References
1. Dill KA, Shortle D. Denatured states of proteins. Annu. Rev. Biochem.
1991;60:795–825.
2. Morrone A, McCully ME, Bryan PN, Brunori M, Daggett V, Gianni S,
Travaglini-Allocatelli C. The denatured state dictates the topology of
two proteins with almost identical sequence but different native
structure and function. J. Biol. Chem. 2011;286:3863–3872.
3. Shortle D. The denatured state (the other half of the folding
equation) and its role in protein stability. FASEB J. 1996;10:27–34.
4. Fawzi NL, Chubukov V, Clark LA, Brown S, Head-Gordon T. Influence of
denatured and intermediate states of folding on protein aggregation.
Protein Sci. 2005;14:993–1003.
5. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response
in disease. Nat. Rev. Drug Discov. 2013;12:703–719.
6. Alexandrescu AT, Abeygunawardana C, Shortle D. Structure and Dynamics
of a Denatured 131-Residue Fragment of Staphylococcal Nuclease: A
Heteronuclear NMR Study. Biochemistry. 1994;33:1063–1072.
7. Reed MAC, Jelinska C, Syson K, Cliff MJ, Splevins A, Alizadeh T,
Hounslow AM, Staniforth RA, Clarke AR, Craven CJ, et al. The denatured
state under native conditions: a non-native-like collapsed state of
N-PGK. J. Mol. Biol. 2006;357:365–372.
8. Mok YK, Kay CM, Kay LE, Forman-Kay J. NOE data demonstrating a
compact unfolded state for an SH3 domain under non-denaturing
conditions. J. Mol. Biol. 1999;289:619–638.
9. Pfeil W, Privalov PL. Thermodynamic investigations of proteins.
Biophys. Chem. 1976;4:23–32.
10. Tanford C, Kawahara K, Lapanje S. Proteins in 6 m Guanidine
Hydrochloride: demonstration of random coil behavior. J. Biol. Chem.
1966;241:1921–1923.
11. Shortle D, Ackerman MS. Persistence of native-like topology in a
denatured protein in 8 M urea. Science. 2001;293:487–489.
12. Rösner HI, Poulsen FM. Residue-specific description of non-native
transient structures in the ensemble of acid-denatured structures of the
all-beta protein c-src SH3. Biochemistry. 2010;49:3246–3253.
13. Sari N, Alexander P, Bryan PN, Orban J. Structure and Dynamics of an
Acid-Denatured Protein G Mutant †. Biochemistry. 2000;39:965–977.
14. Teilum K, Thormann T, Caterer NR, Poulsen HI, Jensen PH, Knudsen J,
Kragelund BB, Poulsen FM. Different secondary structure elements as
scaffolds for protein folding transition states of two homologous
four-helix bundles. Proteins Struct. Funct. Genet. 2005;59:80–90.
15. Wang Y, Shortle D. Residual helical and turn structure in the
denatured state of staphylococcal nuclease: analysis of peptide
fragments. Fold. Des. 1997;2:93–100.
16. Ackerman MS, Shortle D. Robustness of the long-range structure in
denatured staphylococcal nuclease to changes in amino acid sequence.
Biochemistry. 2002;41:13791–13797.
17. Bruun SW, Iesmantavicius V, Danielsson J, Poulsen FM. Cooperative
formation of native-like tertiary contacts in the ensemble of unfolded
states of a four-helix protein. Proc. Natl. Acad. Sci. U. S. A.
2010;107:13306–13311.
18. Ishima R, Torchia DA, Lynch SM, Gronenborn AM, Louis JM. Solution
structure of the mature HIV-1 protease monomer: insight into the
tertiary fold and stability of a precursor. J. Biol. Chem.
2003;278:43311–43319.
19. Broglia RA, Provasi D, Vasile F, Ottolina G, Longhi R, Tiana G. A
folding inhibitor of the HIV-1 protease. Proteins Struct. Funct. Genet.
2005;62:928–933.
20. Broglia RA, Levy Y, Tiana G. HIV-1 protease folding and the design
of drugs which do not create resistance. 2008;18:60–66.
21. Kimura S, Broglia RA, Tiana G. Thermodynamics of strongly allosteric
inhibition: a model study of HIV-1 protease. Eur. Biophys. J. 2012 Oct
8:1–13.
22. Plaxco KW, Simons KT, Baker D. Contact order, transition state
placement and the refolding rates of single domain proteins. J. Mol.
Biol. 1998;277:985–994.
23. Kuzmic P. Kinetic assay for HIV proteinase subunit dissociation.
Biochem. Biophys. Res. Commun. 1993;191:998–1003.
24. Noel AF, Bilsel O, Kundu A, Wu Y, Zitzewitz JA, Matthews CR. The
folding free-energy surface of HIV-1 protease: insights into the
thermodynamic basis for resistance to inhibitors. J. Mol. Biol.
2009;387:1002–1016.
25. Ishima R, Ghirlando R, Tözsér J, Gronenborn AM, Torchia DA, Louis
JM. Folded monomer of HIV-1 protease. J. Biol. Chem.
2001;276:49110–49116.
26. Caldarini M, Sonar P, Valpapuram I, Tavella D, Volonté C, Pandini V,
Vanoni MA, Aliverti A, Broglia RA, Tiana G, et al. The complex folding
behavior of HIV-1-protease monomer revealed by optical-tweezer
single-molecule experiments and molecular dynamics simulations. Biophys.
Chem. 2014;195C:32–42.
27. Rösner HI, Caldarini M, Prestel A, Vanoni MA, Broglia RA, Aliverti
A, Tiana G, Kragelund BB. Cold Denaturation of the HIV-1 Protease
Monomer. Biochemistry. 2017;56:1029–1032.
28. Tomasselli AG, Heinrikson RL. Targeting the HIV-protease in AIDS
therapy: a current clinical perspective. Biochim. Biophys. Acta.
2000;1477:189–214.
29. Cecconi F, Micheletti C, Carloni P, Maritan A. Molecular dynamics
studies on HIV-1 protease drug resistance and folding pathways. Proteins
Struct. Funct. Genet. 2001;43:365–372.
30. Kimura S, Caldarini M, Broglia RA, Dokholyan N V, Tiana G. The
maturation of HIV-1 protease precursor studied by discrete molecular
dynamics. Proteins Struct. Funct. Genet. 2014;82:633–639.
31. Bhavesh NS, Panchal SC, Mittal R, Hosur R V. NMR identification of
local structural preferences in HIV-1 protease tethered heterodimer in 6
M guanidine hydrochloride. FEBS Lett. 2001;509:218–224.
32. Bhavesh NS, Sinha R, Mohan PMK, Hosur R V. NMR elucidation of early
folding hierarchy in HIV-1 protease. J. Biol. Chem.
2003;278:19980–19985.
33. Rout MK, Hosur R V. Fluctuating partially native-like topologies in
the acid denatured ensemble of autolysis resistant HIV-1 protease. Arch.
Biochem. Biophys. 2009;482:33–41.
34. Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur R V. Folding
regulates autoprocessing of HIV-1 protease precursor. J. Biol. Chem.
2005;280:11369–11378.
35. Kay L, Keifer P, Saarinen T. Pure absorption gradient enhanced
heteronuclear single quantum correlation spectroscopy with improved
sensitivity. J. Am. Chem. Soc. 1992;114:10663–10665.
36. Kay LE, Ikura M, Tschudin R, Bax A. Three-dimensional
triple-resonance NMR spectroscopy of isotopically enriched proteins. J.
Magn. Reson. 1990;89:496–514.
37. Clubb RT, Thanabal V, G. Wagner. A constant-time three-dimensional
triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and
13C’ chemical shifts in 15N—13C-labelled proteins. J. Magn. Reson.
1992;97:213–217.
38. Bax A, Ikura M. An efficient 3D NMR technique for correlating the
proton and 15N backbone amide resonances with the alpha-carbon of the
preceding residue in uniformly 15N/13C enriched proteins. J. Biomol.
NMR. 1991;1:99–104.
39. Wittekind M, L. Mueller. HNCACB, a high-sensitivity 3D NMR
experiment to correlate amide-proton and nitrogen resonances with the
alpha- and beta-carbon resonances in proteins. J. Magn. Reson. Ser. B.
1993;101:201–205.
40. Grzesiek S, Bax A. Correlating backbone amide and side chain
resonances in larger proteins by multiple relayed triple resonance NMR.
J. Am. Chem. Soc. 1992;114:6291–6293.
41. Panchal SC, Bhavesh NS, V. Hosur R. Improved 3D triple resonance
experiments, HNN and HN(C)N, for HN and 15N sequential correlations in
(13C, 15N) labeled proteins: application to unfolded proteins. J. Biol.
Chem. 2001;20:135–147.
42. Zhang O, Kay LE, Olivier JP, Forman-Kay JD. Backbone 1H and 15N
resonance assignments of the N-terminal SH3 domain of drk in folded and
unfolded states using enhanced-sensitivity pulsed field gradient NMR
techniques. J. Biomol. NMR. 1994;4:845–858.
43. L. E. Kay, Torchia DA, Bax A. Backbone dynamics of proteins studied
by 15N inverse-detected heteronuclar NMR spectroscopy: Application to
staphylococcal nuclease. Biochemistry. 1989;28:8972–8979.
44. Balayssac S, Delsuc M-A, Gilard V, Prigent Y, Malet-Martino M.
Two-dimensional DOSY experiment with Excitation Sculpting water
suppression for the analysis of natural and biological media. J. Magn.
Reson. 2009;196:78–83.
45. Wishart DS, Bigam CG, Yao J, Abildgaard F, Jane HD, Oldfield E,
Markley JL, Sykes BD. Chemical shift referencing in biomolecular NMR. J.
Biomol. NMR. 1995;6:135–140.
46. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax a.
NMRPipe: a multidimensional spectral processing system based on UNIX
pipes. J. Biomol. NMR. 1995;6:277–93.
47. Orekhov VY, Jaravine VA. Analysis of non-uniformly sampled spectra
with multi-dimensional decomposition. Prog. Nucl. Magn. Reson.
Spectrosc. 2011;59:271–92.
48. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M,
Ulrich EL, Markley JL, Ionides J, Laue ED. The CCPN data model for NMR
spectroscopy: development of a software pipeline. Proteins.
2005;59:687–96.
49. D’Auvergne EJ, Gooley PR. Optimisation of NMR dynamic models I.
Minimisation algorithms and their performance within the model-free and
Brownian rotational diffusion spaces. J. Biomol. NMR. 2009;40:107–119.
50. D’Auvergne EJ, Gooley PR. Optimisation of NMR dynamic models II. A
new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR.
2009;40:121–133.
51. Nilsson M. The DOSY Toolbox: a new tool for processing PFG NMR
diffusion data. J. Magn. Reson. 2009;200:296–302.
52. MATLAB, The MathWorks, Inc.
53. Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E,
Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H. Long-range
interactions within a nonnative protein. Science. 2002;295:1719–1722.
54. Robustelli P, Piana S, Shaw DE. Developing a molecular dynamics
force field for both folded and disordered protein states. Proc. Natl.
Acad. Sci. U. S. A. 2018;115:E4758–E4766.
55. Páll S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B,
Lindahl E. Heterogeneous parallelization and acceleration of molecular
dynamics simulations in GROMACS. J. Chem. Phys. 2020;153:134110.
56. Shen Y, Bax A. SPARTA+: a modest improvement in empirical NMR
chemical shift prediction by means of an artificial neural network. J.
Biomol. NMR. 2010;48:13–22.
57. Dagil R, Knudsen MJ, Olsen JG, O’Shea C, Franzmann M, Goffin V,
Teilum K, Breinholt J, Kragelund BB. The WSXWS Motif in Cytokine
Receptors Is a Molecular Switch Involved in Receptor Activation: Insight
from Structures of the Prolactin Receptor. 2012;20:270–282.
58. Kogo H, Takeuchi K, Inoue H, Kihara H, Kojima M, Takahashi K.
Urea-dependent unfolding of HIV-1 protease studied by circular dichroism
and small-angle X-ray scattering. Biochim. Biophys. Acta.
2009;1794:70–74.
59. Todd MJ, Semo N, Freire E. The structural stability of the HIV-1
protease. J. Mol. Biol. 1998;283:475–488.
60. Levy Y, Caflisch A, Onuchic JN, Wolynes PG. The folding and
dimerization of HIV-1 protease: evidence for a stable monomer from
simulations. J. Mol. Biol. 2004;340:67–79.
61. Louis JM, Ishima R, Aniana A, Sayer JM. Revealing the dimer
dissociation and existence of a folded monomer of the mature HIV-2
protease. Protein Sci. 2009;18:2442–53.
62. Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A,
Glaser SJ, Smith LJ, Dobson CM. Structural and dynamical properties of a
denatured protein. Heteronuclear 3D NMR experiments and theoretical
simulations of lysozyme in 8 M urea. 1997;36:8977–8991.
63. Farrow N, Zhang O, Szabo A, Torchia D, Kay LE. Spectral density
function mapping using 15N relaxation data exclusively. J. Biomol. NMR.
1995;6:153–62.
64. Nygaard M, Kragelund BB, Papaleo E, Lindorff-Larsen K. An Efficient
Method for Estimating the Hydrodynamic Radius of Disordered Protein
Conformations. Biophys. J. 2017;113:550–557.
65. Karplus M, Weaver DL. Protein-folding dynamics. Nature.
1976;260:404–406.
66. Broglia R, Tiana G. Hierarchy of events in the folding of model
proteins. J. Chem. Phys. 2001;114:7267–7273.
67. Broglia RA, Tiana G, Pasquali S, Roman HE, Vigezzi E. Folding and
aggregation of designed proteins. Proc. Natl. Acad. Sci. U. S. A.
1998;95:12930–12933.