7): p. 2633-6 (2004).
52. Anuntagool, N., Naigowit, P., Petkanchanapong, V., Aramsri, P. Monoclonal antibody-based rapid identification of Burkholderia pseudomallei in blood culture fluid from patients with community-acquired septicaemia. Journal of medical microbiology,.49 : p. 1075-8 (2001).
53. Wiersinga, W.J., et al., Melioidosis. Nature reviews. Disease primers, 4 : p. 17107-17107 (2018).
54. Anutrakunchai, C., et al., Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems. PloS one, 13 (3): p. e0194946-e0194946 (2018).
55. Smith, M.D., Angus, B. J., Wuthiekanun, V., White, N.J., Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei . Infect Immun, 65 (10): p. 4319-21 (1997).
56. Eberl, L., Quorum sensing in the genus Burkholderia . Int J Med Microbiol, 296 (2-3): p. 103-10 (2006).
57. Rutherford, S.T. and Bassler, B.L., Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2 (11): p. a012427 (2012).
58. Leiman, S.A., et al., D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol, 195 (23): p. 5391-5 (2013).
59. Tseng, B.S., et al., Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production. Journal of Bacteriology, 198 (19): p. 2643. (2016).
60. Magana, M., et al., Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clinical microbiology reviews,31 (3): p. e00084-16 (2018).
61. Limmathurotsakul, D., et al., Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin Microbiol Infect, 20 (11): p. O854-6 (2014).
62. Sawasdidoln, C., et al., Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One, 5 (2): p. e9196 (2010).
63. DeShazer, D., et al., Bacteriophage-associated genes responsible for the widely divergent phenotypes of variants of Burkholderia pseudomallei strain MSHR5848. Journal of medical microbiology,68 (2): p. 263-278. (2019).
64. Currie, B.J., Fisher D. A., Anstey N.M., Jacups S.P., Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg, 94 (3): p. 301-4 (2000).
65. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., Lewis, K., Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett,230 (1): p. 13-8 (2004).
66. Chambless, J.D., Hunt ,S.M., and Stewart, P.S., A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol,. 72 (3): p. 2005-13. (2006)
67. Gloag, E.S., et al., Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences, 110 (28): p. 11541 (2013).
68. Paytubi, S., Cansado, C., Madrid, C., and Balsalobre, C., Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella. Frontiers in microbiology,. 8 : p. 2160-2160 (2017)
69. Fiebig, A., Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface. Journal of Bacteriology,.201 (18): p. e00064-19 (2019).
70. Koo, H., M.L. Falsetta, and M.I. Klein, The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. Journal of dental research, 92 (12): p. 1065-1073 (2013).
71. Moore, R.A., et al., Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei . Antimicrob Agents Chemother, 43 (3): p. 465-70 (1999).
72. O’Toole, G.A., Microtiter Dish Biofilm Formation Assay. JoVE, (47): p. e2437 (2011).
73. DuBois, M., et al., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28 (3): p. 350-356 (1956).