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Abstract1

The estimation of demographic parameters is a key component of evolutionary demography and2

conservation biology. Capture-mark-recapture methods have served as a fundamental tool for3

estimating demographic parameters. The accurate estimation of demographic parameters in4

capture-mark-recapture studies depends on accurate modeling of the observation process. Classic5

capture-mark-recapture models typically model the observation process as a Bernoulli or6

categorical trial with some detection probability conditional on a marked individual’s availability7

for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are8

underused, but may have great utility in capture-recapture studies. In this paper we explore a9

simple concept: in the same way that counts contain more information about abundance than10

simple detection/non-detection data, the number of encounters of individuals during observation11

occasions contain more information about the observation process than detection/non-detection12

data for individuals during the same occasion. Rather than using Bernoulli or categorical13

distributions to estimate detection probability, we demonstrate the application of zero-inflated14

Poisson and gamma-Poisson distributions. This allows for inference on availability for encounter15

(i.e., temporary emigration), as well as a wide variety of parameterizations for heterogeneity in16

the observation process. We demonstrate that this approach can accurately recover demographic17

and observation parameters in the presence of individual heterogeneity in detection probability,18

and discuss some potential future extensions of this method.19

Key words: Bayesian, capture-mark-recapture, gamma-Poisson, individual heterogeneity,20

mark-resight, robust design, temporary emigration, zero-inflation21
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Introduction22

The estimation of demographic parameters is fundamental to successful conservation and23

evolutionary ecology. Since their initial development, capture-mark-recapture (hereafter, CMR)24

models have been used to estimate demographic parameters such as apparent survival (Cormack,25

1964; Jolly, 1965; Seber, 1965), true survival and site fidelity (Burnham, 1993), transitions26

among discrete strata (Brownie et al., 1993), temporary emigration or breeding probability27

(Kendall et al., 1995, 1997), recruitment (Pradel, 1996), and the spatial distribution of organisms28

(Royle and Young, 2008; Royle et al., 2013). Parameter estimates from CMR models are often29

used as vital components of population models (Caswell, 2000; Schaub and Kéry, 2021), and for30

examining life-history trade-offs (Cam et al., 2002). CMR models typically consist of two31

primary components: 1) a model of latent biological processes (i.e., survival, movement among32

populations, emigration, disease dynamics), and 2) a model of the observation of uniquely33

identifiable individuals. Models of both latent biological and observation processes typically take34

the form of categorical or Bernoulli distributions, and individuals are grouped into discrete groups35

or states (e.g., alive or dead, observed or not observed).36

Heterogeneity among ‘uniquely identifiable’ (hereafter, marked) organisms in both37

biological processes (e.g., Cam et al. 2002; Pledger and Schwarz 2002) and observation38

probability (e.g., Pollock 1982; Pledger 2005) has long been recognized as a central challenge in39

CMR modeling (Otis et al., 1978). In a seminal paper, Pollock (1982) proposed that heterogeneity40

in detection might be accounted for by sub-dividing primary occasions into multiple secondary41

occasions. Similarly, Fletcher (1994) developed a method for modeling the probability of42

encounter of individuals as a function of the number of unique resights of that individual during43
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the previous occasion. Shortly thereafter, Kendall and others (Kendall et al., 1995, 1997)44

expanded the method developed by Pollock (1982) to estimate availability for encounter (i.e.,45

zero-inflation) by partitioning primary occasions into shorter secondary occasions, assuming46

closure among secondary occasions within a primary occasion, and estimating probabilities of47

temporary emigration from the study area. Since that time, methods have been developed to48

estimate individual detection probabilities using random effects (Clark et al., 2005; Royle and49

Dorazio, 2008) or mixtures (Pledger, 2000; Pledger et al., 2003). More recent efforts have50

simultaneously used information about marked organism location and the locations of sampling51

efforts to model spatial variation in reencounter probability (Royle and Young, 2008; Royle et al.,52

2013). However, the estimation of heterogeneity in the observation process remains a key53

challenge in CMR studies, and the continued development of alternative approaches is critical for54

parameter estimation.55

Heterogeneity in detection of marked organisms is often driven by two primary processes.56

The first is whether or not an individual is even present within the bounds of the study area (i.e.,57

temporary emigration or zero-inflation; Kendall et al. 1995; Schaub et al. 2004). The second is58

variation among the latent encounter probabilities of individuals that are present. This latent59

heterogeneity can be affected by factors such as variation in individual behavior, life stage, and60

location relative to sampling effort (Royle and Young, 2008). When primary occasions extend61

over multiple days, weeks, or months, this can lead to some individuals being encountered many62

times while others are rarely, if ever, detected. The key concept in this paper is that in the same63

way that counts contain more information about the abundance of a population than simple64

detection/non-detection data, the number of encounters of marked individuals may contain more65

information about the observation process than detection/non-detection data (e.g., McClintock66
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and White 2009; McClintock et al. 2009, 2019). Thus, rather than summarizing67

capture-reencounter data using ones (encountered) and zeroes (not encountered) during a primary68

occasion or multiple secondary occasions, capture-reencounter data can also be summarized as69

counts of the number of times each marked individual was encountered during a primary occasion70

(McClintock and White, 2009; McClintock et al., 2019). The number of encounters can then be71

modelled using a variety of discrete distributions, such as the Poisson and negative binomial72

distributions. If model assumptions are met, this approach provides a flexible and useful73

extension to existing CMR models, and may improve upon existing tools to estimate74

heterogeneity in encounter probability among individuals. Notably, improved estimates of75

heterogeneity in the observation process lead to improved estimates of demographic parameters.76

In this paper, we 1) demonstrate the use of this approach with simulated data, 2) describe77

potential benefits relative to more traditional approaches, 3) demonstrate several approaches for78

modeling individual heterogeneity in encounter probability, and 4) discuss possible future79

extensions and uses of this parameterization.80

Methods81

We simulated 250 CMR datasets, each with ten primary occasions (T = 10). For each simulation,82

we released 25 marked individuals in the first through ninth primary occasions, for a total of 22583

released individuals (I = 225). We simulated the latent state of each individual (zi,t; 1: alive, 0:84

dead) from occasion to occasion as, zi,t ∼ Bernoulli(zi,t-1φ), given a simulated survival85

probability, φ ∼ beta(40, 10). If an individual was alive in occasion t, we simulated its86

availability for encounter (ai,t; 1: available, 0: unavailable) given simulated Markovian (Kendall87
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et al., 1997) probabilities of availability for encounter (γ),88

ai,t ∼ Bernoulli(zi,t × γ1 × (1− ai,t-1) + zi,t × γ2 × ai,t-1),

γ1 ∼ beta(10, 20),

γ2 ∼ beta(20, 10).

(1)

These probabilities are similar to temporary emigration parameters described by Kendall et al.89

(1997), such that γ2 = 1− γ′′ and γ1 = 1− γ′. During each primary occasion, we sampled90

individuals that were available for detection for 21 consecutive days (J = 21) given simulated91

individual random variation in daily detection probability (di; eq. 2). Thus, the simulated92

capture-recapture data form a 3-dimensional array (Y ) with dimensions I × T × J ,93

yi,t,j ∼ Bernoulli(ai,t × di),

di ∼ beta(µδ ×
(

1

σ2
δ

)
, (1− µδ)×

(
1

σ2
δ

)
),

µδ ∼ beta(10, 90),

σδ ∼ gamma(5, 50).

(2)

We then summarized the daily CMR data for analysis with four different model types: 1) a94

Cormack-Jolly-Seber model where the secondary captures are ignored (CJS; Cormack 1964; Jolly95

1965; Seber 1965), 2) a robust design model (RD; Kendall et al. 1995, 1997), and two96

capture-recapture models with count-based observation likelihoods, 3) a zero-inflated Poisson97

(ZIP), and 4) a zero-inflated gamma-Poisson with heterogeneity in the number of encounters per98

individual (ZIGP). To summarize the CMR data (M ) for a CJS model, we constructed an I × T99

matrix and filled the matrix as a function of whether or not an individual was observed on any day100

6



Riecke et al. · Count distributions for capture-mark-recapture data

during a primary occasion,101

mi,t ∼


1, if

∑21
j=1 yi,t,j ≥ 1

0, otherwise

. (3)

To summarize the robust design encounter data (R) for the robust design capture-reencounter102

model, we subdivided each 21-day long primary occasion into three 7-day long secondary103

occasions (K = 3). If an individual was observed on any day of a week in a secondary occasion,104

then that secondary occasion (ri,t,k) equaled one. If an individual was not observed on any day105

during a specific secondary occasion, then ri,t,k = 0. Finally, we summarized the counts of106

reencounters by individual and primary occasion by simply summing the total number of107

encounters of each individual during each primary occasion, ci,t =
∑21

j=1 yi,t,j.108

In the same way that the data were generated, all four capture-recapture models share a109

common likelihood for the survival process. The latent state of each individual during each110

occasion (zi,t) was modeled as a function of the individual’s latent state in the previous occasion111

(zi,t-1) and a survival probability (φ), zi,t ∼ Bernoulli(zi,t-1 × φ). A vague prior was used for112

survival, φ ∼ beta(1, 1). For the CJS model, we then simply modeled the primary occasions113

encounter data (M ) as a function of the individual’s latent state and a detection probability (p),114

mi,t ∼ Bernoulli(zi,t × p). We specified a vague prior for detection probability p ∼ Beta(1, 1).115

For the remaining three models, we also estimated whether an individual was available for116

detection (ai,t) given its previous state (ai,t-1) and vague priors for Markovian probabilities of117
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availability for encounter (γ; Kendall et al. 1997).118

ai,t ∼ Bernoulli(zi,t × γ1 × (1− ai,t-1) + zi,t × γ2 × ai,t-1),

γ ∼ beta(1, 1).

(4)

For the robust design model, we modeled whether or not each individual was detected during119

each secondary occasion as a function of its latent availability for detection during the primary120

occasion (ai,t) and a secondary occasion detection probability (p). We then derived primary121

occasion detection probability (p∗) from the secondary occasion detection probabilities for122

comparison of parameter estimates among models,123

ri,t,j ∼ Bernoulli(ai,t × p),

p ∼ Beta(1, 1),

p∗ = 1− (1− p)3.

(5)

For the zero-inflated Poisson model, we model the total number of encounters of each individual124

during each primary occasion (ci,t) given availability for detection (ai,t) an expected mean number125

of encounters per individual per primary occasion (ε),126

ci,t ∼ Poisson(ai,t × ε),

ε ∼ Gamma(1, 1).

(6)

For the zero-inflated Gamma-Poisson model with heterogeneity in the number of expected127

observations per individual, we modeled the number of encounters of each individual during each128

primary occasion (ci,t) given availability for detection (ai,t), the mean expected number of129
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encounters per individual (ε), and an overdispersion parameter (θ),130

ci,t ∼ Poisson(ai,t × ε× hi),

ε ∼ gamma(1, 1),

hi ∼ gamma(θ, θ),

θ ∼ uniform(0, 250).

(7)

This parameterization is similar to Gamma-Poisson formulations of the negative binomial131

distribution (Greene, 2008), however, here we assume heterogeneity among individuals, not132

observations (Table 1). We called JAGS (Plummer, 2003) from R (R Core Team, 2018) using the133

jagsUI package (Kellner, 2016). We sampled three MCMC chains of 50,000 iterations with an134

adaptive phase of 1,000 iterations. We discarded the first 10,000 iterations and retained every135

tenth saved iteration. We assessed convergence visually, and chains converged acceptably.136

Results137

Estimates of survival (φ) were biased for CJS models (MSD = -0.047; Coverage = 0.464), but138

constant and calibrated for RD (MSD = -0.003; Coverage = 0.940), ZIP (MSD = -0.002;139

Coverage = 0.948), and ZIGP (MSD = 0.001; Coverage = 0.948) CMR models (Figure 1; Table140

2). Estimates of availability for encounter given previous availability for encounter (γ2|ai,t-1 = 1)141

were slightly underestimated by RD (MSD = -0.020; Coverage = 0.892) and ZIP (MSD = -0.013;142

Coverage = 0.896) models, but near truth for the ZIGP (MSD = 0.006; Coverage = 0.936) CMR143

model (Figure 2; Table 2). Estimates of availability for encounter given previous unavailability144

for encounter (γ1|ai,t-1 = 0) were slightly overestimated by RD (MSD = 0.018; Coverage =145

0.956), ZIP (MSD = 0.015; Coverage = 0.964), and ZIGP (MSD = 0.019; Coverage = 0.976)146
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CMR models, but coverage was adequate. Estimates of detection probability (p) or the average147

number of reencounters per individual (ε) exhibited poor coverage (Figure 3; Table 2) for the RD148

(MSD = 0.009; Coverage = 0.832) CMR model, were overestimated with poor coverage with the149

ZIP (MSD = 0.078; Coverage = 0.764) CMR model, and near truth with the ZIGP (MSD = 0.002;150

Coverage = 0.928) CMR model. The simulated individual heterogeneity in encounter probability151

(σδ) in the data was positively correlated with dispersion in the count data (C; Figure 4). The152

overdispersion parameter (θ) in the ZIGP model accounted for some of this overdispersion153

(Figure 4), improving coverage and constancy for ZIGP models relative to other model types. ZIP154

and ZIGP models were computationally less expensive than RD models (Figure 4).155

Discussion156

We demonstrate that CMR models parameterized with zero-inflated count distributions can157

function much like robust design CMR models. Estimates of survival probability from RD, ZIP,158

and ZIGP models were centered around truth, while estimates of survival from the CJS model159

were consistently low relative to truth. Further, the use of these model types may simplify the160

parameterization of models that account for heterogeneity in encounter probability among161

individuals, and improve computational efficiency (Figure 4). We see substantial utility for these162

parameterizations in a variety of scenarios, particularly when resight and recapture efforts163

co-occur, or occur intermittently (i.e., periods of captures are followed by periods of resights). For164

instance, non-breeding resights of individuals at wintering or stopover sites may provide an165

excellent system to model the total number of encounters rather than simple166

detection/non-detection data.167

As we demonstrate herein, this approach may be particularly useful when unobservable168
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states exist, as counts of reencounters allow for the estimation of a zero-inflation parameter (i.e.,169

availability for detection), which may be biologically analogous to breeding probability or170

presence at a stopover or wintering site. Count parameterizations might also be used as part of a171

robust design model; one or more secondary occasions may be estimated from some count172

distribution, and others from a more typical Bernoulli distribution. The inherent flexibility of173

programs like JAGS (Plummer, 2003) and NIMBLE (de Valpine et al., 2017), and ample literature174

on capture-reencounter parameterizations should lead to a wide array of extensions of these175

model types, and their incorporation into joint models, such as integrated population models176

(Schaub and Kéry, 2021).177

Critically, the use of these model types also has advantages for estimating heterogeneity in178

detection probability among individuals. Estimating heterogeneity in probabilities from a small179

number of Bernoulli trials can be challenging (Fay et al., 2021). Summarizing mark-reencounter180

data as counts of encounters may provide additional information for estimating latent181

heterogeneity among individuals or estimating mixtures (e.g., Pledger et al. 2003). For example,182

rather than the heterogeneity parameterization explored in this paper, one might specify a mixture183

distribution for the number of encounters per individual. Individual covariates can be184

incorporated simply by modeling the expected number of encounters with a log-link function. We185

anticipate a variety of other parameterizations might be useful as well (Table 1), and that186

simulation work may reveal more effective parameterizations than those described herein. For187

instance, recent research has demonstrated that a similar approach can be effective for addressing188

‘false-positives’ in re-encounter data (Rakhimberdiev et al., 2022).189

As with the use of any model, violations of model assumptions will lead to inaccurate190

parameter estimates. Much like the robust design (Kendall et al., 1995, 1997), we caution against191
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the use of these models when encounters are conditional on previous encounters within a season.192

As a particularly problematic example, if the nest of a marked animal is discovered and the193

animal is then observed repeatedly while visiting the nest, this would serve as an additional type194

of zero-inflation (i.e., nesting in the study area is a Bernoulli trial, the discovery of the nest is a195

Bernoulli trial, and the subsequent visits are a product of study design and nest monitoring196

protocols, not a random encounter process). We expect that other types of heterogeneity are197

common in CMR data. For example, the number of encounters might be right truncated if198

observers cease recording reencounters of individuals that have already been encountered199

multiple times. Thus, we strongly encourage careful thought about how monitoring protocols200

might affect the distribution of encounters of each individual when applying these models to data,201

and discourage using this approach without explicit information about monitoring protocols.202

The use of the Poisson distribution requires the assumption that the mean and the variance203

are equal. When the encounter data are under- or over-dispersed, this can lead to respective under-204

or over-estimation of the expected number of encounters per individual. Similarly, the probability205

of availability for encounter will be over- or under-estimated given under- or over-dispersion of206

the encounter data (Figure 4). While over-dispersion can be modeled simply using207

gamma-Poisson mixture (demonstrated herein) or negative binomial distributions (Table 1),208

under-dispersion requires the use of more complex distributions such as the209

Conway-Maxwell-Poisson (Conway and Maxwell, 1962; Lynch et al., 2014). We suggest that210

additional simulation work is required to fully understand the benefits and costs associated with211

using alternative distributions.212

While we have demonstrated in this paper that count-based observation parameterizations213

can be useful for capture-mark-reencounter studies, much remains to be learned. For example,214
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careful thought will be required for developing appropriate priors (e.g., Northrup and Gerber215

2018), and empirical research may reveal unforeseen problems. Future simulation work might216

assess the impacts of priors on inference, further examine the impacts of over- and217

under-dispersion, and explore various other capture-recapture parameterizations and count218

distributions.219
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Tables317

Table 1. Potential parameterizations for zero-inflated count distribution based capture-reencounter
models, where ci,t is the number of encounters of individual i during occasion t, ai,t is an individ-
ual’s availability for encounter (ai,t = 1 indicates available; ai,t = 0 indicates unavailable), and ε is
the number of expected encounters of an individual. We explicitly test parameterizations 1 and 2
in this paper, but please note that a truly vast variety of potential parameterizations exists, and see
Greene (2008), Lynch et al. (2014), Kéry and Royle (2015), and McClintock et al. (2009, 2019)
for further reading.

Parameterization Model and Priors
1. Poisson ci,t ∼ Poisson(ai,t × ε)

ε ∼ gamma(1, 1)
2. Gamma-Poisson with individual heterogeneity ci,t ∼ Poisson(ai,t×ε×hi)

ε ∼ gamma(1, 1)
hi ∼ gamma(θ, θ)
θ ∼ uniform(0, 250)

3. Poisson with 3 categorical mixtures ci,t ∼ Poisson(ai,t × επi)
εj ∼ gamma(1, 1)
πi ∼ categorical(θ)
θ ∼ Dirichlet(1, 1, 1)

4. Alternative Gamma-Poisson with individual heterogeneity ci,t ∼ Poisson(ai,t × hi)
hi ∼ gamma(α, β)
α ∼ gamma(1, 1)
β ∼ gamma(1, 1)

5. Negative Binomial 1 as Gamma-Poisson (Greene, 2008) ci,t ∼ Poisson(ai,t×ε×hi)
hi,t ∼ gamma(ε×θ, ε×θ)
ε ∼ gamma(1, 1)
θ ∼ uniform(0, 250)

6. Negative Binomial 2 as Gamma-Poisson (Greene, 2008) ci,t ∼ Poisson(ai,t×ε×hit)
hi,t ∼ gamma(θ, θ)
ε ∼ gamma(1, 1)
θ ∼ uniform(0, 250)

7. Lognormal with individual covariates (X) and heterogeneity (σ) ci,t ∼ Poisson(ai,t × hi)
hi ∼ lognormal(βX, σ2)
β ∼ normal(0, 10)
σ ∼ gamma(1, 1)
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Table 2. Mean difference between the medians of the posterior distributions and truth and parame-
ter coverage (in parentheses) for estimates of apparent survival (φ), availability for encounter given
ai,t-1 = 0 (γ1), availability for encounter given ai,t-1 = 1 (γ2), primary occasion detection probability
(p [CJS] or p∗ [RD]), and the expected number of encounters per individual (ε) from 250 simulated
capture-mark-recapture datasets analyzed using Cormack-Jolly-Seber (CJS; Cormack 1964; Jolly
1965; Seber 1965), robust design (RD; Kendall et al. 1997), zero-inflated Poisson (ZIP; this study),
and zero-inflated Gamma-Poisson (ZIGP; this study) capture-recapture models.

Parameter CJS RD ZIP ZIGP
φ -0.047 (0.464) -0.003 (0.940) -0.002 (0.948) 0.001 (0.948)
γ1 - 0.018 (0.956) 0.015 (0.964) 0.019 (0.976)
γ2 - -0.020 (0.892) -0.013 (0.896) 0.006 (0.936)
p (CJS) or p∗ (RD) -0.306 (0.004) 0.010 (0.832) - -
ε - - 0.078 (0.764) 0.002 (0.928)
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Figure 1. Scatter and density plots of the medians of posterior distributions for apparent sur-
vival relative to truth (φ) from Cormack-Jolly-Seber (CJS; upper left), robust design (RD; upper
right), zero-inflated Poisson (ZIP, lower left), and zero-inflated gamma-Poisson with individual
heterogeneity (ZIGP; lower right), capture-mark-reencounter models used to analyze 250 simu-
lated capture-mark-reencounter datasets.
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Figure 2. Scatter and density plots of the medians of posterior distributions for availability for
encounter relative to truth (γ) from robust design (RD; left), zero-inflated Poisson (ZIP, cen-
ter), and zero-inflated gamma-Poisson with individual heterogeneity (ZIGP; right), capture-mark-
reencounter models used to analyze 250 simulated capture-mark-reencounter datasets.
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Figure 3. Scatter and density plots of the medians of posterior distributions for primary occasion
detection probability (p) or the expected number of encounters per individual from Cormack-Jolly-
Seber (CJS; upper left), robust design (RD; upper right), zero-inflated Poisson (ZIP, lower left), and
zero-inflated Poisson with individual heterogeneity (ZIGP; lower right), capture-mark-reencounter
models used to analyze 250 simulated capture-mark-reencounter datasets.
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Figure 4. Violin plots of model run times across 250 simulations for Cormack-Jolly-Seber (CJS;
Cormack 1964; Jolly 1965; Seber 1965), robust design (RD; Kendall et al. 1995, 1997), zero-
inflated Poisson (ZIP; this study) and zero-inflated gamma-Poisson (ZIGP; this study) capture-
mark-recapture models (left), scatter plots of the index of dispersion (D; Var(C)/Mean(C)) for the
capture-mark-reencounter count data relative to the simulated heterogeneity in detection probabil-
ity among individuals (σδ), and scatterplots of the mean of posterior distributions of the overdis-
persion parameter (θ) regressed against the index of dispersion for each capture-mark-recapture
dataset.
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