References

1. Xiang H, Lin H, Yu L, Chen Y. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano.2019;13(2):2223-2235.
2. Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl. 2015;30(1):3-16.
3. He Y, Hong C, Li J, Howard MT, Li Y, Turvey ME, Uppu DSSM, Martin JR, Zhang K, Irvine DJ, Hammond PT. Synthetic charge-invertible polymer for rapid and complete implantation of layer-by-layer microneedle drug films for enhanced transdermal vaccination. ACS Nano.2018;12(10):10272-10280.
4. Radha B, Senesi AJ, O’Brien MN, Wang MX, Auyeung E, Lee B, Mirkin CA. Reconstitutable nanoparticle superlattices. Nano Lett.2014;14(4):2162-2167.
5. Zhang CY, Xiong D, Sun Y, Zhao B, Lin WJ, Zhang LJ. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery. Int. J. Nanomed. 2014;9:4923-4933.
6. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Controlled Release. 2004;96(2):273-283.
7. Guo XD, Tan JPK, Kim SH, Zhang LJ, Zhang Y, Hedrick JL, Yang YY, Qian Y. Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials. 2009;30(33):6556-6563.
8. Hu Q, Li H, Wang L, Gu H, Fan C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019;119(10):6459-6506.
9. Ha D-H, Islam MA, Robinson RD. Binder-free and carbon-free nanoparticle batteries: A method for nanoparticle electrodes without polymeric binders or carbon black. Nano Lett.2012;12(10):5122-5130.
10. Tan HN, Wang W, Yu CY, Zhou YF, Lu ZY, Yan DY. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. Soft Matter. 2015;11(43):8460-8470.
11. Feng YH, Zhang XP, Zhao ZQ, Guo XD. Dissipative particle dynamics aided design of drug delivery systems: A review. Mol. Pharmaceutics. 2020;17(6):1778-1799.
12. Liang L, Fu J, Qiu L. Design of pH-sensitive nanovesicles via cholesterol analogue incorporation for improving in vivo delivery of chemotherapeutics. ACS Appl. Mater. Interfaces.2018;10(6):5213-5226.
13. Wang B, Kuo J, Bae SC, Granick S. When Brownian diffusion is not Gaussian. Nature Mater. 2012;11(6):481-485.
14. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.2009;8(2):129-138.
15. Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12-21.
16. Yan Y, Wang Y, Heath JK, Nice EC, Caruso F. Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. Adv. Mater. 2011;23(34):3916-3921.
17. Li X, Tang Y-H, Liang H, Karniadakis GE. Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems.Chem. Commun. 2014;50(61):8306-8308.
18. Becker OM, Karplus M. Guide to biomolecular simulations. Vol 4: Springer Science & Business Media; 2006.
19. Gupta R, Badhe Y, Mitragotri S, Rai B. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Nanoscale.2020;12(11):6318-6333.
20. Zhang Q, Lin JP, Wang LQ, Xu ZW. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog. Polym. Sci. 2017;75:1-30.
21. Guo XD, Qian Y, Zhang CY, Nie SY, Zhang LJ. Can drug molecules diffuse into the core of micelles? Soft Matter.2012;8(39):9989-9995.
22. Zheng LS, Yang YQ, Guo XD, Sun Y, Qian Y, Zhang LJ. Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery. J. Colloid Interface Sci.2011;363(1):114-121.
23. Xia Q-s, Ding H-m, Ma Y-q. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations. J. Phys. D: Appl. Phys. 2018;51(12):124002.
24. Pivkin IV, Karniadakis GE. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 2008;101(11):118105.
25. Wang S, Guo H, Li Y, Li X. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.Nanoscale. 2019;11(9):4025-4034.
26. Chen L, Li X, Zhang Y, Chen T, Xiao S, Liang H. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.Nanoscale. 2018;10(25):11969-11979.
27. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9(9):8655-8671.
28. Wang W, Yang R, Zhang F, Yuan B, Yang K, Ma Y. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.Nanoscale. 2018;10(24):11670-11678.
29. Huang LY, Yu YS, Lu X, Ding HM, Ma YQ. Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations. Nanoscale. 2019;11(5):2170-2178.
30. Liu YC, Li SX, Liu XJ, Sun HN, Yue TT, Zhang XR, Yan B, Cao DP. Design of small nanoparticles decorated with amphiphilic ligands: Self-preservation effect and translocation into a plasma membrane.ACS Appl. Mater. Interfaces. 2019;11(27):23822-23831.
31. Yang K, Ma Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotech. 2010;5(8):579-583.
32. Groot RD. Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants.J. Chem. Phys. 2003;118(24):11265-11277.
33. Liang J, Chen P, Dong B, Huang Z, Zhao K, Yan L-T. Ligand–receptor interaction-mediated transmembrane transport of dendrimer-like soft nanoparticles: Mechanisms and complicated diffusive dynamics.Biomacromolecules. 2016;17(5):1834-1844.
34. Groot RD, Rabone KL. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 2001;81(2):725-736.
35. Kranenburg M, Smit B. Phase behavior of model lipid bilayers.J. Phys. Chem. B. 2005;109(14):6553-6563.
36. Shillcock JC, Lipowsky R. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J. Chem. Phys. 2002;117(10):5048-5061.
37. Li X, Gao L, Fang W. Dissipative particle dynamics simulations for phospholipid membranes based on a four-to-one coarse-grained mapping scheme. Plos One. 2016;11(5):0154568.
38. Wan MW, Gao LH, Fang WH. Implicit-solvent dissipative particle dynamics force field based on a four-to-one coarse grained mapping scheme. Plos One. 2018;13(5).
39. Alexeev A, Uspal WE, Balazs AC. Harnessing Janus nanoparticles to create controllable pores in membranes. ACS Nano.2008;2(6):1117-1122.
40. Sun C, Sun J, Xiao G, Zhang H, Qiu X, Li H, Chen L. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres.J. Phys. Chem. B. 2006;110(27):13445-13452.
41. Shillcock JC, Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles. Nature Mater. 2005;4(3):225-228.
42. Wenwen L, Zhao L, Bing Y, Kai Y. Tail-structure regulated phase behaviors of a lipid bilayer. Chinese Physics B.2020;29(12):128701.
43. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L. Computer simulation study of fullerene translocation through lipid membranes. Nature Nanotech. 2008;3(6):363-368.
44. Gupta R, Rai B. Effect of size and surface charge of gold nanoparticles on their skin permeability: A molecular dynamics study.Sci. Rep. 2017;7(1):45292.
45. Dallavalle M, Calvaresi M, Bottoni A, Melle-Franco M, Zerbetto F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. Interfaces. 2015;7(7):4406-4414.
46. Mao J, Guo R, Yan L-T. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials. 2014;35(23):6069-6077.
47. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis.Proceedings of the National Academy of Sciences of the United States of America. 2005;102(27):9469-9474.
48. Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E. 2004;69(3):031903.
49. Ding H-m, Ma Y-q. Interactions between Janus particles and membranes. Nanoscale. 2012;4(4):1116-1122.
50. Gao X, Dong J, Zhang X. The effect of nanoparticle size on endocytosis dynamics depends on membrane–nanoparticle interaction.Mol. Simulat. 2015;41(7):531-537.
51. Orsi M, Haubertin DY, Sanderson WE, Essex JW. A quantitative coarse-grain model for lipid bilayers. J. Phys. Chem. B.2008;112(3):802-815.
52. Huang C, Zhang Y, Yuan H, Gao H, Zhang S. Role of nanoparticle geometry in endocytosis: Laying down to stand up. Nano Lett.2013;13(9):4546-4550.
53. Chen P, Yue H, Zhai X, Huang Z, Ma G-H, Wei W, Yan L-T. Transport of a graphene nanosheet sandwiched inside cell membranes. Sci. Adv.2019;5(6):eaaw3192.
54. Xu Z, Gao L, Chen P, Yan L-T. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. Soft Matter. 2020;16(16):3869-3881.
55. Gu Y, Sun W, Wang G, Zimmermann MT, Jernigan RL, Fang N. Revealing rotational modes of functionalized gold nanorods on live cell membranes.Small. 2013;9(5):785-792.
56. Li SX, Luo Z, Xu Y, Ren H, Deng L, Zhang XR, Huang F, Yue TT. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study. Biochim. Biophys. Acta, Biomembr.2017;1859(10):2096-2105.
57. Lv K, Li Y. Indentation of graphene-covered atomic force microscopy probe across a lipid bilayer membrane: Effect of tip shape, size, and surface hydrophobicity. Langmuir. 2018;34(26):7681-7689.
58. Yi X, Shi X, Gao H. A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett. 2014;14(2):1049-1055.
59. Li Y, Kroger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.Nanoscale. 2015;7(40):16631-16646.
60. Chen P, Huang Z, Liang J, Cui T, Zhang X, Miao B, Yan L-T. Diffusion and directionality of charged nanoparticles on lipid bilayer membrane.ACS Nano. 2016;10(12):11541-11547.
61. Liu B, Goree J. Superdiffusion and non-gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett.2008;100(5):055003.
62. Baskaran A, Marchetti MC. Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett. 2008;101(26):268101.
63. Ji Q-J, Yuan B, Lu X-M, Yang K, Ma Y-Q. Controlling the nanoscale rotational behaviors of nanoparticles on the cell membranes: A computational model. Small. 2016;12(9):1140-1146.
64. Zhang LY, Zhao YP, Wang XQ. Nanoparticle-mediated mechanical destruction of cell membranes: A coarse-grained molecular dynamics study. ACS Appl. Mater. Interfaces. 2017;9(32):26665-26673.
65. Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/hydrophilic effect.J. Phys. Chem. B. 2008;112(51):16647-16653.
66. Liang Q. Penetration of polymer-grafted nanoparticles through a lipid bilayer. Soft Matter. 2013;9(23):5594-5601.
67. Zhang HZ, Ji QJ, Huang CJ, Zhang SL, Yuan B, Yang K, Ma YQ. Cooperative transmembrane penetration of nanoparticles. Sci. Rep.2015;5:10525.
68. Chen P, Yan L-T. Physical principles of graphene cellular interactions: computational and theoretical accounts. J. Mater. Chem. B. 2017;5(23):4290-4306.
69. Pogodin S, Slater NKH, Baulin VA. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer.ACS Nano. 2011;5(2):1141-1146.
70. Lin X, Gu N. Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study. Nano Res. 2014;7(8):1195-1204.
71. Ding H-m, Ma Y-q. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci. Rep. 2013;3(1):2804.
72. Hao LX, Lin L, Zhou J. pH-responsive zwitterionic copolymer dha-pblg-pcb for targeted drug delivery: A computer simulation study.Langmuir. 2019;35(5):1944-1953.
73. Shen ZQ, Ye HL, Kroger M, Li Y. Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale. 2018;10(9):4545-4560.
74. Hu J-m, Tian W-d, Ma Y-q. Computational investigations of arginine-rich peptides interacting with lipid membranes. Macromol. Theory Simul. 2015;24(4):399-406.
75. Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011;5(7):5478-5489.
76. Li Y, Yuan B, Yang K, Zhang X, Yan B, Cao D. Counterintuitive cooperative endocytosis of like-charged nanoparticles in cellular internalization: computer simulation and experiment.Nanotechnology. 2017;28(8):085102.
77. Ni S-d, Yin Y-w, Li X-l, Ding H-m, Ma Y-q. Controlling the interaction of nanoparticles with cell membranes by the polymeric tether. Langmuir. 2019;35(39):12851-12857.
78. Wang S, Li X, Gong X, Liang H. Mechanistic modeling of spontaneous penetration of carbon nanocones into membrane vesicles.Nanoscale. 2020;12(4):2686-2694.
79. Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles.Phys. Rev. Lett. 2011;107(9):098101.
80. Li Y, Feng DW, Zhang XR, Cao DP. Design strategy of cell-penetrating copolymers for high efficient drug delivery. Biomaterials.2015;52:171-179.
81. Li JW, Wang JF, Yao Q, Yu K, Yan YG, Zhang J. Cooperative assembly of Janus particles and amphiphilic oligomers: the role of Janus balance.Nanoscale. 2019;11(15):7221-7228.
82. Guo XD, Zhang LJ, Qian Y. Systematic multiscale method for studying the structure–performance relationship of drug-delivery systems.Ind. Eng. Chem. Res. 2012;51(12):4719-4730.
83. Xia QS, Ding HM, Ma YQ. Can dual-ligand targeting enhance cellular uptake of nanoparticles? Nanoscale. 2017;9(26):8982-8989.
84. Guo XD, Zhang LJ, Wu ZM, Qian Y. Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules. 2010;43(18):7839-7844.
Figure. 1. Main content of this review. (Some details of this figure are reused from Reference81 with permission from The Royal Society of Chemistry, Reference82 with permission from Copyright © 2012, American Chemical Society, Reference33 with permission from Copyright © 2016, American Chemical Society, Reference26 with permission from The Royal Society of Chemistry, Reference83 with permission from The Royal Society of Chemistry, Reference28 with permission from The Royal Society of Chemistry, Reference64 with permission from Copyright © 2017, American Chemical Society.)