Reference

1. Hales R (1980) A quantitative metallographic assessment of structural degradation of type 316 stainless steel during creep-fatigue.Fatigue & Fracture of Engineering Materials & Structures .3 : 339-356.
2. Murty KL, Charit I (2008) Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of Nuclear Materials . 383 : 189-195.
3. Kassner ME, Hayes TA (2003) Creep cavitation in metals.International Journal of Plasticity . 19 : 1715-1748.
4. Skelton RP, Gandy D (2008) Creep–fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms. Materials at High Temperatures . 25 : 27-54.
5. Rodriguez P, Rao KBS (1993) Nucleation and growth of cracks and cavities under creep-fatigue interaction. Progress in Materials Science . 37 : 403-480.
6. Davanas K (2020) Determination of creep cavity nucleation rates.Materials at High Temperatures . 37 : 75-80.
7. Nam SW (2002) Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition. Materials Science and Engineering A . 322 : 64-72.
8. Cailletaud G, Nouailhas D, Grattier J, et al. (1984) A review of creep-fatigue life prediction methods: identification and extrapolation to long term and low strain cyclic loading. Nuclear engineering and design . 83 : 267-278.
9. Wen J-F, Srivastava A, Benzerga A, Tu S-T, Needleman A (2017) Creep crack growth by grain boundary cavitation under monotonic and cyclic loading. Journal of the Mechanics and Physics of Solids .108 : 68-84.
10. Barbera D, Chen H, Liu Y (2017) Advances on creep–fatigue damage assessment in notched components. Fatigue & Fracture of Engineering Materials & Structures . 40 : 1854–1867.
11. Wilkinson DS (1978) The Mechanisms of Pressure sintering. University of Cambridge.
12. Stevens RA, Flewitt PEJ (1983) The sintering of creep-induced cavities in a low alloy ferritic steel (1Cr1Mo0.75V).Metallurgical Transactions A . 14 : 679-686.
13. Greenwood JN (1952) Intercrystalline cracking of metals.Journal of the Iron and Steel Institute . 171 : 380-380.
14. Raj R, Ashby MF (1975) Integranular fracture at elevated temperature. Acta Metallurgica . 23 : 653-666.
15. Evans HE (1984) Mechanisms of creep fracture . Elsevier Applied Science, Essex, UK, 319.
16. Chen CW, Machlin ES (1957) On a mechanism of high temperature intercrystalline cracking. JOM . 9 : 829-835.
17. Dunand DC, Han BQ, Jansen AM (1999) Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum.Metallurgical and Materials Transactions A . 30 : 829-838.
18. Min BK, Raj R (1978) Hold-time effects in high-temperature fatigue.Acta Metallurgica . 26 : 1007-1022.
19. Hu J-D, Xuan F-Z, Liu C-J, Chen B (2021) Modelling of Cavity Nucleation under Creep-fatigue Interaction. Mechanics of Materials . 156 : 103799.
20. Cocks ACF (1989) Inelastic deformation of porous materials.Journal of the Mechanics and Physics of Solids . 37 : 693-715.
21. Cocks ACF, Ashby MF (1982) Creep fracture by coupled power-law creep and diffusion under multiaxial stress. Metal Science .16 : 465-474.
22. Needleman A, Rice JR (1980) Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metallurgica .28 : 1315-1332.
23. Chuang T-J, Kagawa KI, Rice JR, Sills LB (1979) Non-equlibrium models for diffusive cavitation of grain interfaces. Acta Metallurgica . 27 : 265-284.
24. Chen I-W, Argon AS (1981) Diffusive growth of grain-boundary cavities. Acta Metallurgica . 29 : 1759-1768.
25. Chen I-W (1983) Mechanisms of cavity growth in creep. Scripta Metallurgica . 17 : 17-22.
26. Miller DA, Hamm CD, Phillips JL (1982) A mechanistic approach to the prediction of creep-dominated failure during simultaneous creep-fatigue.Materials Science and Engineering . 53 : 233-244.
27. Tahir F, Liu Y (2017) A new experimental testing method for investigation of creep-dominant creep-fatigue interaction in Alloy 617 at 950 °C. International Journal of Pressure Vessels and Piping .154 : 75-82.
28. Fournier B, Sauzay M, Caes C, et al. (2008) Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime.International Journal of Fatigue . 30 : 649-662.
29. Chen B, Flewitt PEJ, Cocks ACF, Smith DJ (2015) A review of the changes of internal state related to high temperature creep of polycrystalline metals and alloys. International Materials Reviews . 60 : 1-29.
30. Frost HJ, Ashby MF (1982) Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics . Pergamon Press, Oxford, UK.
31. Mortimer DA, Nicholas MG (1976) Surface and grain-boundary energies of AISI 316 stainless steel in the presence of boron. Metal Science . 10 : 326-332.
32. Wang JS, Stephens JJ, Nix WD (1985) A statistical analysis of cavity nucleation at particles in grain boundaries. Acta Metallurgica .33 : 1009-1021.
33. Stroh AN (1957) A theory of the fracture of metals. Advances in Physics . 6 : 418-465.
34. Nix WD, Yu KS, Wang JS (1983) The effects of segregation on the kinetics of intergranular cavity under creep conditions.Metallurgical Transactions A . 14 : 563-570.
35. Riedel H (1987) Fracture at high temperatures . Springer, Berlin, Heidelberg.
36. Fedelich B, Owen J (2009) Creep damage by multiple cavity growth controlled by grain boundary diffusion. 12th International Conference on Fracture , Ottawa, Canada.
37. Chen B, Hu JN, Flewitt PEJ, et al. (2015) Effect of thermal ageing on creep and oxidation behaviour of Type 316H stainless steel.Materials at High Temperatures . 32 : 592-606.
38. ASME (2015) ASME BPVC III-Div.1 Subsection NH. Class 1 Components in Elevated Temperature Ser vice . ASME, New York.
39. Chen B, Flewitt PEJ, Smith DJ, Jones CP (2011) An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel. Ultramicroscopy . 111 : 309-313.
40. Raj R (1978) Nucleation of cavities at second phase particles in grain boundaries. Acta Metallurgica . 26 : 995-1006.
41. Fleck RG, Taplin DMR, Beevers CJ (1975) An investigation of the nucleation of creep cavities by 1 MV electron microscopy. Acta Metallurgica . 23 : 415-424.
42. Shi HJ, Pluvinage G (1994) Cyclic stress-strain response during isothermal and thermomechanical fatigue. International Journal of Fatigue . 16 : 549-557.
43. Hales R (1980) A quantitative metallographic assessment of structural degradation of type 316 stainless steel during creep‐fatigue.Fatigue & Fracture of Engineering Materials & Structures .3 : 339-356.
44. Michel DJ, Smith HH (1980) Accelerated creep-fatigue crack propagation in thermally aged type 316 stainless steel. Acta Metallurgica . 28 : 999-1007.
45. Ghafouri SN, Faulkner RG, Chung TE (1986) Microstructural developments in type 316L stainless steel during low-cycle fatigue at 350–550°C and their effects on cyclic strength and life.Materials Science and Technology . 2 : 1223-1232.
46. Taplin DMR, Tang NY, Leipholz HHE (1984) On fatigue-creep-environment interaction and the feasibility of fatigue maps. 6th International Conference on Fracture . Elsevier, New Delhi, India, 127-142.
47. Tang NY, Taplin DMR, Plumtree A (1985) Schema for depicting cavity nucleation during hightemperature fatigue. Materials Science and Technology . 1 : 145-151.
48. Yamaguchi K, Kanazawa K (1980) Effect of strain wave shape on high temperature fatigue life of a type 316 steel and application of the strain range partitioning method. Metallurgical Transactions A .11 : 2019-2027.
49. Morin L, Leblond J-B, Benzerga AA, Kondo D (2016) A unified criterion for the growth and coalescence of microvoids. Journal of the Mechanics and Physics of Solids . 97 : 19-36.
50. Cocks ACF, Ashby MF (1980) Intergranular fracture during power-law creep under multiaxial stresses. Metal Science . 14 : 395-402.
51. Hu J-D, Xuan F-Z, Liu C-J (2018) A void growth model of multiaxial power-law creep rupture involving the void shape changes.International Journal of Mechanical Sciences . 144 : 723-730.
52. Sanders JW, Dadfarnia M, Stubbins J, Sofronis P (2017) On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states. Journal of the Mechanics and Physics of Solids . 98 : 49–62.
53. Margolin BZ, Gulenko AG, Kursevich IP, Buchatskii AA (2006) Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 1. A physico-mechanical model. Strength of Materials . 38 : 221-233.