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13 Abstract

14 Soil moisture signatures provide a promising solution to overcome the difficulty of evaluating 

15 soil moisture dynamics in hydrologic models. Soil moisture signatures are metrics that 

16 quantify the dynamic aspects of soil moisture timeseries and enable process-based model 

17 evaluations. To date, soil moisture signatures have been tested only under limited land-use 

18 types. In this study, we explore soil moisture signatures’ ability to discriminate different 

19 dynamics among contrasting land-uses. We applied a set of nine soil moisture signatures to 

20 datasets from six in-situ soil moisture networks worldwide. The dataset covered a range of 

21 land-use types, including forested and deforested areas, shallow groundwater areas, wetlands, 

22 urban areas, grazed areas, and cropland areas. Our set of signatures characterized soil 

23 moisture dynamics at three temporal scales: event, season, and a complete timeseries. 

24 Statistical assessment of extracted signatures showed that (1) event-based signatures can 

25 distinguish different dynamics for all the land-uses, (2) season-based signatures can 

26 distinguish different dynamics for some types of land-uses (deforested vs. forested, urban vs. 

27 greenspace, and cropped vs. grazed vs. grassland contrasts), (3) timeseries-based signatures 

28 can distinguish different dynamics for some types of land-uses (deforested vs. forested, urban 

29 vs. greenspace, shallow vs. deep groundwater, wetland vs. non-wetland, and cropped vs. 

30 grazed vs. grassland contrasts). Further, we compared signature-based process interpretations 

31 against literature knowledge; event-based and timeseries-based signatures generally matched 

32 well with previous process understandings from literature, but season-based signatures did 
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33 not. This study will be a useful guideline for understanding how catchment-scale soil 

34 moisture dynamics in various land-uses can be described using a standardized set of 

35 hydrologically relevant metrics.

36 Keywords: Soil moisture, hydrologic signature, soil moisture signature, land-use, process-

37 based evaluation, metrics-based approach

38

39 1. INTRODUCTION

40 Soil moisture is an important control of water and energy cycles. For example, in rainfall-

41 runoff processes, soil moisture determines the initiation and the response patterns of 

42 streamflow (Zehe et al., 2005; Tromp-van Meerveld & McDonnell, 2006; Penna et al., 2011; 

43 McMillan & Srinivasan, 2015). In land-atmosphere processes, soil moisture regulates 

44 moisture availability in land and atmosphere, and subsequently influences rainfall and 

45 evapotranspiration patterns (Eltahir, 1998; Koster & Suarez, 2001; McColl et al., 2019). The 

46 role of soil moisture as a modulator between the atmosphere and groundwater storage is 

47 explicitly incorporated in many hydrologic models (Singh & Frevert, 2010).

48

49 1.1 Scales of soil moisture measurement

50 Nevertheless, the so-called “scaling problem” often prevents hydrologists from using in-situ 

51 soil moisture data for input, calibration, or validation of hydrological models. The scaling 

52 problem refers to the mismatch of spatial scales between observations and models. In the 

53 field, soil moisture is commonly observed at a point scale by sensors measuring only around 

54 the 3-cm vicinity of the installation point (Babaeian et al., 2019). Therefore, the point-scale 

55 measurement does not necessarily represent the catchment-scale values, which is often the 

56 target scale for hydrologic modeling. Point-scale soil moisture data often contain local 

57 variability due to pedology and topography (Vereecken et al., 2016), and such spatially 

58 heterogeneous data are sensitive to scaling (Blöschl & Sivapalan, 1995). These scaling issues 

59 have discouraged hydrologists from using in-situ soil moisture data for model input or 

60 evaluation. However, when evaluated solely based on streamflow dynamics, different 

61 hydrologic models can produce similar streamflow responses while producing different soil 

62 moisture patterns (Bouaziz et al., 2021). This, in its turn, leads to misrepresentation of soil 

63 moisture processes.

64

Page 2 of 61

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3

65 This ‘scaling problem’ has motivated research on representative soil moisture values of a 

66 catchment. For example, researchers have intensively studied the best monitoring locations 

67 and strategies to capture the soil moisture dynamics (Skøien et al., 2003; De Lannoy et al., 

68 2006; Vereecken et al., 2007; Vanderlinden et al., 2012; Korres et al., 2015; Mälicke et al., 

69 2020). It is becoming common to evaluate modeled soil moisture values or bias-correct the 

70 soil moisture values for model input based on the observed mean and variabilities (Draper & 

71 Reichle, 2015). However, such statistical metrics do not directly measure the soil moisture 

72 dynamics that models aim to reproduce. There remains a need for process-based methods to 

73 evaluate soil moisture data, which can be applied to diagnose and transfer soil moisture 

74 processes information observed at point scales to model scales.

75

76 1.2 Hydrological signature concepts applied to soil moisture

77 Hydrological signatures have been developed to overcome the difficulty of using hydrologic 

78 data in model calibration and evaluation. Hydrological signatures are metrics representing 

79 catchment dynamics (Gupta et al., 2008; McMillan, 2020a, 2020b). Hydrological signatures 

80 offer a way to identify preferred model structure and parameterization based on the models’ 

81 ability to reproduce the observed signatures, and therefore the underlying hydrologic 

82 processes and dynamics (McMillan, 2020a). Researchers have developed hydrologic 

83 signatures to represent various processes, such as streamflow (McDonnell et al., 2007; 

84 Yarnell et al., 2015; Gnann et al., 2021a), groundwater (Heudorfer et al., 2019), and snow 

85 processes (Schaefli, 2016; Horner et al., 2020), and the impact of environmental alteration on 

86 those processes (Richter et al., 1996). When the hydrologic signature concept is applied to 

87 analyze soil moisture processes, we call these metrics ‘soil moisture signatures.’

88

89 1.3 Selecting soil moisture signatures

90 Soil moisture signatures are designed to quantify soil moisture dynamics at three main 

91 temporal scales (Draper & Reichle, 2015; Branger & McMillan, 2020): per storm event 

92 (‘event-based signatures’), per season (‘season-based signatures’), and per a complete time 

93 series (‘time series-based signatures’). Recent advancements of dense in-situ networks of soil 

94 moisture sensors provide soil moisture observation at high spatio-temporal resolution and 

95 have enabled the development of various types of signatures. Examples of existing soil 

96 moisture signatures include event-based signatures that measure preferential flow occurrence 
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97 (Graham & Lin, 2011) and progression of the wetting front (Blume et al., 2009), season-

98 based signatures that measure the persistence of seasonal wet and dry states (Ghannam et al., 

99 2016), and a timeseries-based signature that measures hysteresis in wetting and drying 

100 processes (Rosenbaum et al., 2012). Note that these signatures are often mentioned by a 

101 different name or are unnamed in literature but are summarized here as ‘soil moisture 

102 signatures.’ Based on individual signatures proposed by these studies, a few studies proposed 

103 sets of soil moisture signatures to capture soil moisture dynamics in a standardized manner 

104 (Graham & Lin, 2012; Chandler et al., 2017; Branger & McMillan, 2020).

105

106 When designing soil moisture signatures, one of the important criteria is discriminatory 

107 power: i.e., an ability to discriminate among different soil moisture regimes influenced by 

108 relevant physical factors, such as climate, geology, and land-use (McMillan et al., 2017). 

109 Fulfilling this criterion allows us to understand and compare soil moisture regimes using 

110 signatures. Previous studies have shown that signatures can discriminate between soil 

111 moisture dynamics in contrasting climate and geology. Chandler et al. (2017) characterized 

112 seasonal wetting, drying, freezing, and melting dynamics in various soil texture types using 

113 four timeseries-based signatures for Boise catchments in the United States. Branger & 

114 McMillan (2020) explicitly tested the discriminatory power of signatures and found high 

115 discriminatory power of season- and timeseries-based signatures among climate classes and 

116 among geology classes in New Zealand catchments.

117

118 Although land-use is a major determinant of rainfall-runoff and soil moisture processes 

119 (Viglione et al., 2016; Rogger et al., 2017; Alaoui et al., 2018), the discriminatory power of 

120 signatures between different land-uses has been tested only under limited types of 

121 environments. At the same time, previous studies show that describing the discriminatory 

122 power of soil moisture signatures is inconclusive. Branger and McMillan (2020) found low 

123 discriminatory power of event-based signatures in non-forested and forested areas. Chandler 

124 et al. (2017) found low power of timeseries-based signatures to discriminate soil hydraulic 

125 characteristics among different tree species. Wiekenkamp et al. (2019), on the other hand, 

126 found high discriminatory power of event-based signatures between forested and deforested 

127 areas. Some studies found distinct soil moisture values across a wider variety of land-uses, 

128 including grazing, cultivation, forests, and grasslands, but their characterizations are limited 
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129 to spatial mean or variability (Fu et al., 2003; Jawson & Niemann, 2007; Gao et al., 2014; 

130 Deng et al., 2016). Testing soil moisture signatures for various land-uses is important for 

131 developing a standardized set of signatures that can discriminate the distinct soil moisture 

132 processes.

133

134 1.4 Aims of this paper

135 This paper aims to test soil moisture signatures’ ability to describe soil moisture dynamics 

136 under a range of land-uses. Our work extends the previous studies of soil moisture signatures 

137 (Graham & Lin, 2012; Chandler et al., 2017; Branger & McMillan, 2020) by applying their 

138 signatures to a wider range of land-uses. The six study sites around the globe are chosen to 

139 represent twelve land-use types. All study sites include an internal contrast between two to 

140 three land-uses (e.g., deforested vs. forested areas). The paper consists of three sections. The 

141 first section reports the impact of data quality on signature calculation (Section 4.1). The 

142 second section uses multivariate analysis to evaluate the ability of soil moisture signatures to 

143 identify differences in soil moisture dynamics between land-uses (Section 4.2). The third 

144 section derives process implications from the differences in signature values between land-

145 uses, by comparing calculated signatures against literature knowledge (Section 4.3).

146

147 2. DATA

148 We analyzed soil moisture data from six networks worldwide under diverse land-uses (Figure 

149 1). We selected soil moisture network sites that have (1) two contrasting land-uses within a 

150 network; (2) both soil moisture and rainfall data available at hourly interval; (3) more than 

151 two years of data available; (4) catchment scale in size, as larger continental or national scale 

152 networks would have large climatic and geologic variation within the network that we sought 

153 to avoid. Finally, six sites were chosen to represent twelve types of land-uses from a 

154 commonly used land-use and land-cover classification (Anderson et al., 1976; Friedl et al., 

155 2010). For two of the sites, the contrast was in the hydrologic processes (wetland vs. non-

156 wetland in Maqu, and shallow vs. deep groundwater areas in Raam). The site descriptions 

157 and sensor configurations are given in Tables 1 and S1, respectively. The soil moisture data 

158 were downloaded through the networks’ website or obtained from the site manager on 

159 request (see Data Availability Section). The soil moisture data were collected using either 

160 water content reflectometers, capacitance sensors, or soil dielectric sensors, which 
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161 respectively calculate the permittivity from the travel time of electromagnetic waves, the 

162 change in frequency of electromagnetic waves, or the ratio of reflected voltage. Each 

163 observatory used empirical equations suitable for the soil texture to convert the permittivity 

164 to the volumetric water content (m3 of water / m3 of soil). The original data, whose intervals 

165 range from 15 min to 60 min, were aggregated into hourly averages for consistency. We 

166 preprocessed soil moisture data for quality control. In most cases, data were preprocessed by 

167 each observatory based on its standards. We inspected the remaining errors automatically and 

168 manually, as described in Text S1.

169

170 We used rainfall datasets either from the soil moisture network station or a nearby weather 

171 station (see Data Availability Section and Table S1). The rainfall data were given in a 

172 cumulative amount of rainfall (mm) and measured using tipping buckets or weight-based 

173 sensors. The original data, whose intervals range from 30 min to 60 min, were aggregated 

174 into hourly cumulative amounts (mm/hr) for consistency. If there are multiple rainfall stations 

175 at a given site, the one closest to the soil moisture sensors was used for the analysis.

176 [Insert Figure 1]

177 [Insert Table 1]

178

179 3. METHODS

180 We tested the discriminatory power of soil moisture signatures to differentiate soil moisture 

181 dynamics between land-uses. First, we extracted soil moisture signatures that represent soil 

182 moisture dynamics (Section 3.1). Second, we used a multivariate statistic called the Kruskal-

183 Wallis test to compare signature values among land-uses (Section 3.2). Third, we interpreted 

184 the process implication of signature differences between land-uses by testing hypotheses built 

185 on literature review against the calculated signatures (Section 3.3).

186

187 3.1 Soil moisture signatures

188 As illustrated in Figure 2, we tested nine soil moisture signatures covering three aspects of 

189 dynamics (shape, timing, speed) at three temporal scales (per event, per season, and per 

190 complete timeseries). The signatures tested are: rising time, normalized amplitude, no-

191 response rate, response type, rising limb density for the event-based signatures; seasonal 

192 transition start day and duration for the season-based signatures; distribution type, estimated 
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193 field capacity, and estimated wilting point for the timeseries-based signatures. All signatures 

194 require only soil moisture and rainfall data. The following sections provide detailed 

195 descriptions and the algorithm to calculate each signature. The signature definition and the 

196 algorithm were based on the original methods, but we adapted them to suit a wide range of 

197 soil moisture dynamics and data quality.

198 [Insert Figure 2]

199

200 3.1.1. Event rising time, normalized amplitude, and no-response rate

201 Event rising time, amplitude, and response rate characterize the runoff dynamics in response 

202 to precipitation (Liang et al., 2011; Tian et al., 2019). These signatures were calculated for 

203 each storm event. First, following McMillan et al. (2014), rainfall records were divided into 

204 events; the start of the event was defined as when the minimum intensity exceeds 2 mm/hr or 

205 10 mm/day after more than 12 hrs of no rainfall; the end of the rainfall was defined as the 

206 start of the next rainfall or 5 days after the last rainfall, whichever occurred first. For each 

207 event, event rising time was calculated as the time-lag from the start of an event to the soil 

208 moisture peak. Event amplitude was calculated as the difference between the soil moisture 

209 values at their maximum and at the start of the event, normalized using estimated field 

210 capacity and wilting point at the station (defined in Section 3.1.6.) as practiced by Sumargo et 

211 al. (2021). Soil moisture was judged as not responding if there was no soil moisture peak 

212 detected. In other words, no response of soil moisture means that soil moisture values 

213 continued increasing or decreasing during the event. The “no-response rate” was calculated 

214 as the number of events with no response divided by the number of all events.

215

216 3.1.2. Event response type

217 We can characterize the flow pathway by comparing the order of response timings along soil 

218 profile (Graham & Lin, 2011, 2012; Wiekenkamp et al., 2016a). We applied the methods by 

219 Graham and Lin (2011) and Wiekenkamp et al. (2016a) for classifying response types. First, 

220 event rising times were calculated as in Section 3.1.1, except that we set the minimum size of 

221 response magnitude as 2% of volumetric water content. Then, the response type was 

222 classified as ‘sequential’ when the response order was sequential from the shallow to the 

223 deeper sensor. The response type was classified as ‘non-sequential’ when the order of 

224 response times is non-sequential for at least one sensor. ‘No-response’ was assigned when 
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225 none of the sensors responded.

226

227 3.1.3. Rising limb density

228 Rising limb density characterizes the catchment flashiness and is often used in streamflow 

229 analysis (Sawicz et al., 2011). Rising limb density can also be translated as averaged rising 

230 time. We propose rising limb density as a new soil moisture signature that captures the shape 

231 of the event rising limbs. We applied an algorithm by Gnann et al. (2021a) for the 

232 calculation. First, the rising limb was detected when the rising duration was more than an 

233 hour, and the magnitude of change in soil moisture was more than 1% volumetric water 

234 content. A 0.01% decrease in volumetric water content during the rising period was allowed. 

235 For each rising limb, the length and duration were calculated. Then, rising limb density was 

236 calculated as the sum of the rising limb length of all events divided by the sum of the rising 

237 time of all events.

238

239 3.1.4. Seasonal transition date and duration

240 Seasonal transition signatures characterize the switching of soil moisture between wet and 

241 dry seasons, where different runoff regimes dominate (Grayson et al., 2006). We calculated 

242 seasonal transition signatures by fitting a piecewise linear model to the soil moisture 

243 timeseries for each wet-to-dry and dry-to-wet transition period. We chose piecewise linear 

244 models because the inflection point and plateau can represent the soil moisture value reaching 

245 its wetting and drying limit. The seasonal transition was calculated for time series that had 

246 bimodal distribution type (defined in Section 3.1.5.) because the signature is only meaningful 

247 when soil moisture data show seasonality. First, to remove event-based variability, we 

248 aggregated the timeseries from hourly to daily intervals. Then, the wet-to-dry and dry-to-wet 

249 transition periods were cropped out. A piecewise linear model was fitted to the cropped time 

250 series. Last, the start and end days of the transition were defined as the inflection points of the 

251 piecewise linear model, expressed in the day of the year. Transition duration was defined as 

252 the length of time between the start and the end day.

253

254 3.1.5. Distribution type

Page 8 of 61

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

255 Distribution type characterizes the soil moisture storage and seasonality (Rodriguez-Iturbe et 

256 al., 1999a, 1999b; D’Odorico et al., 2000; Laio et al., 2001; Samuel et al., 2008). The 

257 distribution type was classified based on the number of peaks in the probability density 

258 function (PDF) of the soil moisture data. First, we removed trends unrelated to seasonal 

259 variability by subtracting the one-year moving mean from the time series as practiced by 

260 Basak et al. (2017). Second, the soil moisture PDF was obtained using Kernel smoothing 

261 with twice the optimal bandwidth, which is optimal to represent PDF by normal distributions. 

262 Third, PDF peaks were detected if a given data sample point was larger than the two 

263 neighboring data samples. Peaks with a magnitude smaller than 20% of the largest peak were 

264 eliminated. We used MATLAB Signal Processing Toolbox for peak detection. Last, PDFs 

265 were classified according to the number of peaks into “unimodal” (one peak), “bimodal” (two 

266 peaks), or “multimodal” (three or more peaks).

267

268 3.1.6. Estimated field capacity and wilting point

269 Soil moisture timeseries often exhibit seasonal wet and dry equilibriums, which represent the 

270 water holding capacity of the soil. Since the values are known to be comparable to field 

271 capacity and wilting point estimated from soil core sample experiments (Chandler et al., 

272 2017; Bean et al., 2018), we define them in this paper as ‘estimated’ field capacity and 

273 wilting point. We calculated the estimated field capacity and wilting point as the peaks of the 

274 soil moisture PDF. First, peaks of the soil moisture PDF were detected as in Section 3.1.5. 

275 The peak with the largest and smallest volumetric soil moisture content was defined as the 

276 estimated field capacity and wilting point, respectively. If the estimated field capacity and 

277 wilting point coincided (i.e., distribution type was unimodal), both values were discarded. In 

278 this way, we automated the calculation of estimated field capacity and wilting point, which is 

279 commonly done by manually labeling the wet and dry equilibrium values in the timeseries.

280

281 3.2 Statistical assessments

282 After calculating the signatures described in Section 3.1, we compared signature differences 

283 between land-uses using statistical tests. The statistical significances represent the 

284 discriminatory power of signatures to distinguish differences in dynamics across land-uses; in 

285 other words, the differences in dynamics outweigh the overall data uncertainty. A comparison 

286 was made between two or three contrasting land-uses within each study site (i.e., in total, six 
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287 land-use comparisons for six study sites). As climate and geology will be strong confounding 

288 factors, comparison across all study sites was not implemented. For most signatures, we used 

289 the non-parametric Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test is 

290 a non-parametric method to test whether the data originate from identical distributions based 

291 on ranks. Non-parametric tests were chosen because soil moisture signatures often show 

292 skewed distributions (Branger & McMillan, 2020). We interpreted the difference as 

293 significant when the p-value is less than 0.05. The Kruskal-Wallis test was applied to 

294 signatures in interval or ratio form (all signatures except response type and distribution type). 

295 The Kruskal-Wallis test was not applicable for categorical variables, so we took a different 

296 approach for such signatures (response type and distribution type signatures). We calculated 

297 the ‘dominance’ of one category: the ratio of the number of samples in one category 

298 (sequential for response type; unimodal for distribution type) to the total number of samples 

299 (which is equal to the sum of sequential and non-sequential responses for response type; the 

300 sum of unimodal, bimodal, and multimodal distribution for distribution type). We used the 

301 change in the ‘dominance’ ratio of one category to measure differences between the two 

302 groups.

303

304 3.3. Process interpretation

305 We took a hypothesis-testing approach to understand how signature values relate to soil 

306 moisture processes (McKnight, 2017; Gnann et al., 2021b). First, we explored the 

307 interpretation of signature values based on expert knowledge in literature. We reviewed two 

308 types of literature: articles about the study site of interest, and articles about a watershed with 

309 a similar hydrologic environment to the study site of interest that investigated the processes 

310 using a signature-based approach on their soil moisture data. To build the overarching 

311 interpretation of signature values, we focused on catchment functionality. According to Black 

312 (1997) and Wagener et al. (2007), catchment functionality consists of four basic elements: 

313 partition, transmission, storage, and release. Among them, two functionalities are closely 

314 related to the soil moisture system: partitioning that corresponds to flow pathways of rainfall 

315 in soil or at the soil surface, and storage that corresponds to the amount of water stored in the 

316 soil. After building an overarching interpretation focused on these two functionalities, we 

317 tested them against the signature values from the soil moisture networks. We refined or 

318 updated our hypotheses if the signature differences were not satisfactorily explained.
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319

320 4. RESULTS

321 4.1 Data quality assessment and its impact on signature extraction

322 This section demonstrates the data quality and its impact on our research design. The results 

323 of the data quality assessment show that sufficient data were obtained for statistical 

324 assessments. Kruskal-Wallis test requires a sample size of five or more to determine 

325 statistical significance (Riffenburgh, 2006). In Figure 3, the number of reliable timeseries 

326 exceeds five for most of the study sites. When there were less than five reliable stations 

327 within a testing group (consisting of a combination of a depth and a land-use), we could not 

328 complete the statistical assessment, especially for signatures that can be only extracted once 

329 per time series (estimated field capacity, estimated wilting point, no-response rate, and rising 

330 limb density signatures). Other signatures were robust to the lack of reliable data as they can 

331 be extracted once per season (seasonal transition date and duration) or event (event rising 

332 time, response type, amplitude).

333 [Insert Figure 3]

334

335 Overall, signature values showed clear differences among the study sites (Figure 4). This 

336 implies that the signatures were successfully extracted and can be used for further analysis. 

337 Signature differences between study sites can be attributed to the differences in their climate 

338 and geology. For example, estimated field capacity was clearly correlated with aridity index, 

339 except for Maqu (MQ), where wetland areas produced unusually organic-rich soil. However, 

340 analysis of climate and geology controls on signature values is beyond our scope and not 

341 further discussed.

342 [Insert Figure 4]

343

344 4.2 Signature differences between contrasting land-uses

345 This section provides an overview of how soil moisture signature values change depending 

346 on the land-use. We explain signature differences between land-uses from two perspectives: 

347 the magnitude (whether the signature magnitude for a given soil depth differs between land-

348 uses) and the profile along soil depth (whether the increasing or decreasing trend of signature 

349 values relative to soil depth differs between land-uses). Figures 5 and S1 show the signature 

350 differences in terms of the magnitude and the profile, respectively. Figures 6, 7, and 8 show 
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351 the boxplots of selected signatures that showed notable differences between land-uses. Please 

352 refer to the supplemental material for boxplots of signature values for all the study sites 

353 (Figures S2, S3, and S4).

354

355 Interpretation of Figure 5 is as follows. In Figure 5, signatures that were statistically 

356 significantly different between land-uses are highlighted in darker blue. For example, many 

357 cells in the column of “event-based signatures” are highlighted in darker blue in Figure 5, 

358 indicating that event-based signatures showed a high ability to distinguish different dynamics 

359 between the study sites (called ‘discriminatory power’ hereafter). The arrows in the cells help 

360 understand the direction of change in signature values. For example, the up-pointing arrow 

361 for amplitude signature in Wüstebach (WB) means the event amplitudes were larger in the 

362 deforested area than the forested area.

363

364 Overall, event-based signatures showed high discriminatory power between contrasting land-

365 uses for all sites. Season- and timeseries-based signatures showed moderate discriminatory 

366 power in deforested, urban, shallow groundwater, and croplands. Signature differences 

367 between land-uses were observed both in terms of their magnitude and profile. The following 

368 subsections describe the detailed results by signature timescale (event-, season-, and 

369 timeseries-based signatures).

370 [Insert Figure 5]

371

372 4.2.1. Event-based signatures

373 Event-based signatures showed differences between land-uses both in magnitude and in 

374 signature profile with soil depth. Differences in signature values were found across most land 

375 uses, with notable differences between deforested vs. forested and urban vs. greenspace 

376 contrasts.

377

378 Figure 5 shows that event-based signatures varied in magnitude with land-use for all study 

379 sites; in Figure 5, cells are highlighted in darker blue for statistically significant signatures. 

380 Statistically significant differences were found for amplitude and rising time signatures at all 

381 sites, and for rising limb density and “no-response rate” signatures at Wüstebach. These 

382 changes in signature magnitudes indicate a more responsive regime especially in the 
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383 deforested area than the forested area at Wüstebach, and the shallow groundwater area than 

384 the deep groundwater area at Raam.

385

386 Figure 6 shows examples of how event-based signature profiles with soil depth changed 

387 between land-uses in Wüstebach (deforested vs. forested) and Hamburg (urban vs. 

388 greenspace). In Wüstebach, rising limb density increases with depth in the forested area, 

389 whereas the values were similar with soil depths in the deforested area (Figure 6a). In 

390 Hamburg, the event-based signatures were more pronounced at the shallow depth (sensors at 

391 5 and 20 cm depths) in the urban area than in the greenspace (Figure 6b, c, d).

392

393 We interpret the changes in event-based signatures to represent the influences of wetness 

394 conditions on the storage processes and the influences of soil properties on the flow 

395 partitioning process (see Section 4.3.1).

396 [Insert Figure 6]

397

398 4.2.2. Season-based signatures

399 Season-based signatures showed differences in magnitude and in profile with soil depth for 

400 some types of land-uses, namely, deforested vs. forested, urban vs. greenspace, and cropland 

401 vs. grazed vs. grassland contrasts.

402

403 Figure 5 shows that season-based signature values varied in magnitude with land-use in 

404 Wüstebach (deforested vs. forested), Hamburg (urban vs. greenspace), and Oznet (crop vs. 

405 grazed vs. grassland); in Figure 5, cells are highlighted in darker blue for statistically 

406 significant signatures. In Wüstebach, the wet season persisted longer in the deforested area 

407 than in the forested area; the dry-to-wet transition started earlier and took a shorter time, and 

408 the wet-to-dry transition duration took a longer time. In Hamburg, wetting up was more 

409 gradual, and drying out was more rapid in the urban area than in the greenspace.

410

411 Figure 7 shows that season-based signature profiles with soil depth changed between land-

412 uses in Wüstebach (deforested vs. forested) and Oznet (crop vs. grazed vs. grassland). In 

413 most sites, the seasonal transition propagated from shallow to deep soil layer, or occurred in 

414 tandem at all depths. On the contrary, the transition started earliest in the deeper layer in the 
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415 deforested area in Wüstebach (Figure 7a) and cropland in Oznet (Figure 7b and c). We 

416 interpret the changes in season-based signatures to represent the influences of water balance 

417 and soil wetness conditions on storage processes (see Section 4.3.2).

418 [Insert Figure 7]

419

420 4.2.3. Timeseries-based signatures

421 Timeseries-based signatures showed differences in magnitude and in profile with soil depth 

422 for most types of land-uses, namely, deforested vs. forested, wetland vs. non-wetland, 

423 shallow vs. deep groundwater, and cropped vs. grazed vs. grassland contrasts.

424

425 Figure 5 shows that timeseries-based signature values varied in magnitude with land-use; 

426 changes in estimated field capacity and wilting point were statistically significant in 

427 Wüstebach (deforested vs. forested), and changes in the dominance of unimodal distribution 

428 type were more than 15% in most of the study sites except Texas (grazed vs. ungrazed). Not 

429 statistically significant due to small sample sizes, but visual differences in the signature 

430 magnitude were seen in Maqu (wetland vs. non-wetland) for estimated field capacity (Figure 

431 8a) and Oznet (crop vs. grazed vs. grassland) for estimated wilting point (Figure 8b). These 

432 changes in signature magnitude imply wetter conditions in the deforested area in Wüstebach, 

433 wetlands in Maqu, and grasslands in Oznet.

434

435 Figure 8 shows the timeseries-based signature profiles with soil depth changed between land-

436 uses in Hamburg (urban vs. greenspace) and Raam (shallow vs. deep groundwater). In 

437 Hamburg, variability of estimated field capacity and wilting point decreased with depth in the 

438 greenspace, whereas they increased in the urban area (Figure 8c). In the shallow groundwater 

439 area of Raam, the bimodal distribution is dominant at the deepest and shallowest soil, 

440 contrasting to mixed modality along all depths in the deep groundwater area (Figure 8d). We 

441 interpret that the changes in timeseries-based signatures represent the influences of soil 

442 properties, vegetation, and groundwater on the storage processes (see Section 4.3.3).

443 [Insert Figure 8]

444

445 4.3. Interpretation of signature differences between land-uses
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446 This section provides interpretations of the signature difference among contrasting land-uses 

447 derived in Section 4.2. Figure 9 shows whether the observed signature differences between 

448 land-uses agreed with literature interpretations. Overall, event-based and timeseries-based 

449 signatures mostly agreed (cells are highlighted blue in Figure 9), whereas season-based 

450 signatures poorly agreed with literature (highlighted red in Figure 9). The following sections 

451 describe the detailed results by signature timescale (event-, season-, and timeseries-based 

452 signatures).

453 [Insert Figure 9]

454

455 4.3.1. Event-based signatures represent partitioning processes

456 In general, event-based signatures matched with expert knowledge in literature (highlighted 

457 blue in Figure 9). Event-based signature differences in magnitude represented changes in 

458 storage flashness, and those in the signature profile represent changes in flow partitioning 

459 processes depending on the land-uses.

460

461 We interpreted the event-based signature magnitudes between land-uses to represent the 

462 storage flashiness depending on the soil wetness conditions. Larger response amplitude, 

463 shorter rising time, larger rising limb density, and lower “no-response rate” imply flashier 

464 storage response in high soil wetness conditions. Our signatures showed greater storage 

465 flashiness in deforested areas (Wüstebach) and cropped areas (Oznet). These land 

466 disturbances are known to increase soil wetness (and therefore flashiness) through reduced 

467 transpiration and interception (Wiekenkamp et al., 2016b) and irrigation (Smith et al., 2012), 

468 respectively. Response amplitude gets smaller when the soil wetness is close to saturation 

469 (Soylu & Bras, 2021). We observed this change in Raam (shallow vs. deep groundwater) and 

470 Maqu (wetland vs. non-wetland).

471

472 We interpreted that the changes in the event-based signature profiles imply changes in flow 

473 partitioning processes. According to Graham and Lin (2011), sequential responses ordering 

474 from shallow to deep soil layer represent vertical infiltration and overland flow regime, and 

475 non-sequential response patterns (random response order along soil depth) represent 

476 preferential or lateral flow regime. Additionally, more pronounced responses in shallow soils 

477 within sequential-response patterns represent the overland flow regime (Ziegler et al., 2001). 
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478 Our signature values agreed with this interpretation; we saw sequential and more pronounced 

479 responses in shallow soil in urban areas in Hamburg and cropped areas in Oznet, where 

480 surface sealing (Scalenghe & Ajmone-Marsan, 2009) and compaction (Alaoui et al., 2018) 

481 are expected to increase overland flow, respectively. A decrease in non-sequential response 

482 was found in Wüstebach, where preferential flow is known to decrease after deforestation 

483 (Wiekenkamp et al., 2019). On the other hand, event-based signatures did not show 

484 significant changes in grazed vs. ungrazed areas in Texas (Alaoui et al., 2018), contrary to the 

485 expectation that compaction increases overland flow at this site. This might be due to scale, 

486 as plot-scale compaction does not always influence catchment-scale response (Rogger et al., 

487 2017; Alaoui et al., 2018).

488

489 4.3.2. Season-based signatures represent storage processes

490 Season-based signatures only partially matched with expert knowledge in literature 

491 (highlighted blue for a match, red for no match in Figure 9). We interpret that a combination 

492 of the following factors related to storage processes affects season-based signatures’ 

493 magnitude and profile: changes in water balance depending on the active root depth and 

494 rainfall rate (Laio, 2002), the closeness of soil wetness conditions to soil moisture threshold 

495 (Detty & McGuire, 2010), and other land-use influences such as groundwater (Miguez-

496 Macho & Fan, 2012), construction waste (Wiesner et al., 2016), and irrigation (Smith et al., 

497 2012). For example, reduced rainfall rate and root depth explained earlier transition start date, 

498 and higher wetness conditions explained shorter transition duration in the shallow soil layer 

499 in deforested vs. forested contrast in Wüstebach; still, literature did not fully explain the 

500 changes of the signature profile along soil depth. The mismatch was more obvious in land-

501 uses that complicate the boundary conditions of soil water storage, such as construction waste 

502 presence in the soil in Hamburg or strong groundwater influence in Raam (highlighted red in 

503 Figure 9). The mismatch can also be attributed to a lack of studies on season-based 

504 signatures. Many studies on soil moisture seasonality mainly concentrate on detecting 

505 anomalies for drought analysis or general trends for land-surface process understandings 

506 (Koster & Suarez, 2001; Kumar et al., 2019; Potter et al., 2005; Teuling et al., 2005). In 

507 contrast, few studies exist on the influence of land-use on soil moisture seasonal transition 

508 timings and durations.

509
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510 4.3.3. Timeseries-based signatures represent storage characteristics

511 In general, the timeseries-based signature matched with expert knowledge in literature 

512 (highlighted blue in Figure 9). Changes in timeseries signatures represented the interaction 

513 between soil water storage and soil properties, vegetation, and groundwater depending on the 

514 land-uses.

515

516 We interpreted the timeseries-based signature magnitudes to represent the amount of soil 

517 water storage. Larger estimated field capacity, wilting point, and dominance of unimodality 

518 imply more soil water stored. Signature values matched literature expectations in Wüstebach 

519 (deforested vs. forested), Maqu (wetland vs. non-wetland), and Oznet (crop vs. grazed vs. 

520 grassland), where deforested, wetland, and cropped conditions are respectively known to 

521 increase soil wetness through changes in transpiration (Wiekenkamp et al., 2016b), soil 

522 organic content (Dente et al., 2012; Hudson et al., 1994), and irrigation (Smith et al., 2012).

523

524 We interpreted that the changes in the timeseries-based signature profile with soil depth 

525 imply the external influence on soil water storage. Generally, the estimated field capacity and 

526 wilting point either consistently decrease or increase with soil depth, and the dominance of 

527 unimodal distribution increases with soil depth, because of less influence of climate and 

528 compaction of pore spaces in the deeper soil (Trimble, 2007). Different behavior seen in the 

529 shallow groundwater area at Raam can be explained as follows; at the groundwater interface, 

530 the saturation is controlled by whether the groundwater meets the soil sensors or not, and 

531 bimodal distribution becomes dominant again. High variability of estimated field capacity 

532 and wilting point in deeper soil in urban areas in Hamburg can be explained by the urban 

533 structures or construction waste that creates different sizes of pores (Wiesner et al., 2016).

534

535 5. DISCUSSION

536 5.1. Limitations

537 We recognize several limitations in our study. First, future work should test differences in 

538 signature values attributed to land-use against confounding factors. For example, we 

539 explicitly examined groundwater influence for Raam, but groundwater could also influence 

540 soil moisture dynamics in Wüstebach, Hamburg, and Maqu. Such confounding factors 

541 include topography, slope aspects, position in slope, snow influence, distances between 
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542 sensors, and sensor types. However, investigation on confounding factors requires detailed 

543 datasets on elevation, groundwater depth, snow depth, or temperature at each sensor location, 

544 which are not consistently available for all the study sites. We treated the contrasting land-use 

545 as the major controls on soil moisture processes and took variability of other factors within a 

546 catchment as residual uncertainty in this study (Beven, 2000). Our selection of sites, where 

547 sensors are within watershed-scale, helps reduce the impact of the confounding factors. For 

548 confounding factors regarding soil moisture network design (e.g., size of the network and 

549 distance between sensors), it would be beneficial to implement geospatial analysis. Previous 

550 studies suggest that investigating the influence of spatial scale on soil moisture values 

551 advances our understanding of the soil moisture processes (Brocca et al., 2007; Gómez-Plaza 

552 et al., 2001; Western et al., 2004).

553

554 Second, the signature approach needs attention when adapted to different hydrologic 

555 environments. We encountered several difficulties in extracting and interpreting signatures 

556 under different climate and soil conditions (e.g., defining seasonal transition for sites with an 

557 unstable wet season, multiple process interpretations for bimodal distribution signatures, and 

558 the impact of data quality practice on signature calculation). We summarized our experiences 

559 and recommendations in Text S2. Also, our datasets did not cover some combinations of 

560 land-use and climates. For example, grazed land-use was tested only in Texas and Oznet 

561 under an arid climate, not in humid and temperate climates. Therefore, the users should be 

562 careful using signatures on other climates, soil types, or soil developments. Future work 

563 should fill the gaps using larger datasets, such as the International Soil Moisture Network 

564 dataset (Dorigo et al., 2011) or SMAP satellite observation (Entekhabi et al., 2014).

565

566 5.2. Novelty, usefulness, and future direction of soil moisture signature approach

567 There are two novelties of this study. First, this study showed clear differences in soil 

568 moisture signatures depending on land-uses. Previous studies compared signatures under 

569 limited land-uses (e.g., forest vs. non-forest in Branger & McMillan, 2019; forests with 

570 various tree species in Chandler et al., 2017). Previous studies also compared signatures from 

571 the large-scale observation networks, where climate and geology are the strong confounding 

572 factors. This study covered a wide range of land-uses and conducted internal comparisons 

573 within small to mesoscale observation networks. The research design allowed analyses with a 
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574 strong focus on land-use impacts on signature values, and interpretation of the signature 

575 values based on catchment-scale processes. Second, this study differentiated soil moisture 

576 processes between land-uses only using soil moisture and rainfall datasets. Usually, 

577 watershed processes are understood using a variety of hydrological and soil observations. 

578 However, rich process knowledge from previous studies allowed us to interpret processes 

579 from signature values calculated only from soil moisture and rainfall data. Using standardized 

580 metrics, the process interpretation across study sites also helped integrate individual 

581 knowledge of existing soil moisture studies.

582

583 Our results suggest potential uses of soil moisture signatures in hydrologic analysis to 

584 represent the different dynamics with land-uses. In the future, hydrologists could use soil 

585 moisture signatures to calibrate, constrain, or evaluate models against observation data, as 

586 practiced in streamflow signatures (Westerberg et al., 2011; Shafii & Tolson, 2015). Models 

587 could be evaluated whether the model represented significant differences or similarities in 

588 soil moisture signature values expected between different land-uses. Signatures could also be 

589 used to compare satellite data against in-situ data in terms of soil moisture dynamics. Our 

590 results imply that significant differences in signature values between land-uses appear even at 

591 5 cm soil depth, which is a typical penetration depth of remote sensing observation. 

592 Furthermore, signatures could be used for process investigation or model structure 

593 identification between contrasting land-uses especially for the event- and the timseries-based 

594 signatures, whose process implications were successfully derived in this study. Signatures 

595 would be especially useful to represent different dynamics for the land-use contrasts that 

596 showed significant signature differences (deforested vs. forested, urban vs. greenspace, crop 

597 vs. grazed vs. grassland).

598

599 Ultimately, we would like to develop a systematic classification of catchment processes 

600 between land-uses based on signatures (Wagener et al., 2007). As an example, we designed a 

601 flow chart to show how partitioning processes might be classified using event-based 

602 signatures (Figure 10). First, the flow pathways could be categorized into sequential and non-

603 sequential types based on response type signatures, and then further refined based on other 

604 event-based signatures. Several signatures are lacking (in grey letters in Figure 10), but this 

605 flow chart demonstrates the potential of a signature-based process classification system. For 
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606 example, the flow chart represents the signature difference in urban vs. greenspace area 

607 between vertical vs. overland flow processes, which we observed in Hamburg. Previous 

608 studies have suggested promising classification frameworks for soil moisture processes. For 

609 example, Boorman et al. (1995) propose eleven basic modes for partitioning processes 

610 depending on the soil profile and groundwater position, and Grayson et al. (1997) propose 

611 four basic modes for storage seasonality depending on the soil wetness conditions. We could 

612 potentially classify catchment processes using soil moisture signatures at all temporal scales 

613 based on these studies.

614 [Insert Figure 10]

615

616 6. CONCLUSIONS

617 Soil moisture signatures are metrics that represent soil moisture dynamics. This study aimed 

618 to test soil moisture signatures’ ability to discriminate different dynamics under contrasting 

619 land-uses (called ‘discriminatory power’). We integrated nine soil moisture signatures from 

620 previous studies (Branger & McMillan, 2020; Graham & Lin, 2012; Chandler et al., 2017; 

621 Sawicz et al., 2011). The set of signatures quantified the dynamics at three temporal scales: 

622 event, season, and complete timeseries. We applied the signatures to six soil moisture 

623 network data with diverse land-uses, including deforested, shallow groundwater, wetlands, 

624 urban, grazed, and cropland areas. Using statistical, visual, and literature analysis, we tested 

625 the discriminatory power of soil moisture signatures.

626

627 Event-based signatures had the highest discriminatory power; they showed clear statistical 

628 and visual differences across all land-uses. Literature supported the link between partitioning 

629 and storage processes, and event-based signatures. Season-based signatures had moderate 

630 discriminatory power; they showed statistical and visual differences in a range of land-uses 

631 (e.g., deforested vs. forested, urban vs. greenspace, crop vs. grazed vs. grassland). However, 

632 literature could not fully explain the differences in season-based signatures depending on the 

633 land-uses due to the lack of observational studies using the season-based signature approach. 

634 Timeseries-based signatures had moderate discriminatory power in all land-uses except in 

635 grazed vs. ungrazed. The differences of timeseries-based signatures between land-uses were 

636 linked to differences in storage characteristics.

637
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638 Our results demonstrated that soil moisture signatures, calculated only from soil moisture and 

639 rainfall timeseries, can capture the land-use impacts on catchment-scale soil moisture 

640 dynamics. We also explored and documented the limitation in extracting signatures from 

641 datasets covering a wide range of climate conditions. This study will be a useful guideline for 

642 hydrologists to apply soil moisture signatures for evaluating land-use impacts on hydrologic 

643 processes and developing a standardized classification system of soil moisture processes.

644
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653 DATA AVAILABILITY

654 The datasets used in this study are available from the following. Please visit the observatory’s 

655 website or inquire the site manager for the availability of data.
Study sites Soil moisture data source Rainfall data source

Wüstebach (WB) Requested to Dr. Heye Bogena 

(h.bogena@fz-juelich.de)

Note that data through 2009 to 2015 are 

available online (Bogena, 2021)

Online. Used Monschau-Kalterherberg 

station data (The Deutscher Wetterdienst 

(DWD), 2021)

Hamburg (HB) Requested to Dr. Sarah Wiesner 

(sarah.wiesner@uni-hamburg.de)

Network description is available online 

(University of Hamburg, 2021)

Online. Used Hamburg-Fuhlsbüttel station 

data (The Deutscher Wetterdienst (DWD), 

2021)

Raam (RM) Online. 

2016-2017 data (Benninga et al., 2017) 

2017 -2018 data (Benninga et al., 2018a)

2018 – 2019 data (Benninga et al., 2020)

Online. Used Volkel weather station data 

(The Royal Netherlands Meteorological 

Institute (KNMI), 2021)

Texas (TX) Online (Bongiovanni & Caldwell, 2019) Online (Bongiovanni & Caldwell, 2019)
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Maqu (MQ) Requested to Dr. Bob Su 

(z.su@utwente.nl)

5 cm sensor data is available online 

(Dorigo et al., 2011)

Requested to Dr. Bob Su 

(z.su@utwente.nl)

Oznet (OZ) Online (Smith et al., 2012) Online (Smith et al., 2012)
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1028 SUPPORTING INFORMATION 

1029 The supplementary material includes the following. 

1030 Text S1 describes quality control procedures of soil moisture data 

1031 Table S1 describes sensor configurations of the study site

1032 Figure S1 shows the results of the statistical test for signature profiles with soil depths 

1033 between land-uses 

1034 Figure S2, 3, 4 shows all the results for event-based, season-based, and timeseries-based 

1035 signatures, respectively

1036 Text S2 and Figure S5 describe the applicability of signatures for diverse types of time 

1037 series of data
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FIGURE 1  Maps of the study sites. The contours are based on a field survey for WB (Graf et al., 2014), 
Shuttle Radar Topography Mission Elevation Dataset (National Aeronautics and Space Administration (NASA) 

et al., 2002) for HB, RM, TX, MQ, and OZ. All maps are north upward 
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FIGURE 2 A set of signatures describing the soil moisture dynamics. (a) Illustrations show the signatures 
calculated. (b) A table shows the aspects of soil moisture dynamics represented by the signatures 
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FIGURE 3  Number of stations that passed the final quality control. The categories that have five or more 
variables can be used for statistical analysis (indicated by a horizontal line) 
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FIGURE 4  Signature values for all the study sites, in the order of aridity (large to small from left to right 
based on the aridity values listed in Table 1). Signature values were aggregated for sensor depths and land-

uses. The boxplots are drawn using Matlab package gramm (Morel, 2018). The box is drawn between the 
first and third quartile, with a line in between indicating the median. The whiskers extended within a 

distance to the box equal to 1.5 times the interquartile range. Dots indicate the outliers 
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FIGURE 5  Signature differences in magnitude between contrasting land-uses for a given depth. In each 
study site, signatures from a disturbed land-use were compared with those from an undisturbed land-use 
(e.g., deforested as disturbed vs. forested as undisturbed). The upward, downward, and horizontal arrows 
indicate if the signature values in the disturbed land-use were larger, smaller, or unchanged, respectively, 
compared to undisturbed land-use. The cells are highlighted with colors associated with the p-value of the 
Kruskal–Wallis test, or percent change in signature dominance. The cells are white when the sample size 

was not enough for the Kruskal-Wallis test (less than five). Most signatures for the Maqu sites did not reach 
enough sample size for the Kruska-Wallis test; thus, they were excluded from the table 
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FIGURE 6  Box plots of event-based signatures for the sites showing significant differences in signatures. 
Refer to Figure S2 for full results. The box is drawn between the first and third quartile, with a line in 

between indicating the median. The whiskers extend to the most extreme data value within a distance to the 
box equal to 1.5 times the interquartile range. Dots indicate the outliers 
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FIGURE 7  Box plots of season-based signatures for the sites showing significant differences in signatures. 
Refer to Figure S3 for full results. The box is drawn between the first and third quartile, with a line in 

between indicating the median. The whiskers extend to the most extreme data value within a distance to the 
box equal to 1.5 times the interquartile range. Dots indicate the outliers 
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FIGURE 8  Box plots of timeseries-based signatures for the sites showing significant differences in 
signatures. Refer to Figure S4 for full results. The box is drawn between the first and third quartile, with a 

line in between indicating the median. The whiskers extend to the most extreme data value within a 
distance to the box equal to 1.5 times the interquartile range. Dots indicate the outliers 
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FIGURE 9  Process-based interpretation of signature differences between land-uses in terms of signature 
magnitude. The cells are highlighted blue when the signature matched with literature values and red if not. 

‘Shallow’ and ‘deep’ mean different behavior expected or observed depending on the soil depth 
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FIGURE 10  An example flow chart that classifies soil moisture dynamics using event-based soil moisture 
signatures 
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TABLE 1 Key climatic and geological characteristics of study sites. The data are obtained from ‘Key reference papers.’ Aridity was calculated using 
GLDAS-2.1 (Rodell et al., 2004) as the ratio of the annual total precipitation rate to the annual potential evaporation rate. For each station, aridity 
calculated at all sensor points and averaged for the observation period

Study site
(abbreviati
on)

Land-use, in the order of degree of 
disturbance

Annual 
pre-
cipitation 
(mm/yr)

Annual 
mean 
tempera-
ture (°C)

Aridit
y

Vegetation Soil type (texture and soil 
type) 

Key reference papers

Wüstebac
h
WB

Forested vs. deforested
(Logging removed 97 % of tree biomass. 
Stumps and litter remained. Trees were 
transported by skid rails to minimize soil 
compaction)

1220 7
(< 0C Dec. 
to Mar.)

0.97 Coniferous trees 
(Norway Spruce and 
Sitka spruce) planted 
in the 1940s. Average 
density 370 trees/ha, 
average height 25 m 

Silty clay loam with 
fractions of coarse 
material; Cambisols, 
Planosols, and Gleysols

(Rosenbaum et al., 
2012; Wiekenkamp et 
al., 2019; Bogena et 
al., 2015) 

Hamburg
HB

Greenspace vs. urban
(The urban area mostly consists of 
housings. The degree of sealing is 50 – 
60%. Soil moisture sensors were 
installed in the backyards. Soil profile 
contains construction waste)

775 Avg 9; max 
17; min 1

0.78 Lawn, high pasture 
grass, short grass, 
and deciduous trees

Sand, sandy loam, loamy 
sand, and peat; 
Cambrisols, Technosol, 
Luvisol, Anthorosol, 
Greysol, Histosol, and 
Regosol

(Wiesner et al., 2014, 
2016)

Raam
RM

Deep (>1m) vs. shallow groundwater
(The definition follows Benninga et al., 
2018). The groundwater table fluctuates 
25 – 160 cm below the soil surface.)

818 Avg 9.1; 
max 18.3; 
min 3.3; 

0.58 Grass Sand with 20% loam 
content; Podzols and 
Anthorosols

(Benninga et al., 
2018b)

Texas
TX

Ungrazed vs. grazed
(The definition follows field note in the 
metadata)

807 18.4 0.40 Oak trees, woody 
plants (ashe juniper 
and honey 
mesquite), and grass

Sand, sandy loam, clay 
loam, silty clay, clay; 
Calciustolls, Haplustepts, 
Calciustepts

(Woodruff and 
Wilding, 2008; 
Caldwell et al., 2019; 
Bureau of Economic 
Geology, 2020)

Maqu
MQ

Non-wetland vs. wetland
(Soil organic matter content is 17 – 56 
g/kg and 136 – 229 g/kg, respectively)

593 1.3
(< 0C from 

Nov. to 
Mar.)

0.42 Grass Silt loam; N/A (Su et al., 2011; Dente 
et al., 2012; Wang et 
al., 2019)

Oznet
OZ

Grass vs. grazed vs. crop
(The definition follows the metadata. 
Grazing is sheep, beef, and dairy. 
Cropping includes both irrigated- and 
non-irrigated method)

Varies 
(300 – 
1900)

16 0.17 Grass, pasture, crops 
(rice, barley, and 
oats) 

Silty loam; N/A (Young et al., 2008; 
Smith et al., 2012) 
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SUPPLEMENTAL MATERIALS

TEXT S1  Data quality control 

TEXT-S1.1. Quantitative control of short-term errors 

We preprocessed soil moisture data for quality control. In most cases, data were preprocessed by 

each observatory based on its standards. We inspected the remaining errors automatically and 

manually as follows. First, errors were removed by quantitative assessment. Soil moisture value 

above 100%, sudden drops of more than 10% decrease in 1 hr, and sudden increases of more 

than 25% in 1 hr were removed automatically. Then, data gaps that were shorter than 3 hrs were 

filled by linear interpolation. Longer gaps were retained as no data. If there is a data fragment 

whose length is less than 5 days, the period of record was removed. Some stations (5 – 50% of 

stations, depending on the network) showed different mean soil moisture values during an initial 

settling-in period and/or later observation periods. To identify such breaks, we first smoothed out 

the time series using a moving average with a one-year sampling window, and rejected after or 

before the sudden change in the smoothed time series. After the quantitative cleaning, manual 

cleaning was performed on the remaining errors (isolated time series, erroneous oscillation, 

remaining sudden changes in soil moisture values). 

TEXT-S1.2. Qualitative assessment of long-term trends 

After the quantitative control, we qualitatively classified the soil moisture time series by visual 

inspection as (a) reliable, (b) unreliable, or (c) trending. Time series were categorized as ‘(a) 

reliable’ if they comprised more than two seasonal cycles without apparent erroneous oscillation, 

fragments of data, implausible saturation, implausible sudden changes in soil moisture values, 

referring to Dorigo et al., (2013); and categorized as ‘(b) unreliable’ if not. The time series were 

categorized into ‘(c) trending’ if the time series was reliable but had an increasing or decreasing 

trend in mean soil moisture value over the entire observation period, which can be caused by 

changes in the sensor voltage power (Rosenbaum et al., 2012; Martini et al., 2015), oxidation of 

sensor rods, salinization, soil compaction (Dorigo et al., 2013). ‘(b) unreliable’ and ‘(c) trending’ 

time series were removed from the analysis. Only ‘(a) reliable’ time series were used for this 

thesis because distribution type, estimated field capacity, and estimated wilting point were 

sensitive to the trending time series. Event-based and season-based signatures may be less 
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sensitive to trends and could be calculated for both ‘(a) reliable’ and ‘(c) trending’ time series in 

future analysis. 
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FIGURE S1  Signature profile with soil depths between land-uses. In each study site, 

signatures from different sensor depths for a given land-use were compared. The upward, 

downward, and horizontal arrows indicate if the signature values were increasing, decreasing, or 

similar as soil depth increases for a given land-use. The cells are highlighted with colors 

associated with the p-value of the Kruskal–Wallis test. The cells are white when the sample size 

was not enough for the Kruskal-Wallis test (less than five). The frame lines of the cells are 

highlighted yellow if the signature profile with soil depth changed between land-uses
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FIGURE S2  Box and bubble plots of all study sites for event-based signatures. The box is 

drawn between the first and third quartile, with a line in between indicating the median. The 

whiskers extend within a distance to the box equal to 1.5 times the interquartile range. Dots 

indicate the outliers
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FIGURE S3  Box plots of all study sites for season-based signatures. The box is drawn 

between the first and third quartile, with a line in between indicating the median. The whiskers 

extend within a distance to the box equal to 1.5 times the interquartile range. Dots indicate the 

outliers
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FIGURE S4  Box and bubble plots of all study sites for timeseries-based signatures. The box is 

drawn between the first and third quartile, with a line in between indicating the median. The 

whiskers extend within a distance to the box equal to 1.5 times the interquartile range. Dots 

indicate the outliers
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TEXT S2  Applicability of signatures to data from a wider variety of environments 

Most soil moisture signatures were originally created and tested in limited environments. Since 

we applied those signatures to data from a broader range of environments, we encountered 

several difficulties extracting and interpreting the signature values. After visual inspection of 

time series and the graphical display of signature results, we summarized our recommendations 

below. We included those signature values in our results with careful attention.

First, extraction of seasonal signatures (timing and duration of seasonal changes) failed when 

there were two rainfall seasons. Since the seasonal transition signatures assumed only one wet 

season per year (Oznet site, OZ in Figure S5), the seasonal transition models did not fit the time 

series of data with two rainfall seasons (Texas site, TX in Figure S5). Another condition where 

season-based signatures failed was when freeze and thaw occurred (Maqu site, MQ in Figure 

S5). Seasonal transition signatures were initially designed to represent wet-to-dry/dry-to-wet 

season transition (Branger and McMillan, 2020); instead, they also represented freeze and thaw 

processes (Chen et al., 2019; Wang et al., 2019). 

Second, the ‘bimodal type’ in distribution type signatures represented more than one sort of 

dynamics. The bimodal distribution was initially designed to represent soil moisture seasonality 

(Branger and McMillan, 2020). For example, weak seasonality in a station in Wüstebach (WB in 

Figure S5) was represented by unimodal distribution, and strong seasonality in a station in Oznet 

(OZ in Figure S5) was represented by bimodal distribution. However, bimodality also occurred 

in our data when there were large dry-downs (Texas site) even during wet seasons, or freeze and 

thaw processes (Maqu site). 

Third, the degree of data quality control impacts the signature calculation. For example, the 

estimated wilting point signature did not give reliable values while the soil was frozen (Maqu 

site). This was because the sensors measure the electronic conductivity of ice once freezing starts 

(Dente et al., 2012). Many studies reject soil moisture time series during freezing conditions as 

part of the quality control process. Nevertheless, the estimated wilting point was still helpful for 

calculating other signatures, such as normalizing the response amplitude, or constraining 

parameters when running seasonal transition signature codes. In this case, we recommend 
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rejecting timeseries during freezing conditions only when necessary, such as not using estimated 

wilting point values for physical interpretation or calculating event-based responses. More 

generally, we recommend reviewing data quality control practiced by other literature (e.g., 

Dorigo et al., 2013; Rosenbaum et al., 2018) and visually inspecting the data and signature 

results.

FIGURE S5  A figure showing how the time series of data under diverse types of climates are 

translated into distribution type signature
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TABLE S1  Sensor configurations of the study sites. Data were derived from ‘Key reference papers’ cited in Table 1
Soil moisture 
network 
(name and 
abbreviation
)

Network size (km2) Soil moisture measurement 
instrumentation (type of the sensor, 
manufacturer, product number, and the 
measurement accuracy reported by 
manufacturer)

Soil moisture 
sensor depth (cm)

Number of 
the soil 
moisture 
sensors

Observation 
record 
(length and 
period)

Rainfall measurement 
instrumentation (type of 
the sensor, and installation 
location)

Wüstebach
WB

0.27 Capacitance sensors; Meter group; ECHO-
EC5; ±3%

5, 20, 50 51 6 years, 
2013 – 2018

Weight-based gauge; a 
national weather station 
located 8 km west of the 
catchment

Hamburg
HB

755 6 stations in both land-uses: water content 
reflectometer; Campbell Scientific; CS616; 
±2.5% 

4 stations in both land-uses: capacitance 
sensor; Meter group; 5TM; ±2%

5, 10, 40, 80, 160 15 7 years, 
2010 – 2016

Weight-based gauge; a 
national weather station 
located 8 km north of the 
catchment

Raam
RM

223 Capacitance sensors; Meter group; EC-TM; 
±3% 

5, 10, 20, 40, 80 15 3 years, 
2016 – 2019

N/A; a national weather 
station located within the 
catchment

Texas
TX

1,296
Estimated as the 
area of 36 km square

Water content reflectometer; Campbell 
Scientific; CS655; ±1%

5, 10, 20, 50 38 5 years, 
2014 – 2019

Tipping bucket gauge; at 
each soil moisture sensor 
location

Maqu
MQ

3,200 Capacitance sensors; Meter group; EC-TM; 
±3%

5, 10, 20, 40, 80 20 2 years, 
2008 – 2010

N/A; a station next to a soil 
moisture sensor CST01

Oznet
OZ

82,000 
3 catchments with 
areas 145 km2, 600 
km2, and 2,500 km2  

Sensors installed at 3 cm depth: soil 
dielectric sensors; Stevens Water 
Monitoring Systems; Hydraprobe; ±1%
Sensors installed below 4 cm depth: water 
content reflectometer; Campbell Scientific; 
CS615 and CS616; ±2.5%

3, 4, 15, 45, 75 38 19 years, 
2001 – 2019

Tipping bucket gauge; at 
each soil moisture sensor 
location
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