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Abstract

This paper deals with the following Schrédinger-Poisson system

{ —Au+u+Apu = f(u) inR3,
0.1

- A¢p=u* inR,

where 4 > 0 and f(u) is a nonlinear term asymptotically cubic at the in-
finity. Taking advantage of the Miranda theorem and deformation lemma,
we combine some new analytic techniques to prove that for each positive
integer k, system (0.1)) admits a radial nodal solution U ]’3, which has exactly
k + 1 nodal domains and the corresponding energy is strictly increasing in k.
Moreover, for any sequence {1,} — 0, as n — oo, up to a subsequence, U ]f”
converges to some Ug € H!(R?), which is a radial nodal solution with exact-
ly k + 1 nodal domains of (0.I)) for 2 = 0. These results give an affirmative
answer to the open problem proposed in [Kim S, Seok J. Commun. Contem-
p. Math., 2012] for the Schrodinger-Poisson system with an asymptotically

cubic term.
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1 Introduction

The following Schrodinger-Poisson system

{_Au+u+/1¢u=f(u) in R, (1.1

~Ap=u® inR>

has attracted much attention from the researchers, due to its importance in many physical
applications [0, [14] and its difficulties and challenges in mathematical problems [11} [17].

As is well known, system (I.I)) is equivalent to a single equation
—Au+u+ Apu = fu) inR>, (1.2)

which has a variational structure. The corresponding energy functional I, : H'(R%) — R

is defined as

1 P!
L(u) := = f (Vul + u?)dx + = f pui’dx — f F(u),
2 R3 4 R3 R3

where ¢, (x) = o3 %dy and F(u) = fou f(r)dr. Then its Gateaux derivative along the

direction v € H'(R?) is

Li(u)y = f (VuVy + uv)dx + ﬂf Gy uv —f fluwyv.
R3 R3 R3

Moreover, the weak solutions of (I.1)) can be found by the variational method as critical
points of 7,. In the last decades, various types of solutions of (I.I) have been found in the
literature such as positive solutions, ground state solutions, multiple solutions, semiclas-
sical states (seel[ll} 3,4} 10, [17]] and references therein).

Recently, many researchers start to focus on the existence of nodal solutions (also
called sign-changing solutions) of (I.I). When f(u) = [ulP~>u with p € (4,6), Wang



and Zhou [20] proved that (I.1I)) admitted a least energy nodal solutions having two nodal
domains by the Nehari manifold method and Brouwer degree theory. Later, Kim and
Seok [11] and ianni [9] independently proved that (I.T) admits multiple nodal solutions
with any prescribed numbers of nodes by the variational method and heat flow method,

respectively. In these papers, the nonlinearity f is ”super-cubic” at infinity, namely,
. F
(F0) 1imyjo0 242 = +o0,

Very recently, some efforts are taken to weaken the ”super-cubic” condition (F0). Li,
Wang, Zhang [12] and Guo, Wang [7] proved that (I.I) admitted infinitely many sign-

changing solutions under the assumption
(F0’) limy, e % = +o0 with some p € (3, 6)

by using the critical points theory of descending flow of invariant subsets and perturbation
method. It is obvious that (F0’) is weaker than (F0). But unfortunately, these solutions in
[7, 12] do not give any information on the numbers of nodal domains. For more related
results about nodal solutions and details, one can refer to [2, 8}, [19] and references therein.

To the best of our knowledge, the following

Open problem: can we construct nodal solutions with any prescribed number of nodal
domains of (1.1) if (FO0) is not satisfied?

proposed in [11] is still unsolved. This paper is devoted to answering this open problem.
Note that Murcia and Siciliano [[15] proved the existence of least energy nodal solution
of (LT, which has precisely two nodal domains. Similar as [15], we make the following

assumptions that f satisfies

(F1) feCR,R)and f(¢r) = —f(-t) fort e R;

(F2) lim,o f(n)/t = 0;

(F3) lim,_,o f(O)/£ = 1 and f(t)/£> < 1 forallt € R\{0};
(F4) the function ¢t — f(t)/ £ is strictly increasing on (0, 0);

(FS) lim; o [f(D)t — 4F(1)] = +oo.



Here assumption (F3) is called “asymptotically cubic condition” and (F5) is called “non-
quadraticity condition”. There are many functions satisfying (F1)-(F5) but not (F0). For
example, f(u) = %, u € R, which has a primitive F(u) = % - % + %ln(l + u?).

Before stating our existence result, we introduce some preliminaries notations. For
each positive integer k and 0 =: rg < r; < -+- < 1y < rgy] = +00,, we denote by

ri = (r1,--- ,rr) € R and define a Nehari type set

Ny = {u € H}(R3) : there exists r; such that #; # 0 in B;, (1.3
Iwu; =0, V1 <i<k+1}, '
where By = {x e R3: x| <}, Bi={xeR3:ry <lxl <r)u = uy g, and yp, is the

characteristic function on B;. Similar as [3, [11]], we consider the minimum level
cr = inf Ly(u).
k= inf a(u)

Our first existence result is as follows, which gives an affirmative answer to the above

open problem.

Theorem 1.1. Assume that (F1)-(F5) hold and A > 0. Then for each positive integer k,
problem (1.1) admits a radial least energy nodal solution Uy with precisely k + 1 nodal

domains such that I,(Uy) = cg.

One main difficulty in the proof of Theorem [I.T]is to obtain the nonempty of Nehari

type set, because ¢,u is a 3—homogeneous term in the sense that
Prtu = t3¢uu, teR,

which competes with the asymptotically cubic term f(«) sophisticatedly. Besides, com-
pared with [[11]], all the techniques concerning the super-cubic case are no longer valid and
hence some new ideas are necessary. We shall overcome them by construction method and
some subtle analysis combined with the Miranda theorem.

Our another aim of this paper is to show that the energy of Uy is strictly increas-
ing in k and the estimates of the energy I,(Uy). Different from the super-cubic case, the
asymptotically cubic term f(u) and the nonlocal term A¢,u are in a more complicate com-
petition, which makes the energy difficult to estimate. By taking advantage of the Miranda

theorem and some subtle analysis, we have the following energy estimate.
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We denote by N :={u € Hr1 (RH\{0} : Iﬁ(u)u = 0} the usual Nehari manifold, and by
Uy a positive ground state solution of (I.1I)), which is proved in [13].

Theorem 1.2. Under the hypotheses of Theorem|[I.1} the energy of Uy is strictly increas-
ing in k. Namely,
L(Uk+1) > L(Up).

Moreover, I;(Uy) > (k + I (Up).

Notice that Uy obtained in Theorem|I.T|depends on A. To emphasize this dependence,

we denote Uy by U ,’3 and then analyze the convergence properties of U ;j as A — 0.

Theorem 1.3. Under the hypotheses of Theorem (1.1)), for any sequence {1,} with 1, —
04 as n — oo, there exists a subsequence, still denoted by {A,,}, such that U,f" converges to
UI? strongly in H'(R®) as n — oo, where U]? is a radial least energy nodal solution among

all the radial solutions having exactly k + 1 nodal domains to the following equation
—Au+u= f(u). (1.4)

Remark 1.4. We point out that Theorems|l.1 are also true if the whole space R is
replaced by an open ball Bg(0) C R3. Indeed, we only need to modify (ii) in Lemma
to (ii’): If ry, — R, then Y(ry) — +oo. The remainder of the proof is similar with some

necessary modifications.

The contribution of this paper is twofold: on one hand, this paper gives an affirma-
tive answer to the open problem addressed in [11]. On the other hand, by combining the
Miranda theorem and some analytic techniques, we develop the gluing method to deal
with the asymptotically cubic problem. Up to our knowledge, this paper is the first at-
tempt to give the existence of nodal solutions with any prescribed number of nodes for an
asymptotically cubic problem.

This paper is organized as follows. In Section 2, we give the variational framework
of problem (L.T)). In Section 3, we prove the nonempty of Ny and its related properties. In
Section 4, nodal solutions of problem (I.1I)) will be constructed by the gluing method, and

in Section 5, the energy comparison and asymptotic behaviors will be obtained.



2 Variational framework and preliminary results

In this section, we give the variational framework of (I.2) and some preliminary

results. For each k € N, we define a set
Te={rei=(r. - n) € Rog) 1 0= rg <7y <o <1 < rpyp 1= +00f  (2.1)

and for each r; € I'y, we denote

B{k = {xe R3: x| < rl},

Bf" ::{xeR3:ri_1<|x|<ri}, i=2,---k,

B!, = {x eR3: x> rk}.
Clearly, B'* is a ball, Brk . B are annulus and Bkﬁr | is the complement of a ball. Then

we set a famlly of Hilbert spaces

H™ .= {u € H(l)(Bl.r") s u(x) is radial}

1

1
. 2
with the norm ||u||; = ( fBrk [Vul? + uz) and let a product space

I‘]\ _ l'k Ty
7{ ><Hk+]

We introduce an auxiliary functional E : H, ]:" — Ras

k+1 k+1 2 2
E(ul,---,ukH)—Z[ Jul? + 42 f f '”ﬁy’:l'x'” - [ ,kF(ui)dx],

(2.2)
which is related to I,, because

k+1

E(u,- sugen) = i) ). (2.3)

Then
k+1

au,E(ula e uk+1)ut—|luz” +/lZf ¢u, ,_f Sfuiu;.



If (uy,--- ,upq) € 7-(;" is a critical point of E, then each component u; satisfies the fol-
lowing system

o EEwr
—Auj+u;+ A1 ———dy|u;=f(w;) B, i=1--,k+1,
R3

4rlx =yl (2.4)

u;=0 ondBF.
In order to search for the critical points of E with nonzero components, we consider
the following infimum problem
W(ry) = inf E(up, -, i) (2.5)
(g )EN,

where
N = {(”l"" k1) € HF 2 up # 0,0, E(uy, -+ g Du; = 0,1 < i <k + 1}. (2.6)

Clearly, the nonempty of N;* implies the nonempty of Ni, which is defined in (T3).
Moreover,
inf W(ry) = inf I;(u).

ueNy

riel’y

Let u, = max{u, 0}, u_ = max{-u, 0} and
Nooa = {u € HI RH\{O} : I} (wus = 0,uy # O).

Since Ny C Npog and infepn,, La(u) > 0 (see [15, Corollary 10]), it follows immediately
that

inf W(ry) = ¢ := inf Li(u) >
rfelrk (re) = ck ulenNk a(u) >

inf I(u) >0, Q2.7)
€

UENnod

Next, we list a useful lemma, which plays an important role in the proofs of our main

results.
Lemma 2.1. (/I3 Miranda Theorem]) Let
D={x:=(x, - ,x)) €ER":|xjl < Lforall1 <i<nj.
Suppose that the mapping H = (hy,--- ,h,) : D — R" is continuous on D satisfying
Hx)+#6, YxedD

and



M e, xion —LoXier, - %) 200 for1 <i<n,
()  ACxp, e, xie, Loxiv, s, x0) <00 for 1 <i<on,

where 6 := (0,--- ,0). Then H(x) = 0 has a solution in D.

3 Properties of the Nehari type set

In this section, we are devoted to proving the nonempty of N, ,:" and N, and giving
some properties of the Nehari type set.
First, we recall a useful result cited from [11]]. Before stating it, for each ry € I'; and
€ [4,6), we define

k+1

k+1 2 2
wOIPE)
Eplur, st :—Z( o2 +4Zf f iy | |ul~|de)
B,

and a family of sets

M, = (- weer) € HE ui # 0,0, EpQur, -+ e =0, 1 <i <k + 1), (3.1)

where
k+1

D Epur, - e i = ||u,||2+AZ f D lui? f il (3.2)
Bk

i

Let G% : (R>0)**! — R be defined as

Gh(cr, - s ckr1) i= Ep(crtn, -+, Cral 1)
2 k+1

k+1 (3.3)
—Z[—c 2 +—Z f ol - f rv|ul-|”].

Lemma 3.1. (/]| Lemmas 3.1 and 3.3]) Let p € (4,6). Then for any r, € I'y and
(U1, -+ ,Ugs1) € 7-(,? with all u; # 0, there exists a unique maximum point (¢, - ,tr+1) €
(Rs0)<*! of GY in (Rs0)**! such that

T
(touy, - fenieer) € MY

By using Lemma [3.1] we prove the following result.



Lemma 3.2. For eachry € Ty, the set M]:"4 # 0, which is defined in (3.1) with p = 4.

Proof. Foreachry = (ry, -+ ,rke1) € Iy, we take (uy,- -+ ,Ugs1) € 7-(;" with u; # 0 such

i llog*

Vel
. ) .
that min {#} > 1. Clearly, there exists dp > 0 such that
A

1 <85 < min(IVul?, e /Nl 1o k+ 1) (3.4)

i =
L(B] LY(BFY

Then we define a family of radial functions by
90 = §217-(7- .
Vi (x) = 6gui(ri-1 + 6o(lx| — ri=1)).

Note that the support set supp(u;) C Bfk = {xeRN :r_; <|x| < ri}. Then by the choice

of 69 > 1 and some direct computations, we have
5
supp(vi®) € (x € R : riy < |x| < ricy + (i = ric1)/ 80} € BY*

and
k+1

6012 6012 60 (4
[R5 ”Zf 8 007" —f )
j:l R3 b R3

k+1

3 2 2 3 2 5 4
=0,||Vu; + 0 uil” + 40 E u; — 9 uil”.
0” l”LZ(B:k) 0 Bfk | l| 0 < B;k ¢u_, i 0 B:k | 1|

Let g; : [0, +00) — R be defined by

k+1

8y = S3T |2 2483 2_ s @
6 = Il 40 [ + 20 >, [ o =e [ it
i j=1 Y5 i

Obviously, g;(6o) > 68||Vui||i2(3:k)—6g fok lu;[* > 0 due to (3-4), g:(0) = 0 and g;(6) — —oo0

as 6 — +oo. Moreover, for each i, there is a unique zero point §; € (Jg, +o0) such that
gi(éi) =0and &gi > 0in (0, 61') and &gi < 0in (6,’, +OO).

Let 8,0 = max{dy,--- , 01} and set
wi(x) 1= Vf"‘“*(X) = O lti(Fict + Omax (1X] = 7i21)). (3.5

Then gi(6111ax) < gi((si) <0and
suppw) © {x € B+ riy < x| < rict + (7 = rie1)/Omax} © B

9



Hence

(Wi, ,wiks1) € H*  and each w; # 0.
Now, we claim that there exists some (14, , fk+14) € (Rso)¥*! such that
(tLawi, -t awier) € M. (3.6)

Indeed, by Lemma [3.1] for each p € (4,6), there exists a unique global maximum point
(t1pr- s Tke1,p) € (Rs0)*! of GY such that
k+1

||w,||2+/thlp”,f ¢Wj|w,|2—tpf Wwi? =0, Vi=1,---,k+1. (3.7
B

Henceforth, for each p, we denote the maximum element by

ti , = max {¢;
P je{l,~~-,k+1}{ i)
Firstly, we assert that (¢1 , - -+ , fx41,5) is bounded for p — 4. In fact, we argue it by

contradiction. Suppose on the contrary that ;, , — +co as p — 4. Then it follows from

(3.5) and (3.7) that

k+1
2 J»P 4 )
ool +AZ ty Vi, [* — f w17
. B.k
: lP’p ip
k+1
2- 2
<t p”W’P” +/lZf ¢w,|wtp _f |Wip|p
i,p
k+1
4
—>/12f ¢wj|Wl,, f wi, I asp — 4, (3.8)

i,

k+1

3 4
- Aémafo ¢MJ lp max jB;rk |Mip|

ip

= gip((smax) - max”vulp”Lz(B'k) Omax frk |Mip|2 <0,
B

i.p
which leads to a contradiction. Thus the assertion follows and (#1 , - - - , fx+1,p) is bounded

for p — 4,. Then there is some (¢4, ,tk+14) € (Rzo)]“rl such that
(Il,p’ Y tk+1,p) - (t1,4’ Tt tk+l,4) as p — 4+'

10



By Lemma (f1.4,° s fk+1.4) 18 also a global maximum point of G defined in (3.3),

because (11 p, - - , tk+1,p) is the global maximum point of G}, and

k+1

2 4 4
2wl +/12tl4tj4j;rk B W; :tl.AfBrk wil*. (3.9)

Next, we prove tj4 > 0,¥i =1, -+, k+1. Otherwise, we may suppose on the contrary

that there is some iy € {1,--- ,k + 1} such that #;, 4 = 0. Note that

Gy(t1 4, s tig—14s Mo tigs 14> 5 s 1.4)
=Gy (t1g, - s tig-14, 0, tigs 14, s 1.4)
2
+ %uw,-on + —f Buig Wi, A Zr,4f P, W, — M f Iwiy*
J#io

=Gy (14, S tig-14,0, Lige 1.4, -+ 5 ke 1,4) + O(0).
Clearly, 6(1) > O if u is sufficiently small. Then (t14,--- ,%i;-14,0, tigr145 - > tk+1.4)
is not a global maximum point of G} in (Rs0)**!, which contradicts with the fact that
(t1 4, > tig=1,450, tigr145 -+, tk+1,4) 15 the global maximum point of GZ” in (Rso)**!. Thus
tiga>0foralli=1,--- k+1.

Hence (3.6) follows from (3.9)) and the fact 7;4 > 0. So the claim holds and MZQ # 0.

The proof is completed. O

With the aid of Lernrna we shall prove the nonempty set of N, ;" . To this end, we
introduce L; : (Rso)**! — R by

Li(t1, -, tre1) = O E(t1ur, - -+, ter1 Uk 18U
kel (3.10)

=l + 47 37 f fui? - f Fayi

and F; : (R50)**! — R by

O E(tiuy, - -+, ter i Wi )tk

Fi(ty, -+ ,tie1) =

7+ tj‘
k+1 2 (3.11)
_ il + Z P - f S (tiui)ui
1+2 2 A R S
[ l Jj=1 i

It is easy to see that L; and F; are continuous functions.

11



Proposition 3.3. For each ry, the set N]:" # 0, which is defined as in ([2.6).

Proof. By Lemma we can take (11, , Up1) € M,f’;r. Note from (3.11) that

F(T,---,T)= 1

Then by (F1), (F4) and (3.1)), (3.2)), we have

FAT,--+,T) = |lull? > 0 as T — 0,
k+1

Fi(T,...,T)ﬁaZfrk%_, %—frk|ui|4<o as T — +oo,
j=1 B; B;

Thus there exists small / > 0 and large L > 0 such that for all i,
Fl,---,)>0 and F(L,---,L)<0.
Let
Dyp o= (st € Ro)™ 1SS L Vi1 k1)
Then we infer from (3.11) and (3.12) that for all 7; € [/, L],

Fi(ti, -+ tict, Ltipr, - i) 2 Fo(l, -, 1) > 0,

Fi(ti,-+- ,tict, Liti -+ k1) S Fi(L,--- L) < 0.

2 [ & F(Tup)u;
el T [AZA fgrk Pust fgrk T3
J= i i

],

(3.12)

This together with the Miranda theorem (Lemma , yields that there is some t :=

(t1,- -+ ,fx+1) € Dy such that
(F1(), -, Fra1(1) = 6,

which implies 0y, E(fjuy, - - - , fs1ug+1)fiu; = 0 due to (3.11). Then
(frur, - 1 ueer) € NG

and thus N]:k is not empty. The proof is completed.

As a consequence of Proposition [3.3] the following result follows immediately.

12



Proposition 3.4. The set Ny # 0, which is defined as in (1.3).
Next, we list some properties of the Nehari type set NV, ,fk below.
Lemma 3.5. Foreachr, € Iy, if (uy,--+ ,ugs1) € N,:", then
(i) E(tiuy, - frerttes1) < EQui, - ), Y (01, fen) € Rso) N\, -+, D
(ii) foranyr € (0,1) and R € (1, +c0),
Li(r,---,r)>0 and Li(R,---,R)<0,Vi=1,--- k+1.
where L; are defined in (3.10);
(iii) there exists 6 > O such that for all (uy,- - - , ux+1) € NJ¥,

lluill; > 6, Yi=1,---,k+1.

Proof. (i) For (uy, -+ ,urs1) € N5, set

SR AN t4'_F.
£ = (5 = Plluill; +f3rk 7w = Ftu) ).

Then

&) =11 - Plu? + 7 fB;k(% {gmy)u for any 7 € R,.
A direct computation gives that £(f) < &(1) for any ¢+ € R;\{1}, due to (F4). If
(t1, -+ ,tge1) # (1,--+ , 1), it follows that

E(tiur, -+, ter1Uks1)
k+1 t4
=E(tiuy,- - tk+luk+1)_Z4au,E(ul7‘ s Uk 1)U

k+1 1 ) 2 k+1
= 51 i wui — F(tiu;
;[znun Z f¢,, fB (ru)J

i

k+1

k+1 4
—Z ; [uu,nzmz f Bty - fB . f(m)ui]

et kel (202 — g t2t2
=Z(<———)||ul||2 f [ L iy = F(tu;) )MZ(’ T ] f Pu, i}

=1
i*j

13



k+1 1 ’1 ] /l k+1
<Z[z”“i"2+ f g~ Fw ]—ZZO?—t?)z f ., Gt}
i=1 B L : ij=1 B;
<2ttt + [ |30 - Fa
= 4 1 BFk »4 1 1 1 ]

i+
i=1

1
:E(uh ) I/lk+1) - Z Zau,‘E(uh ) uk+1)ui = E(Ml, e ,I/lk+1).
i
Thus (i) follows.
(ii) According to (3.10), we have
k+1
Tu:
LiT.--- .T) = T2||u,-||?+/lT4Zf puui — T* T,
EECA

i
r 3
gt T

Then by (F4) and (u1,- - - ,ur41) € N;*, it follows that for any r € (0, 1),

R fru)
2 2 4 2 !
Litr, 1) = Plluil? + 7 fBrk A;%ui —

i

k+1
> Puill? +r* f A Gui — fuu
Bk =)

i

2000 12 — Al (12
= rlluilly — rlluill; > 0.

Similarly, for any R € (1, +c0), we have that
LR, ,R) < R?||uill? — R¥ju;l|? < O.

Hence (ii) follows.

(iii) By (F2),(F3) and the continuous embedding theorem H ,1 (R3) — L*(R?) for any
s € (2,6), it follows that

k+1
1
2 2 2 2
loeill; < [lugll;y + A Guu; = Suuidx < = luil"dx + C Joa;|?
r J r I r
— Jp B 2 Jgi B
J= i i i i
1 2 q
< 5””1’”,‘ + Clluill;

which implies ||u;||; > (%)4%2 =: 6 > 0. Thus (iii) follows and this lemma is proved. m|

14



4 Existence of nodal solutions
With the aid of these lemmas in Section 3, we have the following result.
Proposition 4.1. Forr, € Iy, if (ity, -+, Ug41) € N]:" is a minimizer of E| NE such that
E(iy, - k1) = Ylry) =2 m,
then (ity,- - , Ux+1) is a critical point of E in 7-(]:".
Proof. We prove it by contradiction. Suppose on the contrary that
WO, E, - -+, Ouy EXi, - -+ it )l # 0.

Then by the continuity of 9,,E, there exist some 0 < ¢ < min{||]|;/6,V1 <i <k+ 1} and
p > 0 such that

||(8M]E7' ot ,aukHE)(ula e ,Mk+1)“ Zpa V(ul,' ot ,Mk+1) € B3(5(ﬁ1a' o 9ﬁk+1)'
Set
k+1 1 .
D= (tla"'ytk+1)€(RZO) :lti_1|<§aVZ:1""’k+l .

Then |[(#1i1, - -« teetliks1) — (@1, 5 )|l > 36 on 9D and by Lemma@ (i), there
k
holds

0 <o :=supE(tiit, -, tksriigs1) < E(ity, - -+, ilgy1) = m. “4.1)
oD
Let £ := min {mT_‘T, %p} and S := Bss(ily, - - , ig+1). According to the classical deformation

lemma (see [21, Lemma 2.3]), there is a deformation n := (171, -+ ,mk+1) € C([0, 1] X
W,:k, (7'(,?)"“) such that

Q) n(Luy, - 1) = (Ui, 1), iE @, - 1) € E7Nm = 2e,m + 2€) N S 263
(i) n(1, E™eNS) c Em¢;

(iii) E(m(, (u1,- - ug1))) < E(ui, -+, ugyr) for any u € H¥,

15



where E¢ 1= {(u1, -+~ ,uge1) € H{* : E(u) < c} . Then by @I} and i), (i), it follows that
E((1, (tity, -+ 5 kv 1lg41))) < m — &, if Z lltiit; — will; < 63
i
E((L, (niy, - 5 tkrligs)) < E(ing, -t i) <m,  if Z i — will; > .
In any case, we conclude that

sup  E(MmQ, (tyig, -+, ter1ilis1))) < m. 4.2)

(11, tx+1)ED

On the other hand, we have
{n(l, (Wit o Tigsr))ef € D} AN £0. 43)
In fact, for (¢, --- , tx+1) € 0D, it follows from (i) that
n(l, (fry, - - s teealiger)) = (Frin, - Bt lgeen)-
By defining a vector map
® = (O, , Dpyr) : D — R
with
O, -+ s tre1) = GEM(L, (fran, - -+, e lee ))Mi(L, (Bl - - 5 Tt B 1))
Note that on 0D,
O, -+ s tge1) = O E(TU, - -+ Gt U )l = Li(ty, -+, fa1)-
where L; is define in (3.10). Then by Lemma (ii), it follows that for [t; — 1| < %

Di(t1, -, tim1, 1/2,tip1, -+ s tew) = Litr, -+ S tim1, 1/2, 41,0+ S tr1) > 0,
D;(t1, - ,1i-1,3/2,tiv1, - i) = Litr, -+ 5121, 3/2, b1, -+ S trr1) < 0.

This together with Lemma gives that there exists some (71, ,f+1) € D such that
®@;(f1,- -+, lk+1) = 0, namely,

(1, (Qit1, - i) € N
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So supp E(n(1, (t1iy, - -+, tes1ilir1))) = ian;k E = m and thereby it leads to a contradic-
tion with (#.2).

Thus |(0,,E, -+ - , 0y, E)it1, -+ ,itk+1)|l = 0 and (ity, - - -, lig41) s a critical point of
E in H;*. The proof is finished. m

The following result shows that there exists a minimizer of £ on N,:k. Then it com-

bined with Proposition4.T] gives that it is indeed a solution of system (2.4).

Lemma 4.2. For each ri € Ty, there exists a minimizer (u}',--- ,u}",,) € N* with com-
i+1. 1, . . . e r .
ponents (=1)*'u* > 0 in B; satisfying EW,--- ,u}}, ) = V(ry) defined in (2.3).

Proof. By Proposition [3.3] and the definition of P, there exists a minimizing sequence
(@, ul D C N]:" such that E(uf, -+ ,u} ,

We first observe from (F2) and (F4) that G(¢) := f(¢)/ £ is increasing in |¢f| > 0 and
thereby for any |¢| > 0

) = Y(ry) > 0asn — +oo.

1f(1) — 4F (1) = 1*G(r) — 4 f sG(s)ds = f 453(G(t) — G(s))ds > 0.
0 0

Thus
1
é_lf(t)t - F(@) >0 foranyteR. “4.4)
So
_ n n 1 n n n
W(r) +o(1) = EGe, - ) = 3 ) 0BG il i
i
=S e+ > [ g - [ Fan|s S 2w
: 4 11 4 Bl.-k 1 1 Bl.-k 1 - : 4 [ A
Hence {(u,--- ,u}, )}, is bounded in H;* and there is some @, -, u2+1) € H* such
that

0 0 . T
Wi, ) = (s ) in HE

and ui — u? in Hirk. Then by (F1)-(F4) and the compact embedding theorem H; — L*
for any s € (2, 6), it follows that

f f(u?)u?ﬁf f(u?)u? andf F(u?)—>f F(u?) asn — +oo. 4.5)
Bk B Bk B

17



This together with Lemma iii) and (uf, -+ ,up, ) €N, ,f", gives that
5 < lim inf llu?llF < lim inf f ACAT f . .
B! B
So

ul #0foralli=1,-- k+1.

Next, we prove that (uf,---,u, ) — (u(l),--- ,u2+]) in 7{;". In fact, suppose by

contradiction that there is some iy € {1,--- ,k + 1} such that ||u2)||l-0 < liminf ||MZ) Il;,- Then
n—oo
n2 042
by @.10), (.5) and fBlfg Gur(u)® — fog $.0(u7)?, we have that

k+1

u0 e 1,072 02 04,0
L1 1) = )2 +,12frk Sl - frk FQ )
=18 B

k+1
S n2 n2 ny,.n | _
< 1111’}1111f(||ui0||i0 +4 Z fBrk ¢u;{|uiol B fBrk f(uio)uio\] =0,
J=1""ig io

k+1
0
L, 1) = ) +/lZfr ¢ 0lu’P _fr Fdud
Jj=1 Bik ! Bik
k+1
< liminf ||u:'||i2+/lZf ¢un_|u?|2—f fhu! =0, fori# i,
n g B
(4.6)
Furthermore, observe from Lemma /3.5 (ii) that for small 6 > 0,
L@, ,8)>0, Vi=1,-- k+1. (4.7)

Then we deduce from (3.10), and (4.7) that for all i,
0
Li(t, - o tis1, 0, b1, o+ S txg1) > 0,
0
L;t (tl’ e 7ti—la l’ti+19 e 9tk+1) S O
By Lemma there is some (71, ,f41) € {x eRMI:§<x; < 1}\{(1,--- , 1)} such

that
0 _ - 0o _ —
(L’il (t17 7[k+1)7”' sLZ+](t1"" ’tk+1)):9’

which yields

-0 -9 r
(fiuy, - Btg,,) € N

18



This combined with (2.5)), (4.5) and Lemma[3.5]i), gives that

W) < EGu, - ), )

k+1 k+l

= Z —HMOHZ f b0(1])” = f F(tu)
R3
k+1 iQ 1k

< liminf 12+ = W) — FGu"

im in ; =l 117 + 1 ; fRS bur () fR; (ful!)
< 1imninfE(f1u’1’, cee, fk+1uz+1)

m 1 noo.. n =
< hrnnlnf E(uy, - ) = Y(rg),

which leads to a contradiction. Thus (i, --- ,u}, ) — (u(l), N ug ,,) in H* strongly and

thereby (”(1)’ e ,u2+1) € N]f" is a minimizer of ElN;k such that
EG, - upyy) = ¥(rp).
In addition, it is direct to verify that
@, ) = ()l (DL (DM, D € N

and E(u*,--- ,u" ) = ¥(ry). Then (uf',--- ,u}, ) is also a minimizer of E|,x and satis-
k

fies system (IZE[) By the standard elliptic regularity theory, each uf" € CZ(B;" ) and thus

by the strong maximum principle, (—l)iufil > 0in Bfk. Therefore, (u'lrk, e, u]:i }) is the

desired solution and the proof is completed. O

Next, we show that there exists ¥y € I'y such that W(ry) = infy,cr, ¥ (ry). Then we use
it to prove that the sum Y5 o/ ™ is a nodal solution of (T.T) that has exactly k + 1 nodal
domains.

Since not all functions in H!(R?) can be projected on the Nehari type set N here, it
brings some difficulties in the proof of existence of minimum point ¥y. We shall overcome

them by introducing the Miranda theorem and subtle analysis. This is a novel point.
Lemma 4.3. Fork e N, andr, = (r1,--- ,res1) € I,
(i) if ri—ri.1 = O for somei€ (1, k}, then ¥(ry) — +oo;
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(ii) if rp — +oo, then Y(ry) — +oo;
(iii) Y is continuous in ry.
Particularly, there exists a minimum point ¥y := (F1,- -+, x+1) € ['x of .

Proof. According to Lemma for each r, € T}, there exists a minimizer

.-+ ,uk ) € N* such that
E(Mll‘k, cee, u;ﬁ—l) - lP(rk)'

Then by @.4),

k+1
W(r) = B, s ten) = B, i) 4214(u1,---,uk+1>ui

k+1 k+1
4Znu,n2 42 f (Fluu;—4F @) (48)
k+1

2 2
Z lal? > 4||ul|| :

(i) By (F2) and (F3), we get

1
02 2 4
¥l < jl;rk fuuk < er(ilufkl + Cluf* ),
i i

which, together with the Holder inequality and Sobolev inequality, yields that

2
4 6 1 4) g &
S <c [ SCU |u“|] B2 < Ol
B. Bk
L 1

where C > 0 and IB?'I denotes the volume of B;k. Thus ||ul.r"||,- — +o0if rj—r;_1 — 0. This

combined with (4.8)), gives that
‘“P(l'k) — +00, if ri—ri-1 — 0.

So (i) follows.
(i1) Recall the Strauss inequality [18]] that for all u € H ,1 (R3), there exists A > 0 such

that
lu(x)| < A””|| a.e. in R3
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Then by (2.4), it follows that
nwﬂmu_f'fwﬂlhl

2 4
< [ SuiPecu,
Bi+1

1 -2 2
< Sl s+ CA By [l
B

k+1

1 2
= §||uk+1”k+l +CAr, ||uk+1||k+l’

which implies that ||uk+1||k+1 > 2CA Then ||uk+1||k+1 — +o00 if r; — 400, and (ii) follows
immediately due to (4.8).
(ii1) We take {rZ} C I'k such that rz — 1} € [, and denote their minimizers by uZ"

and uzz, respectively. In the following, we show that

W(ry) > limsup W(ry) and liminf ‘¥(r}) > ¥(rp).
n—0oo

n—oo

We divide the proof into two steps.
Step 1: Prove W(ry) > limsup,,_, ., W(ry). To this end, we take 0 < rp < 1,Rop > 1

and set
DRO = {(tl, Cotir1) € R irg <t <Ro, Vi= 1,k + 1},
and for each n, we define

k(r) = t”ur" (r—l(r—rl D+ ric 1) Yi=1,--- k,
1

r’

Tk
"k+1(r) k+1”k+1 ')

Firstly, we claim that for large n,

there exists (7], -+ ,#],,) € D such that (v:k, e ,vZ’;l) € N,:k. 4.9
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In fact, some direct computations give that

IVER = (212 + o(1),

v, "(X)IZIV k(y)lz luf* ()2 Iurk(y)l2
f,, f ——dxdy = (t ) (t ) f f ————dxdy + o(1),
B B" 4rlx — yl 4nlx -yl
f S ")V f FEu)eut + o(1).

With these equalities, we denote by

Tk
L )
“l o ()P ec 0

= 4 070 f f Sy - f T

and
P T plwpior k
vt = IV foB oy - ff(v Wi
k) Pl ()P
= I 2 3, 0P7 f f S vy - f S + o1
A=)l

= LM, 1)+ o(1).
(4.10)

Then
L*(1,---,1)=0forall i

and uZ" eN ]:". Moreover, by Lemma (i1), it follows that
L : : 0
i (tle"' s Lim1, 705 Liv 1, - 9tk+1)> 5
Tk
Lt timt, Ros tiet, S i) < 0.

This together with (.10), implies that there exists Ny > 0 depending on ry and Ry such

that for any n > Ny and rop < t; < Ry,

Ri(t, - o timt, 105 tiet, - o+ 5 tke1) > 0,

Ri(t, - tim1, Ros tkets - S tren) <O,
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By Lemma there exists some (7}, -+ , 1, ) € leoo such that

W@, 0 ) =0 forall i=1,---,k+1,

/1

which means that (vj" oo ,vza DEN, ,:k. Thus the claim (4.9) follows.

Next, we prove that

’}LTEO(IT,---,ZZH):(],--',])- (4.11)
In fact, in view of the claim (4.9), we have

E%(, - ka) >E k(u1 et ) = . (4.12)

and
(b1, bgsr) = limsup(e!, - -+ 27, ,) € DR

n—oo

Then by (4.10), it follows that
(blul]‘k’ ) bk+lu2ﬁ_1) € N/:k'
Thus by Lemma 3.5] (1),

T T, T,
E(blulk"" abk+luk]_:_1) SE(ulk"" k+1)

On the other hand,
EGY, -t ) < Ebyul, - byl )

due to (u}',--- ,u’ ) € N;* and Lemma (i). Thus we conclude that (by,-- -, bgy1) =
(1,---,1) and @.11) follows.
Finally, by @.9), @.T1)) and @.12)), we see that
Y(ry) = E™ ),

) = lim sup E% (v :H) > lim sup ¥(r}).

n—o0o n—o0o

k+1

So W(r) > lim sup,, ¥(r).
Step 2: Prove W(ry) < liminf, o ¥(r}).

Indeed, similar as the former case, we define vf" s [ri-1,ri] = Rby

i —Fi-1

n_
T = p" ry Ti r?—l ) n = k
v (r) = bjw; P—— (r—ricp+r_], i=1,-,k
n
r” r
T n k
Vier (1) = bk+lwk+1( kr)’
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. R, r} r! ]
and there exists (bY,---,b} ) € D) such that (v/*,---,v . ) € N,:‘ and b! — 1 as
n — +oo for all i. Then
.. ", X r} .. U v r}
Y(ry) = Er"(u?‘, ‘e ,uZ’jrl) < llrllll}gle ke vt = h,?_‘,glerk(”lk’ el )

— 11 1 71

= llrrlllglf W(ry).
Thus (iii) follows.

Therefore, by (i)-(iii), there is a minimum point ¥y = (¥, -+ ,7x+1) € ['x of ¥. The

proof is finished. o

Now, we start to prove Theorem [I.T] Precisely, by using the deformation lemma and
Miranda theorem, we shall prove that the solution (w?’ IR wZﬁrl) of the system (2.4)), cor-
responding to Iy found in Lemma4.3| is the desired element that can be used to construct

a nodal solution of (I.I) with exactly k + 1 nodal domains.

Proof of Theorem [I.1} According to Proposition 4.1} Lemma[.2] and Lemma[4.3]
for each k € N, there exists Iy € I'y and a corresponding critical point (uf", e ,uZ’jrl) €
N]fk of E with (—l)i‘luif" > 0in Bf" such that

E(ulik’ cee MZI:'H) =¥y = inf Y(ry) = ck.
rrely

Then (u?‘, e ,uzkﬂ) satisfies (2.4). Let

—_

Obviously, Uy changes sign exactly k times and 1;(Uy) = ¢, due to (2.3) and (2.7).

We further show that Uy is indeed a solution of (I.1)). Indeed, if NOT, by the principle
of symmetric criticality (see [16]), we may suppose on the contrary that there is a radial
function ¢ € C3*(R*) N H} (R?) such that

I(U¢ = -2.

For the sake of convenience, we denote by s := (s1,--- , Sx+1) and define a continuous
function g : (R5o)**! x R — H!(R?) by

k+1

g(s,8) = ) s + 79,

i=1

24



Note that g(1,0) = Uy changes sign k times, where 1 := (1,---,1) € (Rs0)**!. Then there
exists a small 7o € (0, 1) such that for any 7 € [0, 7¢] and s; satisfying |s; — 1| < 79, the
function g(s, ) changes sign exactly k times with k£ nodes 0 < pi(s,&) < -+ < pi(s,€) <
+00, and
I (g(s,€)¢ < —1. (4.13)
Set
Dy i={s € Rog)*! i |si = 1| < 70, Vi, -+ ,k+ 1},

We take a radial cut-off function n € C*(Dx,, [0, 1]) by

1, ifse D%o,
n(s) =10, ifs ¢ DTTO’ (4.14)
€(0,1), others,

and define another function g : D;, — H'(R?) by

k+1

2(s) = ) sl + Ton(s)p.

i=1
Then g € C(Dy,, H} (R%)) and for any s € D, g(s) changes sign k times with k-nodes
0 <pi(s) < -+ < pr(s) < +o0. Moreover, p;(s) is continuous about s.

Now, we assert that there is § € D, such that
2(3) € Ny, (4.15)

where N; is define in (T.3). In fact, we denote by (-,-) the dual product between H, (R?)
and its dual space (H!(R?))*. Let

Vi(s) 1= (I}(8(5), (3(9))i),

where (g(s)); is the constraint of g(s) on {x € R3 : pi-1(8) < |x| £ pi(s)}. Then by the
definition of 7, it follows that for any s € 0D,

k+1

g = swk, (@) =sw and
i=1

. (4.16)

: — 21, Tk12 2.2 k2 [ VI v
Vi(s) = s + > st f L G f Sl sl
J=1 Bj B
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Clearly, Vi(1,---,1) =0 and

Vl(l_TOa 71_TO)>07

Vil +19,---,1+719) <O.

This together with Lemma 3.5] (ii), implies that

Vilst, -+ 5 sic1, L =70, Siv1, - 5 8k01) >0, V1 —79<s5; <1+ 7,
Vilst, -+, sic1, 1+ 70, Sivt - 5 Ske1) <0, VI—79<s5; < 1+70.
According to Lemma@ there exists some s € Dy, such that V;(3) = O for all i, namely,

2(5) € N. Thus the assertion follows.
According to the assertion (4.15]), we deduce that

13(8(3) = rirelg W(ry) = cx. (4.17)

However, on the other hand, note that

k+1

— 1 -
LEE) = 1O 5wk + fo IO 5w+ 0Ton(3)p), Ton(E)p)de.
i=1

If § € Dyy2, then by (@.13)), (.14) and Lemma [3.5] (i),

k+1 k+1

LGEE) < L) 5w < L 1) = cx.
i=1 i=1

If § ¢ Dyy/2, then 77(5) = 0 and by (#.14) and Lemma 3.5(i),
k+1 k+1

LGEE) = L) 5w < L U = cx.
i=1 i=1

In any cases, there always holds

1,(g(3)) < ¢,

which leads to a contradiction with (4.17). So Uy is a solution of (I.1).
In summary, Uy = Zf:ll uf" has exactly k£ + 1 nodal domains and is a nodal solution

of (L.T) satisfying I;(Uy) = cx. The proof is completed. O

26



S Energy comparison and the asymptotic behaviors

By Theorem 1.1, we have showed that for each k € N, the problem (I.I]) admits a
radial nodal solution Uy having exactly k + 1 nodal domains. In this section, we are going

to prove further that the energy 1,(Uy) is strictly increasing in k and 1,(Uy) > (k+1)1,(Uy).

Proof of Theorem
By Lemmas and for each k € N, there exist ¥y = (#,---,7%) € [ and
ui" = (uf", e u,iil) € N,f" satisfying (2.4) such that

W(E) = inf y(ry)

where /(ry) is defined in (2.3). Moreover, by the proof of Theorem (L.I)), Uy := Zf‘“ l”
is a radial nodal solution of (I.I), which changes sign exactly k times. Similarly, there
exist Fry1 = (71, -+, Fs1) € Tkyq and uk"+l = (ur"“, e Zf:zl) € N,ff:l' such that Uy, =
Zi”z T+l is a radial nodal solution of (L.1) changing sign exactly k + 1 times.

In the following, we denote by

A ~ ~ A |y Iy

B = (o, Frrr) @and Oy := (uy ™ - upl5),
where ug"“ is regarded as a function defined in By, (0) but it vanishes in By, (0). Observe
that (slu;“‘, cee sk+1u]i’j:21) € N]fk if and only if

k+2
Iy 2 I 2 Iy
R Z S5 f B, f Flsif sl
= Li_kl(Sl,'" s Sk+1)-

Obviously, L?_kl(& -++,0) > 0 forsmall 6 €