Acknowledgments
We thank Katie Lotterhos and three anonymous reviewers for their constructive comments. The study was financially supported by the Key Project of National Natural Science Foundation of China (31730105), the National Natural Science Foundation of China (32101312), and the Project funded by China Postdoctoral Science Foundation (2021M691627), the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

References

Agrawal, M. K., Bagchi, D., & Bagchi, S. N. (2005). Cysteine and serine protease-mediated proteolysis in body homogenate of a zooplankter,Moina macrocopa , is inhibited by the toxic cyanobacterium,Microcystis aeruginosa PCC7806. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 141 (1), 33-41. doi:10.1016/j.cbpc.2005.01.002
Alvarez, M., Landeira-Dabarca, A., & Peckarsky, B. (2014). Origin and specificity of predatory fish cues detected by Baetis larvae(Ephemeroptera; Insecta). Animal Behaviour, 96 , 141-149. doi:10.1016/j.anbehav.2014.07.017
Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277 (1681), 503. doi:10.1098/rspb.2009.1355
Boersma, M., Spaak, P., & De Meester, L. (1998). Predator‐mediated plasticity in morphology, life History, and behavior of Daphnia : the uncoupling of responses. The American naturalist, 152 (2), 237-248. doi:10.1086/286164
Brönmark, C., & Miner, J. G. (1992). Predator-induced phenotypical change in body morphology in crucian carp. Science, 258 (5086), 1348-1350. doi:10.1126/science.258.5086.1348
Charles, J. P. (2010). The regulation of expression of insect cuticle protein genes. Insect Biochemistry and Molecular Biology, 40 (3), 205-213. doi:10.1016/j.ibmb.2009.12.005
Chen, L., Barnett, R. E., Horstmann, M., Bamberger, V., Heberle, L., Krebs, N., . . . Weiss, L. C. (2018). Mitotic activity patterns and cytoskeletal changes throughout the progression of diapause developmental program in Daphnia . BMC cell biology, 19 (1), 30. doi:10.1186/s12860-018-0181-0
Christjani, M., Fink, P., & Elert, E. V. (2016). Phenotypic plasticity in three Daphnia genotypes in response to predator kairomone: evidence for an involvement of chitin deacetylases. Journal of Experimental Biology, 219 , 1697-1704. doi:10.1242/jeb.133504
Dawidowicz, P., Predki, P., & Pietrzak, B. (2010). Shortened lifespan: another cost of fish-predator avoidance in cladocerans?Hydrobiologia, 643 , 27-32. doi:10.1007/s10750-010-0132-z
De Meester, L. (1993). Genotype, fish-mediated chemical, and phototactic behavior in Daphnia Magna . Ecology, 74 (5), 1467-1474. doi:10.2307/1940075
Decaestecker, E., De Meester, L., & Ebert, D. (2002). In deep trouble: Habitat selection constrained by multiple enemies in zooplankton.Proceedings of the National Academy of Sciences, 99 (8), 5481-5485. doi:10.1073/pnas.082543099
Decaestecker, E., De Meester, L., & Mergeay, J. (2009). Cyclical parthenogenesis in Daphnia : Sexual versus asexual reproduction. In I. Schön, K. Martens, & P. Dijk (Eds.), Lost Sex: The Evolutionary Biology of Parthenogenesis (pp. 295-316). Dordrecht: Springer Netherlands.
Diel, P., Kiene, M., Martin-Creuzburg, D., & Laforsch, C. (2020). Knowing the enemy: Inducible defences in freshwater zooplankton.Diversity, 12 (4), 147. doi:10.3390/d12040147
Dodson, S. (1988). The ecological role of chemical stimuli for the zooplankton: Predator‐avoidance behavior in Daphnia .Limnology and Oceanography, 33 (6part2), 1431-1439. doi:10.4319/lo.1988.33.6part2.1431
Edgar, B. A. (2006). How flies get their size: genetics meets physiology. Nature Reviews Genetics, 7 (12), 907-916. doi:10.1038/nrg1989
Effertz, C., Mueller, S., & Von Elert, E. (2015). Differential Peptide Labeling (iTRAQ) in LC-MS/MS based proteomics in Daphnia reveal mechanisms of an antipredator response. Journal of proteome research, 14 (2), 888-896. doi:10.1021/pr500948a
Effertz, C., & Von Elert, E. (2014). Light intensity controls anti-predator defences in Daphnia : the suppression of life-history changes. Proceedings of the Royal Society B: Biological Sciences, 281 (1782), 20133250. doi:10.1098/rspb.2013.3250
Gianuca, A. T., Pantel, J. H., & De Meester, L. (2016). Disentangling the effect of body size and phylogenetic distances on zooplankton top-down control of algae. Proceedings of the Royal Society B: Biological Sciences, 283 (1828), 20160487. doi:10.1098/rspb.2016.0487
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., . . . Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29 (7), 644-652. doi:10.3410/f.13296969.14657090
Grant, J., & Bayly, I. (1981). Predator induction of crests in morphs of the Daphnia carinata King complex. Limnology and Oceanography, 26 (2), 201-218. doi:10.4319/lo.1981.26.2.0201
Gu, L., Qin, S., Lu, N., Zhao, Y., Zhou, Q., Zhang, L., . . . Yang, Z. (2020). Daphnia mitsukuri traits responding to predation cues alter its population dynamics. Ecological Indicators, 117 , 106587. doi:10.1016/j.ecolind.2020.106587
Gu, L., Qin, S., Zhu, S., Lu, N., Sun, Y., Zhang, L., . . . Yang, Z. (2020). Microcystis aeruginosa affects the inducible anti-predator responses of Ceriodaphnia cornuta .Environmental Pollution, 259 , 113952. doi:10.1016/j.envpol.2020.113952
Gu, L., Xu, X., Li, Y., Sun, Y., Zhang, L., Lyu, K., . . . Yang, Z. (2021). Induction and reversibility of Ceriodaphnia cornuta horns under varied intensity of predation risk and their defensive effectiveness against Chaoborus larvae. Freshwater Biology, 66 (6), 1200-1210. doi:10.1111/fwb.13710
Hahn, M. A., Effertz, C., Bigler, L., & von Elert, E. (2019). 5 alpha-cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia . Elife, 8 , e44791. doi:10.7554/eLife.44791
Hales, N. R., Schield, D. R., Andrew, A. L., Card, D. C., Walsh, M. R., & Castoe, T. A. (2017). Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia . Molecular ecology, 26 (3), 5003-5015. doi:10.1111/mec.14213
Herzog, Q., & Laforsch, C. (2013). Modality matters for the expression of inducible defenses: introducing a concept of predator modality.Bmc Biology, 11 , 113. doi:10.1186/1741-7007-11-113
Herzog, Q., Rabus, M., Ribeiro, B. W., & Laforsch, C. (2016). Inducible defenses with a ”Twist”: Daphnia barbata abandons bilateral symmetry in response to an ancient predator. Plos One, 11 (2), e0148556. doi:10.1371/journal.pone.0148556
Heynen, M., Bunnefeld, N., & Borcherding, J. (2017). Facing different predators: adaptiveness of behavioral and morphological traits under predation. current zoology, 63 (3), 249–257. doi:10.1093/cz/zow056
Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera, L. (1998). COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377 (1), 147-159. doi:10.1023/A:1003231628456
Kvile, K. Ø., Altin, D., Thommesen, L., & Titelman, J. (2021). Predation risk alters life history strategies in an oceanic copepod.Ecology, 102 (1), e03214. doi:10.1002/ecy.3214
Laforsch, C., Ngwa, W., Grill, W., & Tollrian, R. (2004). An acoustic microscopy technique reveals hidden morphological defenses inDaphnia . Proceedings of the National Academy of Sciences, 101 (45), 15911-15914. doi:10.1073/pnas.0404860101
Loose, C. J., & Dawidowicz, P. (1994). Trade‐offs in diel vertical migration by zooplankton: the costs of predator avoidance.Ecology, 75 (8), 2255-2263. doi:10.2307/1940881
Lürling, M. (2020). Grazing resistance in phytoplankton.Hydrobiologia, 848 , 237–249. doi:10.1007/s10750-020-04370-3
Mahato, S., Morita, S., Tucker, A. E., Liang, X., Jackowska, M., Friedrich, M., . . . Zelhof, A. C. (2014). Common transcriptional mechanisms for visual photoreceptor cell differentiation among Pancrustaceans. PLOS Genetics, 10 (7), e1004484. doi:10.1371/journal.pgen.1004484
Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston, N. G., Jr. (2012). Linking genes to communities and ecosystems:Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279 (1735), 1873-1882. doi:10.1098/rspb.2011.2404
Mitchell, M. D., Bairos-Novak, K. R., & Ferrari, M. C. O. (2017). Mechanisms underlying the control of responses to predator odours in aquatic prey. Journal of Experimental Biology, 220 (11), 1937-1946. doi:10.1242/jeb.135137
Miyakawa, H., Imai, M., Sugimoto, N., Ishikawa, Y., Ishikawa, A., Ishigaki, H., . . . Cornette, R. (2010). Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex .BMC Developmental Biology, 10 (1), 45. doi:10.1186/1471-213x-10-45
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat Methods, 5 (7), 621-628. doi:10.1038/nmeth.1226
O’Brien, W. (1987). Predation: direct and indirect impacts on aquatic communities. In W. C. Kerfoot & A. Sih (Eds.), Planktivory by freshwater fish: thrust and parry in the pelagia (pp. 3-16). Hanover, N.H.: University Press of New England.
Orsini, L., Brown, J. B., Shams Solari, O., Li, D., He, S., Podicheti, R., . . . De Meester, L. (2018). Early transcriptional response pathways in Daphnia magna are coordinated in networks of crustacean-specific genes. Molecular ecology, 27 (4), 886-897. doi:10.1111/mec.14261
Orsini, L., Gilbert, D., Podicheti, R., Jansen, M., Brown, J. B., Solari, O. S., . . . Decaestecker, E. (2016). Daphnia magnatranscriptome by RNA-Seq across 12 environmental stressors.Scientific Data, 3 , 160030. doi:10.1038/sdata.2016.30
Otte, K., Fröhlich, T., Arnold, G., & Laforsch, C. (2014). Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses. BMC Genomics, 15 (1), 1-17. doi:10.1186/1471-2164-15-306
Pauwels, K., Stoks, R., & De Meester, L. (2005). Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna . Journal of Evolutionary Biology, 18 (4), 867-872. doi:10.1111/j.1420-9101.2005.00890.x
Pauwels, K., Stoks, R., Decaestecker, E., & De Meester, L. (2007). Evolution of heat shock protein expression in a natural population ofDaphnia magna . The American naturalist, 170 (5), 800-805. doi:10.1086/521956
Pietrzak, B., Pijanowska, J., & Dawidowicz, P. (2017). The effect of temperature and kairomone on Daphnia escape ability: a simple bioassay. Hydrobiologia, 798 (1), 15-23. doi:10.1007/s10750-015-2539-z
Pijanowska, J., & Kloc, M. (2004). Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis, 38 (2), 81-86. doi:10.1002/gene.20000
Qin, S., Ma, L., Li, D., Huang, J., Zhang, L., Sun, Y., & Yang, Z. (2021). Rising temperature accelerates the responses of inducible anti-predator morphological defenses of Ceriodaphnia cornuta but decreases the responsive intensity. Ecological Indicators, 120 , 106919. doi:10.1016/j.ecolind.2020.106919
Riessen, H. P., & Gilbert, J. J. (2019). Divergent developmental patterns of induced morphological defenses in rotifers andDaphnia : ecological and evolutionary context. Limnology and Oceanography, 64 (2), 541-557. doi:10.1002/lno.11058
Riessen, H. P., & Trevett-Smith, J. B. (2009). Turning inducible defenses on and off: adaptive responses of Daphnia to a gape-limited predator. Ecology, 90 (12), 3455-3469. doi:10.2307/25660991
Ritschar, S., Rabus, M., & Laforsch, C. (2020). Predator‐specific inducible morphological defenses of a water flea against two freshwater predators. Journal of Morphology, 281 (6), 653-661. doi:10.1002/jmor.21131
Schwarzenberger, A., Courts, C., & Von Elert, E. (2009). Target gene approaches: Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa . BMC Genomics, 10 (1), 527. doi:10.1186/1471-2164-10-527
Scoville, A. G., & Pfrender, M. E. (2010). Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators.Proceedings of the National Academy of Sciences, 107 (9), 4260-4263. doi:10.1073/pnas.0912748107
Selander, E., Kubanek, J., Hamberg, M., Andersson, M. X., Cervin, G., & Pavia, H. (2015). Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proceedings of the National Academy of Sciences, 112 (20), 6395-6400. doi:10.1073/pnas.1420154112
Steiner, U. K., & Auld, J. R. (2012). Why is the jack of all trades a master of none? Studying the evolution of inducible defences in aquatic systems. In C. Brönmark & L. A. Hansson (Eds.), Chemical Ecology in Aquatic Systems (pp. 172). New York, NY: Oxford University Press.
Stibor, H. (2002). The role of yolk protein dynamics and predator kairomones for the life history of Daphnia magna . Ecology, 83 (2), 362-369. doi:10.2307/2680020
Stibor, H., & Lüning, J. (1994). Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina(Crustacea: Cladocera). Functional Ecology, 8 , 97-101. doi:10.2307/2390117
Stibor, H., & Navarra, D. M. (2000). Constraints on the plasticity ofDaphnia magna influenced by fish‐kairomones. Functional Ecology, 14 (4), 455-459. doi:10.1046/j.1365-2435.2000.00441.x
Stoks, R., Govaert, L., Pauwels, K., Jansen, B., & De Meester, L. (2016). Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna . Ecology letters, 19 (2), 180-190. doi:10.1111/ele.12551
Swift, M. C. (1992). Prey capture by the four larval instars ofChaoborus crystallinus . Limnology and Oceanography, 37 (1), 14-24. doi:10.4319/lo.1992.37.1.0014
Tollrian, R. (1993). Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects ofChaoborus kairomone concentration and their quantification.Journal of Plankton Research, 15 (11), 1309-1318. doi:10.1093/plankt/15.11.1309
Tollrian, R. (1995). Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in Daphnia pulex .Ecology, 76 (6), 1691-1705. doi:10.2307/1940703
Tollrian, R., & Harvell, C. D. (1999). The ecology and evolution of inducible defenses . Princeton, NJ: Princeton University Press.
Von Elert, E., Agrawal, M. K., Gebauer, C., Jaensch, H., Bauer, U., & Zitt, A. (2004). Protease activity in gut of Daphnia magna : evidence for trypsin and chymotrypsin enzymes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 137 (3), 287-296. doi:10.1016/j.cbpc.2003.11.008
Weiss, L. C., Albada, B., Becker, S. M., Meckelmann, S. W., Klein, J., Meyer, M., . . . Tollrian, R. (2018). Identification of Chaoboruskairomone chemicals that induce defences in Daphnia . Nature Chemical Biology, 14 (12), 1133-1139. doi:10.1038/s41589-018-0164-7
Weiss, L. C., Leese, F., Laforsch, C., & Tollrian, R. (2015). Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia . Proceedings of the Royal Society B: Biological Sciences, 282 (1816), 20151440. doi:10.1098/rspb.2015.1440
Westra, Edze R., van Houte, S., Oyesiku-Blakemore, S., Makin, B., Broniewski, Jenny M., Best, A., . . . Buckling, A. (2015). Parasite exposure drives selective evolution of constitutive versus inducible defense. Current Biology, 25 (8), 1043-1049. doi:10.1016/j.cub.2015.01.065
Yin, M., Laforsch, C., Lohr, J. N., & Wolinska, J. (2011). Predator-induced defense makes Daphnia more vulnerable to parasites. Evolution, 65 (5), 1482-1488. doi:10.1111/j.1558-5646.2011.01240.x
Zhang, C., Jones, M., Govaert, L., Viant, M., De Meester, L., & Stoks, R. (2021). Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural Daphniapopulation. Molecular ecology, 30 , 2285-2297. doi:10.1111/mec.15886
Zhou, X., Liao, W., Liao, J., Liao, P., & Lu, H. (2015). Ribosomal proteins: functions beyond the ribosome. Journal of Molecular Cell Biology, 7 (2), 92-104. doi:10.1093/jmcb/mjv014

Data Accessibility 

The raw data was uploaded to the NCBI Sequence Read Archive (SRA) and the BioProject ID is PRJNA735795.

Author contributions

LG, SA, LZ, and ZY designed the experiment. LG, SQ, YS, and JH performed the experiment and analyzed the data. LG and ZY wrote the first draft of the manuscript. All authors participated in discussions and editing of the manuscript.

Tables and Figures