5- REFERENCES
Ainsworth, S., Petras, D., Engmark, M., Süssmuth, R.D., Whiteley, G., Albulescu, L., et al. (2017). The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J. Proteomics.
Andreev, Y. a., Kozlov, S. a., Koshelev, S.G., Ivanova, E. a., Monastyrnaya, M.M., Kozlovskaya, E.P., et al. (2008). Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J. Biol. Chem. 283 : 23914–21.
Blanchet, G., Alili, D., Protte, A., Upert, G., Gilles, N., Tepshi, L., et al. (2017). Ancestral protein resurrection and engineering opportunities of the mamba aminergic toxins. Sci. Rep. 7 : 2701.
Blanchet, G., Collet, G., Mourier, G., Gilles, N., Fruchart-Gaillard, C., Marcon, E., et al. (2014). Polypharmacology profiles and phylogenetic analysis of three-finger toxins from mamba venom: Case of aminergic toxins. Biochimie 103 : 109–117.
Bohlen, C.J., Chesler, A.T., Sharif-Naeini, R., Medzihradszky, K.F., Zhou, S., King, D., et al. (2011). A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479 : 410–4.
Bourne, Y., Taylor, P., and Marchot, P. (1995). Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex. Cell83 : 503–512.
Ciolek, J., Reinfrank, H., Quinton, L., Viengchareun, S., Stura, E.A., Vera, L., et al. (2017). Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 114 : 7154–7159.
Droctové, L., Lancien, M., Tran, V.L., Susset, M., Jego, B., Theodoro, F., et al. (2020). A snake toxin as a theranostic agent for the type 2 vasopressin receptor. Theranostics 10 : 11580–11594.
Fruchart-Gaillard, C., Mourier, G., Blanchet, G., Vera, L., Gilles, N., Ménez, R., et al. (2012). Engineering of three-finger fold toxins creates ligands with original pharmacological profiles for muscarinic and adrenergic receptors. PLoS One 7 : e39166.
Gasparini, S., Danse, J.M., Lecoq, A., Pinkasfeld, S., Zinn-Justin, S., Young, L.C., et al. (1998). Delineation of the functional site of α-dendrotoxin: The functional topographies of dendrotoxins are different but share a conserved core with those of other Kv1 potassium channel-blocking toxins. J. Biol. Chem. 273 : 25393–25403.
Harper, E., and Berger, A. (1967). On the size of the active site in proteases: I. Papain. Biochem. Biophys. Res. Commun. 27 : 157–162.
Harvey, A.L. (2001). Twenty years of dendrotoxins. Toxicon 39 : 15–26.
Huber, R., Kukla, D., Rühlmann, A., Epp, O., and Formanek, H. (1970). The basic trypsin inhibitor of bovine pancreas. I. Structure analysis and conformation of the polypeptide chain. Naturwissenschaften57 : 389–92.
Juul, K.V., Bichet, D.G., Nielsen, S., and Nørgaard, J.P. (2014). The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am. J. Physiol. Renal Physiol. 306 : F931-40.
Kawamura, K., Yamada, T., Kurihara, K., Tamada, T., Kuroki, R., Tanaka, I., et al. (2011). X-ray and neutron protein crystallographic analysis of the trypsin-BPTI complex. Acta Crystallogr. D. Biol. Crystallogr.67 : 140–8.
Kessler, P., Marchot, P., Silva, M., and Servent, D. (2017). The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions. J. Neurochem. 142 Suppl : 7–18.
Kunitz, M., and Northrop, J.H. (1936). Isolation From Beef Pancreas of Crystalline Trypsinogen, Trypsin, a Trypsin Inhibitor, and an Inhibitor-Trypsin Compound. J. Gen. Physiol. 19 : 991–1007.
Maeda, S., Xu, J., N Kadji, F.M., Clark, M.J., Zhao, J., Tsutsumi, N., et al. (2020). Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Science 369 : 161–167.
Maïga, A., Mourier, G., Quinton, L., Rouget, C., Gales, C., Denis, C., et al. (2012). G protein-coupled receptors, an unexploited animal toxin targets: Exploration of green mamba venom for novel drug candidates active against adrenoceptors. Toxicon 59 : 487–96.
Otlewski, J., Jaskólski, M., Buczek, O., Cierpicki, T., Czapińska, H., Krowarsch, D., et al. (2001). Structure-function relationship of serine protease-protein inhibitor interaction. Acta Biochim. Pol. 48 : 419–28.
Quinton, L., Girard, E., Maiga, A., Rekik, M., Lluel, P., Masuyer, G., et al. (2010). Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the alpha1A-adrenoceptor. Br. J. Pharmacol. 159 : 316–25.
Rouget, C., Quinton, L., Maïga, A., Gales, C., Masuyer, G., Malosse, C., et al. (2010). Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the α2-adrenoceptors. Br. J. Pharmacol. 161 : 1361–74.
Schweitz, H., Heurteaux, C., Bois, P., Moinier, D., Romey, G., and Lazdunski, M. (1994). Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc. Natl. Acad. Sci. 91 : 878–882.
Shafqat, J., Zaidi, Z.H., and Jörnvall, H. (1990). Purification and characterization of a chymotrypsin Kunitz inhibitor type of polypeptide from the venom of cobra (Naja naja naja). FEBS Lett. 275 : 6–8.
Strydom, D.J., and Joubert, F.J. (1981). The amino acid sequence of a weak trypsin inhibitor B from Dendroaspis Polylepis polylepis (black mamba) venom. Hoppe. Seylers. Z. Physiol. Chem. 362 : 1377–84.
Sun, D., Yu, Y., Xue, X., Pan, M., Wen, M., Li, S., et al. (2018). Cryo-EM structure of the ASIC1a – mambalgin-1 complex reveals that the peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an unusual allosteric effect. Cell Discov. 1–11.
Zhou, X.D., Jin, Y., Lu, Q.M., Li, D.S., Zhu, S.W., Wang, W.Y., et al. (2004). Purification, characterization and primary structure of a chymotrypsin inhibitor from Naja atra venom. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 137 : 219–224.