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ABSTRACT. In this article, we investigate the multilinear distorted multiplier
estimate (Coifman-Meyer type theorem) associated with the Schrédinger op-
erator H = —A + V in the framework of the corresponding distorted Fourier
transform. Our result is the “distorted” analog of the multilinear Coifman-
Meyer multiplier operator theorem in [5], which extends the bilinear estimates
of Germain, Hani and Walsh’s in [11] to multilinear case for all dimensions. As
applications, we give the estimate of Leibniz’s law of integer order derivations
for the multilinear distorted multiplier for the first time and we obtain small
data scattering for a kind of generalized mass-critical NLS with good potential
in low dimensions d = 1, 2.
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1. INTRODUCTION

The study of multilinear pseudodifferential operators goes back to the pioneering
works of R. Coifman and Y. Meyer [5, 6, 7, 8], since then, there has been a large
amount of work on various generalisations of their results, we will only make a rough
list here. After Lacey and Thiele’s work [17, 18] on the bilinear Hilbert transform,
with different assumptions on the symbols, the boundedness of multilinear operators
in harmonic analysis in the classical Fourier transform setting have been well studied
by many authors, for example, Bényi and Torres [3], Gilbert and Nahmod [13],
Grafakos and Kalton [12], Grafakos and Torres [14], Kenig and Stein [16] Muscalu,
Tao and Thiele [19] and Tomita[21].

Some of the multilinear operators studied above are multilinear multipliers de-
fined in the framework of the classical Fourier transform, and the classical Fourier
transform of a function can be regarded as the projection into the eigenfunctions
space of the absolutely continuous spectrum of Laplacian operator —A. For a given
potential V : R? — R, consider the associated Schrodinger operator H := —A 4 V.
When V € L? (Rd) , H can be realized as a self-adjoint operator on L? (Rd) with
domain D(H) = H? (Rd). We can impose a compactness condition on the multi-
plication operator associated with V' so that the spectral properties of H resemble
those of Hy = —A. We say that V is short-range (or, of class SR) provided that

ue H2 (R — (1+ [z))'T*Vu e L2 (RY) is a compact operator,

for some € > 0. It was shown by Agmon (cf.[1]) that, for V of class SR, o(H) =
{A }jGJ U [0, 00); the continuous spectrum being [0, 00), and the discrete spectrum

consisting of a countable set of real eigenvalues {)\;}, each of finite multiplicity.
1
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Furthermore, we have the orthogonal decomposition
2 (mdy _ 72 (Td 2 (md
L (RY) = L. (RY) @ L2 (RY),

where Lf, (Rd) is the span of the eigenfunctions corresponding to the eigenvalues
{)\;}. and L2  is the absolutely continuous subspace for H. Then we may try to
define distorted Fourier transform on the absolutely continuous subspace for H,
and multilinear distoerted multiplier, see Theorem 1.1 and (1.14) respectively for
details below.

We investigate the estimate of the multilinear distorted multiplier(Coifman-
Meyer type theorem) associated with the Schrodinger operator H = —A 4V in the
framework of the corresponding distorted Fourier transform. As we know, there is
only a small amount of research on this topic. Germain, Hani and Walsh [11] in
2015 investigated the bilinear estimates and applied it to the 3d quadratic nonlinear
Schrodinger equations with a potential V(x) to get global wellposedness for small
data, in 2020, for the different kind of quadratic nonlinear terms, Pusateri and
Soffer[20] developed the corresponding bilinear estimates and used them to obtain
similar results for the nonlinear Schrodinger equations with large potentials. Moti-
vated by their work, we want to generalize the bilinear estimates to the multilinear
case in this paper.

1.1. Assumptions on the potential V. Before stating our main results, let us
now describe the assumptions we shall impose on V' as Germain, Hani and Walsh
did in [11]:
e H1. Existence of distorted Fourier analysis (see remark 1.2 for precise
meaning below).
e H2. Absence of discrete spectrum for —A + V.

e H3. LP boundedness of the wave operator {2 := . lim e
——00

itHe—itA.

In total, H1, H2, H3 amount to some regularity and decay requirements on V.
At some points in our analysis, we need the boundedness of 2 in high-order regular
Sobolev spaces. In those cases, we assume:

e H3*. WP boundedness of the wave operator ).

For a more specific discussion of hypotheses H1 and H2, see remark 1.7 below. For
the discussion of hypotheses H3 and H3*, see Theorem 1.3, 1.4 and 1.5.

1.2. Distorted Fourier transform. For each ¢ € R?\{0}, we know that for V of
class SR, |¢|? is in the continuous spectrum of H, the associated eigenfunction is
the distorted plane wave e(+; &) defined as the solution of

He(;€) = [€[%e(:;€) (1.1)
with the asymptotic condition
v(x;€) == e(z;€) —e®* =0 (|z|71) as |z| = oo
and the Sommerfeld radiation condition
Tim 7 (9, — if¢]) v = 0.
The eigenfunction problem (1.1) can be recast as the Lippman-Schwinger equation:

€(~;f) = €é¢ — RX_/ (|£‘2) VeEv eﬁ(x) = ei:r-f, (12)
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where Ry, (2) := lime,o4 Ry (z — i€) = lime_ o4 (H — (2 — ie))~'. It can be shown
that there exists a unique solution to (1.2) for any ¢ € R?\{0} provided that
V =0 (Jz|7'7¢) as |z| — oo, for some € > 0 (cf. [1]). Under this assumption, the
distorted plane waves are relatively smooth in z, but have very little regularity in
€. More precisely, for fixed ¢ € R4\ {0},

e(€) € (x)*H2, forany s > (d+1)/2, (1.3)

however, the map (z,&) — e(x;€) is merely measurable. One can improve this by
requiring additional decay and regularity of V' (cf., e.g., [22]).

In view of the Fourier transform, we expect that the family {e(+; £)} forms a basis
for the absolutely continuous subspace of H. This is indeed true, as was first proved
by Ikebe [22] and later generalized by several authors. For consistency of presenta-
tion, we give here the version due to Agmon (cf. [1], Theorem 6.2). Before that, let
us now impose assumption H2, namely that H has no discrete spectrum. However,
we remark that many results in this paper can be directly generalized to poten-
tials with discrete eigenvalues by simply projecting on the absolutely continuous
subspace L2, throughout. That said, the result is the following.

Theorem 1.1 (Tkebe, Alsholm-Schmidt, Agmon[1, 22]). Consider the Schrédinger
operator H with potential V' satisfying H2 and

(1+ \x|)2(1+6)/ V(y)Ply — 2|~ “dy € LT (RY)  for some € > 0,0 < 6 < 4.

1(2)
(1.4)
Define the distorted Fourier transform F* by

(F1)(© = 10 = g Jim [ @y (15)

where Br is the ball of radius R centered at the origin in R?. Then, F* is an
isometric isomorphism on L? (Rd) with inverse formula

. 1 )
5@ = (F7 1) @) = o fim [ oo 00)

(27)%/2 R-00
Moreover, F* diagonalizes H in the sense that, for all f € H? (Rd),
Hf = F'  MFtf, (1.7)
where M is the multiplication operator u — |x|?u.

Remark 1.2. We are now able to give a precise meaning to assumption H1: H1 is
satisfied provided that

(1) The family of eigenfunctions {e(-,£)} exists with the regularity stated in
(1.3);

(2) The operator F* defined by (1.5) exists and exhibits the properties de-
scribed in Theorem 1.1.

Once we have defined the distorted Fourier transform, for any function m : R? —
C, we define the distorted Fourier multiplier m(D*) to be the operator,

m(DY) = F m(&)F, (1.8)
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this is an analog of the well-studied Fourier multiplier m(V) given by m(V) :=
F~Im(&)F. For us, the importance of Q lies in the intertwining relations

= Qe r, FIQ=F, m(D') = Qm(V)Q", (1.9)

In other words, €2 allows us to translate back and forth between the flat and dis-
torted cases. Clearly, then, information about the structure and boundedness prop-
erties of 1 is extremely valuable. We collect some results about the boundedness
properties of Q below for different dimensions.

Theorem 1.3 (d > 3.Yajima, Finco-Yajima [10, 24, 25, 26]). Let k € N and
consider the Schrédinger operator H with real potential V : R* — R for d > 3. Fix
Do, ko as follows:

p0:2ak0:0 'Lfdzg
po > df2 k= |(d—1)/2]  ifd>4
Assume that for some § > (3d/2) + 1,
(x)° 10°V Il 2o (u—yi<1y € L& (RY),  for all o with | < k + ko. (1.10)

Then, V is of class SR and so Q and Q* are well-defined as operators on L? (Rd) N
Wk.p (Rd), If we additionally assume that V is of

1
Generic-type: there is no u € (x)’L? (Rd) solving Hu =0,  for any 6 > 3

(1.11)
Then, @ and Q* may be extended to bounded operators defined on WP (Rd).

Theorem 1.4 (d = 2, Jensen, Yajima [15]). Suppose that V(x) is real-valued and
V(z)| < Clz)~%,x € R?, for some § > 6, and 0 is neither an eigenvalue nor a
resonance of H, viz. there are no solutions u € HZ,_ (RQ) \{0} of —Au+ Vu=0,
which for some «, by, and by satisfy for |a| <1,
oy (u —a— W) =0 <|x|71*5*‘0‘|> , lx] =
’ |z[?

Then the wave operators ) are bounded in LP (RQ) for all p,1 < p < co. moreover,
the boundedness of wave operator 2 in the sobolev space W*P(R?) can be obtained
by applying the commutator method for any 1 < p < oo, k=0, ---,1, if V satisfies
|DV ()| < Culz) ™0 for |a| <1 and 0 is neither an eigenvalue nor a resonance of

Theorem 1.5 (d = 1, Weder [23]). Let f;(z,k),j = 1,2,Imk > 0, be the Jost
solutions to the following equation
2

dx?
let [u,v] denote the Wronskian of u and v : [u,v] := (stu)v — uftv. A potential
V is said to be generic if [fi(x,0), fa(x,0)] # 0 and V is said to be exceptional
if [fi(x,0), fa(z,0)] = 0. If V is exceptional there is a bounded solution (a half-

bound state, or a zero energy resonance) to (1.12) with k = 0. Forl = 0,1,---,
we denote VI := dd—;ZV(x), Note that V) = V. Suppose that V € L} with
Vizy = JIV(2)|(1 + |z])Ydz, where in the generic case v > 3/2 and in the
exceptional case v > 5/2, and that for some k = 1,2,--- VO e LY forl =
0,1,2,--- ,k— 1. Then Q and Q* originally defined on W*P N L%, 1 < p < 0o have

u+Vu=~kukeC (1.12)
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extensions to bounded operators on W*P 1 < p < co. Moreover, there are constants
Cp,1 < p < o0, such that:

191l < Coll flkps 192 Fllip < Collfllep,  fEWPPALL1<p<oo (1.13)

Furthermore, if V is exceptional and a := lim,_,_ f1(x,0) = 1,Q and Q* have
extensions to bounded operators on W1 and to bounded operators on W+ and
there are constants Cy and Cs, such that (1.13) holds for p =1 and p = oc.

1.3. The main results. We start by considering the following multilinear distort-
ed multiplier of the form:

T oo f)e) = [ [ o @) @) F &) S
e(x,&1)e(x,&)...e(x, &) d&rdés . .. dé.

When e(z,§;) = e, fg = fj, The multilinear distorted multiplier defined
above becomes the Coifman-Meyer multilinear multiplier. Note that the case m =1
corresponds (up to a constant factor) to the product of f1,..., fr. We say that the
multiplier m satisfies Coifman-Meyer type bounds if the following homogeneous
bounds hold for sufficiently many multi-indices ay, ao, ..., ag:

0L 082 .. 0k m (1,82, &) | < C (&) + ol + ...+ [g) (I IHlazlteFlanD

(1.15)

Our result is the distorted analog of the multilinear Coifman-Meyer multiplier

operator theorem in [5], but with a little integrability index destruction when we

have no assumption on the LP boundedness of the Riesz transform = V(—A +
V)12,

Theorem 1.6. Ford > 1, let V € LP (Rd) be a potential satisfying H1,H2, and
H3 for some p > 1. Suppose that m (&1,&a,...,&k) is a Coifman-Meyer symbol in
k variables as in (1.15), then

ko1

(1) forpj,r' € (1,00),5 =1,....k satisfy & = 2 i1 e
T Filll o gy Semv Ty 15l 273 (ra).- (1.16)

provided that the Riesz transform ® = V(=A + V)~Y2 is bounded on
Lri j=1,....k and L.
(2) suppose instead that V' satisfies H3*, for p;,r',p; € (1,00),j = 1,...,k

satisfy & = Z?:l p%. = Z?Zl ﬁ% — § for some € > 0,
||T(f17 ceey fk)”LT’ (R) §m,v H?:l”fj HLPJ‘ (R4) + H?:l”fj”Lﬁj (R4)* (1'17)

Remark 1.7 (More discussions of the conditions for theorem 1.6).

(1.14)

(1) About assumption H1: It follows that sufficient conditions for H1 are
that V satisfies H2, (1.4) and V = O (|z| 7' 7¢) as |z| — oo, for some € > 0.

(2) About assumption H2: Once (1.4) is satisfied, we rule out the existence
of nonnegative eigenvalues. Additionally if the negative part of V' is not very
large, there are no negative eigenvalues(e.g., if d > 3, Hardy’s inequality
implies that the condition V' > —(d —2)2/4|z|? is sufficient to rule out both
nonpositive eigenvalues and resonances at 0 as defined in (1.11)), then H2
holds.
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(3) About Riesz transform: If V' belongs to the class of By, by theorem
1.2 in [2], the Riesz transform R = V(—A + V)~1/2 is bounded on L?,1 <
p < oo. Here, in [2], By, 1 < ¢ < o0, is the class of the reverse Holder
weights: w € B, if w € L] (Rd) ,w > 0 almost everywhere and there

loc

exists a constant C such that for all cube @ of R¢,

(& o) " G

If ¢ = oo, then the left hand side is the essential supremum on ). Examples
of B, weights are the power weights |z|~® for —co < oo < n/q and positive
polynomials for ¢ = oco.

Our results extend Germain, Hani and Walsh’s bilinear estimates in [11] to
the multilinear case and hold for all dimensions d > 1. Note that our multi-
linear estimate can not be obtained directly from bilinear estimate by induction,
because even in the framework of classical Fourier transform, it can not be ob-
tained. In our proof, after the distorted-frequency localization, we do not divide
the distorted-frequency region of multiple summations into upper and lower tri-
angular regions roughly according to the symmetry, such as A(f1, -, fk+1) =
C ZN1<___<NH1 A(finy o fet1sn,,, ). where k+1-linear form A(f1,- -+, fi, frs1)
is defined in (3.1). While we divide the distorted-frequency region of multiple sum-
mations into high distorted-frequency and low distorted-frequency parts, the low
distorted-frequency part is

Ap(fi,- o fag1) = > A(finvg, s frerines) = A<t fer<a)-

N1<1,++,Np41<1

For the low distorted-frequency part, we eliminate the multiple summationss and es-
timate directly, and then obtain the multilinear estimate without the destruction of
integrability index; For the high distorted-frequency part, we partly decompose the
multiple summations region into the upper and lower triangular regions, and make
use of more symmetries and cancellations, so as to cut down the multiplicities of
the summations about distorted-frequency and prevent the logarithmic divergence
caused by multiple summations. Finally we obtain as desired, see section 3 for
details.

Compared with the flat case of multilinear multipliers, the difficulties we face
come from the nonlinear spectral distribution when we try to estimate the mul-
tilinear distorted multipliers, here the nonlinear spectral distribution is given as
follows,

M(Er, - i) = /R e, €a)e(,€) el € )

in flat case, M (&1, - , &k, Ekr1) = 0(&1 + -+ - + &k + Ek1). However, in the distort-
ed case, M (&1, , &k, Ekt1) # 0(&1 + -+ + &k + Eky1), we don’t have convolution
structure F¥(fg) = [ f#(¢ — n)g*(n)dn any more. Therefore, we know little about
the distorted-frequency support distribution of the multilinear distorted multipliers,
which makes it impossible for us to estimate the fractional derivatives of the multi-
linear distorted multipliers by Bony decomposition. We only obtain the estimates
of integer derivatives of the multilinear distorted multipliers.

Theorem 1.8 (Leibniz’s law of integer order derivations). For sufficiently good
potential V, e.g. V € C$(RY) being positive almost everywhere, then V satisfies



MULTILINEAR DISTORTED MULTIPLIER ESTIMATE 7

H1,H2, and H3*, and by theorem 1.2 in [2], V belongs to the class of B and the
Riesz tmnsform N = V(=A 4+ V)~Y2 is bounded on LP,1 < p < co. Then for

Z?:l i = T, =1- ;, s > 0 being an integer, we have
k k k
ITC e Fllyerr S DMl TT Wfillers + TL 1SN (118)
1=1 J=1,j#l j=1
and
k k
ITC s il S D Millwem TT Wil (1.19)
1=1 J=1,5#

As another application, we consider the following generalized mass-critical non-
linear Schrodinger equation with good potential in low dimensions d = 1, 2:

iug — Au+Vu=F(u), u(0,z)=uo(zx), zcR (1.20)

when d = 1, F(u) = T(4, 4, u,u,u)(z); when d = 2, F(u) = T(4,u,u)(x). Note
that the case symbol m = 1 corresponds (up to a constant factor) to the product
of the functions. Therefore, in this case, when V' = 0, the equation (1.20) becomes
a classical mass-critical nonlinear Schrédinger equation in d = 1, 2.

For good potential V: V satisfies H1, H2, and H3, and V belongs to the class of
By( e.g. V € C5°(R?) being positive almost everywhere, then V satisfies H1, H2,
and H3*, and V belongs to the class of Bo, C Bg), By theorem 1.2 in [2], V € By
implies that the Riesz transform ® = V(—A+V)~/2 is bounded on L?,1 < p < 00
when d = 1, 2, we have the scattering of the generalized mass-critical NLS with good
potential for small data in low dimensions d = 1, 2.

Theorem 1.9 (local wellposedness and small data scattering). For d = 1,2, The
equation (1.20) has the following properties:

(1) (Local wellposedness) For any ug € L2 (R?), there eists T (ug) > 0 such
that (1.20) is locally well posed on [—T,T]. The term T (ug) depends on the
profile of the initial data as well as its size. Moreover, (1.20) is well posed
on an open interval I CR, 0 € I;

(2) (Small data scattering) there exists eo(d) > 0, such that if

l[wollp2ray < €0(d), (1.21)

then (1.20) is globally well posed and scattering, i.e. there exist u®™ €
L2(R?) such that

|lu(t) — eimuiHLi — 0, ast— Foo. (1.22)

Finally, we organize the paper as follows: we list some notations and basic
lemmas in section 2. In the third section, we give the proof of the main results,
and the fourth section are the applications, including the estimate of Leibniz’s law
of integer order derivations for the multilinear distorted multiplier and small data
scattering for a kind of generalized mass-critical NLS with good potential in low
dimensions d = 1, 2.
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2. PRELIMINARY

We will use the notation X < Y whenever there exists some constant C' > 0
so that X < CY. Similarly, we will use X ~ Y if X <Y < X.Also, we use the
Japanese bracket convention where ()2 := 1+ |z|2. Let v € C§°(R?) be a radial,
decreasing function

wo={ § sk

For N € 2%, we denote
T 2x

x
Y5 — (50 = 6(50).
The Littlewood-Paley operators are then given by

DF D?
Pl =¢ <N> and Ply =1 (N) N € 2%,

then we have distorted-frequency decomposition, f = > Pﬁ, f
Ne2”z
we define distorted sobolev norm as || f|lyiyrw := ||[D¥*f|lLr = | H*/2f||1» and
§

1Al = 1F1zs + 1l then

Lemma 2.1. For 1 < p < oo, we have

) 1/2
Wiz~ | ( 3 3 [t

Ne2Z
A pair (p, q) is called admissible if

2 1 1
(33
D 2 q

and4 <p<oowhend=1;2<p<oowhend=2;0r2<p<oowhend>3. By
intertwining relations (1.9) and the classical Strichartz estimate, Suppose (p, ¢) and
(P, q) are admissible pairs, and I C R is a possibly infinite time interval. Then we
have the following Strichartz estimate for the Schréodinger operator H = —A + V|

) 1/2
C Wl ~a (Z (N [P )

Z
LP Ne2 L?

Lemma 2.2 (Strichartz estimate for the Schrédinger operator).

e ol o 1o wmay Shaa ol z2me) (2.2)
H/ e_itHF<t)dt 517#17(1 ||F||LP/LQ/(I><Rd) (23)
R L2(R) e
and
] / I E()dr|| SPOBAIFl Ly gy (24
T<t,m€l LPLI(IxR4) )

Before we begin to prove Theorem 1.6, though, we need the following maximal
and square function estimates, which actually are stated by the Lemma 3.3 in [11].

Lemma 2.3 (Lemma 3.3 in [11]). (a) Suppose that W is an operator that is point-
wise bounded by an LT -bounded positive operator, that is, satisfying the point-wise
bound

\Wf(z)] < CW|f|(z) forall f € LP (R?Y), xeR?
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for some positive operator W that is bounded on LP (Rd) for 1 < p < oco. Let
Y e Cg° (Rd) . For each n € R?, the operators

f— sup
Ne2?

ne \V4
WeQ’"va <N> f‘ and fr> sup
Nl,N2€2Z
N1>Nj

inv v
We27r1 NY <) ‘
o5 )7

are bounded on LP for all 1 < p < oo with a bound < (n)<.
(b) For each n € RY, the operators

n-Dt
N

f > sup |e*™

Ne2”

aminpi (D
= ()

are bounded on LP (R?) for all 1 < p < oo with a bound < (n)?.
(c) Let U be any bounded linear operator on LP for some 1 < p < oo and suppose
that {f,} C L (R?) is a sequence of functions. Then

(Z |Ufn2> h S (Z |fn|2> " :

neZ nez Lr(R)

Dt
() <) f‘ and fr— sup
N Ni,Nye2”
N12>Nj

Lp(R4)

whenever the right-hand side is finite.
(d) Moreover, if ¢ is smooth and supported on an annulus, the operator

Dt Dt
62771 NEIJ (b(M) f

is bounded on LP (R?) for all 1 < p < oo with bound < (n)?.
(e) we have the following point-wise inequality

1/2
2

f— Z sup

7 N1€2
N2€2% SN

2

o () o= < s,

where M f is the Hardy-Littlewood mazimal function.

3. THE PROOF OF THEOREM 1.6

Proof of Theorem 1.6. Taking one test function fry; € L"(R%), we define k + 1-
linear form A(f1,- -+, fx, fk+1) which is associated to the k-linear operator T'(f1,. .., fx)
in the framework of the distorted Fourier transform as follows,

A(fr s frs fra)
::/Rd T(f1, - fr) frr1(z)da

=/--~/m(¢a,--- ) EED) - fREn)e(a, &) - - e(w, &) frg (2)dEr - - - dEgd

= / / m(Er, - &) FHED) - FER) o Er) M(Er -+, €y Eir )dEr - - dErdEpp
(3.1)
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where M (&1, &k, Ev1) = Jpae(@, &1)e(x, &) - - e(x, Epq1)dr is nonlinear spec-
tral distribution. By duality, for 1 4+ & =1,

HT(fla 7fk)||LT' 5 sup |A(f17 7fk7fk+1)|'

I fretaller

We generalize the multiplier m(&q, - - - , &) as k-+1 variables multiplier m(&1, - -+, §k,y Ekt1)s

A(fla T afkafk-‘rl)
:/---/m@l,--- G ) P (E) - THE Sy (s M (€, i Epsn)dE - dExdEpay

Stepl. Decomposition of A. we start by little-wood decomposition of f; with
respect to distorted Fourier transform.

— e _ o
N]'EQZ NjGZZ
As a result, we obtain that

A(flv"' ;fchrl): Z A(fl;N17"' 7fk+1;Nk+1)

Ny, ,Niy1 €22 (3.2)
= Ap(fro- s o) F A (i o)

where
Ap(fi, s foer) o= > Afuny, s fortinegs) = Afu<t, o fern<a)
N1<1,-,Np4+1<1
and
Ap(fr,- o fugr) = > A(fisngs s ot 1N
max{Ny, - ,Npy1}>1
= Z A(fl;Nu"' 7fk+1;Nk+1)
Ny>max{1,Na,- ,Npy1}
+ Z A(fl;Nu"' 7fk+1;Nk+1) (33)
N2>max{1,N1,N5,+ ,Ni11}
4+
+ Z A(funve, s frertiNigs)
Ny41>max{1,N1,N3,-- ,Ny}
= Il+"'+-[k+1~

We first take Ar(f1, -+, fe41) into consideration, Let ¥ € C3°(RY) be given such
that ¥ = 1. Define m by

(€1, &2, &er1) = ml&r, &, oL Ep)Y(E)V(E2) - (Erpr), (3.4)

then we expand 7 in a Fourier series, if (&1, -+, &) € [—K/2, K/2](+Dd

~ i k41l e
m(Er, - Epyr) = Z a(ng,--- 7nk+1)€2K (2521 ni-€i) | (3.5)

Ny, gy €LL

Using the stationary phase method, we have the bound for a(ny,- -+ ,ng41):

ja(ny, )] S (U ] 4 g ) 72D (3.6)
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thus by Holder inequality and Lemma 2.3 (b), we have

IAL(fr,- s frgn)]
=[A(fr<1, 5 ferr<a)

= > alm,-- 7”k+1)/fl;gl,nl(x)fmg,nz(ﬂ?)"'fk+1;§1,nk+1($)d$\

N1,N2, 0 Mkt
k41
S ) Wl )P fam, e
M1,M2, 0 ;M41 j=1
k+1
<TI0l
j=1
-1 i £
where fj<in,(2) == F (e R % £ (€5).
For Ag(fi, -+, fe+1) part, we can just treat with I, because the other terms
can be controlled in the same way,
L = Z A(fings s frertine)

Ni>max{1,Na, - ,Npy1}

Z Z Z A(fléNU"' 7fk+1;Nk+1>

N12>1 N2<Ni N3,Ng,* ;N1

(<N3?)
+> Y > A(fungs s frertiNe)
N1>1 N3<N; Na,Na, Nkt (3.7)
(<N2)

+

+ Z Z Z A(fing, s fertiNe)

N12>1 N y1<N;y N2,N3, ,Ng
(<N2)

=t ho+ -+ 11 k1

In the following, due to the similarities, we still only estimate the first term I o,
and our default summation range about Ny is N7 > 1, if not necessary, we will not
mention it again.

Let ¢ € C3°(R) be given such that ¢¢ = ¢. Define m™* by

N (& & Skl &\ (&) &k
mN (]\71;]\7—17 7]\],1) = m(§1a€27"' 75]€+1)¢ (N1>¢<N1) ¢< Nl )a
(3.8

then we expand m™N* in a Fourier series, if (&1, ,&py1) € [~K/2, K/2]F+1d)

B i (NEL ) e
le (Ela’ . 7€k+1) = Z aNl(nl, Ce 7nk+1)e2K (Zj:l j f])' (39)

ni, N1 €LY

Using the stationary phase method, we have the bound for a™¥*(ny, -+, ngi1):

la™ (1, )| S (1 + el + -+ g |) 73FFD (3.10)
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meanwhile,

11,2 :Z Z Z A(fl;va"' 7fk+1;Nk+1)

N1 N2<Ni N3,Nyg, -+ ,Ngt1
(EN2)

= N =N, Nkt
=2 > X o dM e me) 3TN

N1 N2<Ni N3,Ng, -+ ,Ngy1 n1,n2, ,Ng41
(EN2)

(3.11)

where

Enlr“,nk-u
N1, Ni41

= [ (A g e (B )
M(&, o Eeyr)dén - - d€p
[ [ o € vy (€0) Bt e (610
M, Epr1)dén - - d€getn

= / fl;Nl,nl (x)fQ;Nz,nz,Nl (.’L‘) T fk+1;Nk+1,nk+1,N1 (l‘)d.’lﬁ

Here we have denoted ff;Nl,m(fl) = e%nl'&fﬁm(&), and f?;Nj,nj,Nl(fj) =
e RNT 1" £Jf‘j (gj) j=2,---,k+ 1. Therefore,

‘Ilv2| = Z Z Z A(fl;Nlﬂ"' 7fk+1;Nk+1)

N1 N2<Ni N3,Ng,-- ,Ngy1
(<N2)

_ Ny =1, s Ne+1
=2 X X D @My ) SRR
N1 N2<Ni N3,Na, - ,Ngy1 n1,n2, Nk41

(£N2)

_ Ny . =N, k41
= g E a (nh 7nk+1) E E =N, ,Npi1
Ny na,ngya N2<Ni N3,Na, ,Npy1

(SN2)

—3(k+1)d —N1,
D DR T LT FRT ) i W I WD SR AN A

N1y Mg Ni | Nz N3,Na,,Niy1
(<N1) (<N2)

(3.12)

As a result, we are reduced to proving the following estimates:
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(1) For p; € (0,00) s.t. Zfill i = 1, assume that the Riesz transform R =

V(-A+V)~/?is bounded on LPi,j =1,...,k + 1, then we have

k+1

Z Z Z EK’?, 7;\1;;:1 NH”J Il £l s - (3.13)

Ni1>1| Nz N3,Ng,- ,Ngi1
(ENy) (<N2)

(2) Suppose instead that V satisfies H3* and we do not have the assumption of
Riesz transform % = V(—A+V)~/2 being bounded on LP3,j =1,...,k+1

any more, then for p;,p; € (0,00) s.t. Zf:ll p%- =1, Z;Cill ﬁ% =1+5, we
have

k+1 k+1

Y > =R S TTen e + TT ) 5l o
N1>1| N2 N3,Ng,- ,Npi1 j=1 j=1
(<N1) (<N2)

(3.14)

Step 2. Recall

M o) = [ el @elnne) elo )
R
Using Green’s formula and the definition of distorted plane wave functions, we have

|£1‘2M(£17 e 7§k7£k+1)
= He(x’ El)e(ma 52) T 6(1’, £k+1)d$

R4

= | V(z)e(z,&)e(w, &) - e(w, Eptr)da

Ra

- [ el ) Alet ) el G
k+1

_Z|€]|2 517 : agkagk-‘rl)

— (=) [ Vi@ela&)ew. ) - ela )
+2 Z / e(z,&)e(x, &) -~ Ve(z, &) - Ve(x, &) - - - e(x, €y )d

2<i<I<k+1
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Thus,

=N, Ne41
=N, ;Ng41

= / o / ff'N1 ni (fl)fg'N2,n2,N1 (52) T f1§+1;Nk+1,nk+1,N1 (§k+1)

X M(&r, - Epg1)dEr - - d€pga
k1

_Z/ / ||§]2f1 iN1,m1 51)f2 Nz,nz,N1(§2) f£)+1;Nk+1’nk+l’Nl(§k;+1)

X M(&ry - Epg1)dEr - - g

- (k - 1)W /il;Nl,nl (‘T)fQ;Nzyan\H (:C) T fk+1;Nk+17nk+17N1 (x)V(x)d:z:
1

1
+2 Z N712 /ilﬂ\/l,nl (Cv)f2;N2»nz,N1 (:L‘)
9<j<I<k+1
XV 5NN () -V FuN N () fret 1N g, N (2)dE
— T+ II+1III.

Here wedenote f, 1= F# M Fifiy, ., = FF ) (fT) Fify, with (&) :=
[€1726(6).
We start with the contribution of I Writing fi.<n; n,,n, = > funNmNg 2 <
' N <N;
~ — 2 _ ﬂ-i"'is" ~ ) i
J < U< k+1,and fin; n; Ny 1= F 1%]_—”%]\’1’"1"1\71 = FE TR ¢ (%) ]:ﬁfjv J =
k41, with ¢(€) == |€]2¢(€), By Holder’s inequality and Lemma 2.3(e), (b)
+
and (d), for 1 = 3 L1 we have

D 0
=7

202 > T

N1 |N2<N1 N3,Ng, ,Ngt1
(<N2)

k+1

|12
=30 311D DENED DRI [ ST

j=2 N1 N2<Ni N3,Ng, -+, Npi1
(<N3)

" f£+1-Nk+1,nk+1,N1 (Errr) M (1, Epyr)dér -+ - dEp i
ket

_ZZ‘ Z Z N2 /f1 Ny (&1) f2 NQ,nZ,N1(§2)f3 <Nams. N, (€3)

j=2 N1 N2<N; N;<Ny
f i
.'fj*hSNz;njthl(gj_l)fj;ijj,Nl(gj)

X Jj?+1§§N27”j+1,N1 (£j+1) T fku:+1;§N2,nk+1,N1 (§k+1)M(£17 T 7£k+1)d§1 e d£k+1
(3.15)
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k+1
E E ‘ E E NQ/lelfh f2N2n2N1( )f3<N2n3N1( )
=2

=2 N; N2<N; N;<N,

o fj—l;SNzanj—th (m)fj;vanle (x)fj+1§SN27nj+17Nl (x) t fk+1;§N2,nk+1,N1 (x)dx

k+1

< / 5 A oy, st O s 3 0]+ v, 00
N1,N»
(N2<Ny)
X sup |fj§Nj,nj7N1(I)‘|fj+1;§N2,ng‘+1,N1(I)|"'|fk+1;SN27nk+17N1(I)|dI
N; <Nz
2\1/2 5\ 1/2
’SH<Z S}ép ’il;Num ) ’Lm (Z S}ép |f2;N2’n2’N1|) ’Ll’z
1 2 N2 1
(N2<N1) (N2<N1)
B k+1
x H ]\?1?]1371 fj;Nj’nj’Nl LPj _H H ]\?217111;\)/1 |fl;SN2’nl7N1| LrL
(N;<Ny) T (N,<Ny)
+

H |fl||LPz'

For II, we use the Sobolev embedding in the distorted Fourier transform setting.
. 2 .
Let s; > 0 satisfy > 7, s; <1,s; < pij, and we denote ? = i -2 45=1,2. By

Holder inequality, Lemma 2.3(e), (b), (d) and Sobolev embeddmg7 we have

2|2 > I

N1>1|N2<Ni N3, ,Ng41
(<N2)

S Z Z Z N2 /f1 ‘N1, n1 f2N2,7l27N1( ) "fk+1;Nk+1,ﬂk+1,N1(x)v(x)dw

N12>1|N2<Ni N3, ,Ng41

(<N2)
st k+1
S Z N22—sl / (N1_51i1;N17n1> (N2_82f2?N27n27N1) H fj;SNz,nj,N1 V(z)dz
N1,N2 1 Jj=3
(N2<N;,N1>1)
1/2 1/2
—2 2
S/ Z Nl o il;Nlmd ZN > Sup ‘f2 NZ’nz’N1|
Nzl (N1>N2)
k+1
x H sup | fjs< o v | [V ()lde
(N21%J$1)

k+1

S TT 1l s
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Finally we estimate the contribution of the term III, which is also the one that
causes us to complete the proofs separately according to the assumption that the
Riesz transform is bounded or unbounded. we first bound the contribution of III
under the assumption that 9 is bounded on LPi(RY), j =1,---  k+ 1.

1Y oI

N12>1|N2<Ni N3,Ng,-+ ,Ngt1
(<N27N1<Nj)

/ Z Z Z N2 |f1 Ny, anfZ Nz,n2,N1| %fj N;,n;,Ny

1<N; N2<N; N;<N;

SC{fl sNy,ny, N1

k+1
x H | frns <N N |
m=3,m#j,l
12 , 1/2
2
5/ § : sup |f2;N2,n27N1| 2 : ’il-N n

N1 (>Ns) iN1,m1

Ny 1A=tz Ni2>1
k+1

X II SUD | frs<No Ny | SUD (R SiN ng Ny | SUD ‘mfj;Nj,nj,Nl dx
N2<N; N1>N,; N1>N;

m=3,m#l,m#j
k+1

< T ) 1l e
m=1

This finishes the proof of (3.13).
Step 3. proof of (3.14). We assume that the potential V satisfies assumption

H3*, which implies the LP (Rd) boundedness of the operator B : f — V(I — A+
V)“12f =V <Dﬁ>71 f. This follows directly by noting that <Dﬁ>71 = Q(V) 10,
using assumption H3* and the boundedness of V(V)~'. We denote f;. Njnj N =
%ﬁ f3:N;n;,n, - We split the analysis into three cases, depending on the size of IV
and N;, by symmetry, we may further assume N; < Nj.

Case 1. N; < N; < 1. In this case, applying Lemma 2.3(e), (b), (d), I* C [
and Sobolev embedding, for Ef;l ﬁij =1+¢§,and 2 <j<I<k+1, we bound as
follows,

1Y > 111

N1>1|N2<N1 N3,Ng, ,Ngi1
(<N2,N;<N;<1)

Nf =
I e X X Sl B

1<N; Na<N; N, <N;
<min(Na,1)

k+1

I fm<nom.mlde

—€ rs
X Nl ‘stl;lenz,Nl
m=3,m#j,l
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1/2 , 1/2
5 sup fQ;N o, N 2 ’f .

17

N.i>1
k
X H U | frns<Naummna | SUD | (N)) 7B fi Ny, sup ’%fg N;n;,N, | dT
No<N; N1>N; N>
m=3,m#l,m##j
k+1
S I ) Ufmllpom X 0 L fill e
m=1,m7#l
k+1

S I ) il oo -

Case 2. N; <1 < N;. Similarly to Case 1, for Zk+11

1 _ € i
=15 = 1+ 5, we can obtain

S > II1

N1>1|N2<Ni N3,Ng, ,Npy1
(EN2,N; <1<Nj)

SfYa=Y ¥

1+e |f1;N17n1||f2;N2,n2,N1‘ %fﬁNf»”le
1<Ny N2<N; Ni<1<N;

(<N3)
_ k+1
x ‘N'l_e ’%fl;Nlml»Nl H |fm;§N2,nm,N1 ‘dx
m=3,m#j,l
1/2
<[ s s (S
~ sup 2;Na,n2,N1 Z ’7
N, Ni(=N2) N1 1;N1,m
k+1 ) i
% H Sup ‘fm;fN?vnmvNJ sup (Nl)iﬁ%fl;Nhnzle Sup ’%fj;ij,le dz
m=3,m£l,mx; V2= Ni1>N; Ni>N;,
k+1
d d
S I ) Ufmllon % ) | il
m=1,m%#l
k+1

S T ) 1l o -
m=1

Case 3. 1 < N; < Nj. Similarly, for Zjﬂl =1, we have

S > II1

N1>1|N2<N1 N3,Ng, ,Ngi1
(<N2,1<NL<N-)

DDV -

|f1 N1, nluf? Nanz,Ni | %fg iNj Ny
1<N; N2<N; 1<N;<Nj;
(<Ns)

%fl Niyni, N1
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k+1
X H ‘fm;§N27nm,N1|dx
m=3,m#j,l
1/2 . 1/2
2
Sz/ E sup |f2;N2,"27N1| E ’il-N n
>No) AR
No Nl(_ 2 lel
k+1
X H Sup ‘fm <N2,npp, N1| sup ‘%lez ny, N1 sup ‘%f] iNj,n;, N dx
m=3,mAlm#j 2=\
k+1

S I ) il o -

4. APPLICATION

4.1. Application 1: Leibniz’s law of integer order derivations. Taking one
test function fyy1 € L"(R?), for s > 0, since the operator H = —V + V is self-
adjoint, and Plancherel’s theorem still holds for distorted Fourier transform, we can
get

/l;d HST(fl’ e 7fk)fk+1(117)d:c
:/Rd T(f1, - 5 fi)H® fry1(x)da
_ / . / m(Er G FE) - P (el 1) - el &) HP fra (2)dE - - - dEnda

:/--~/m<51,-~- P P fE o (€em)
X |Epr1 [P M (& - Eny Epr1)dEL - - - dEpdEpya

where M (&1, &k, Ev1) = Jpae(@, &1)e(x, &) - e(x, Epy1)dr is nonlinear spec-
tral distribution. Let s = 1 and s = l respectlvely for example, using Green’s
formula and the definition of distorted plane wave functions, we have
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Case s = 1:

|£k+1|2M(£17 e ,gk,gk—i-l)

/6(1’751)6(95,52)"'He(l“,fkﬂ)dx
R

= [ V@@ g)e(w ) elain)io

- /Rd e(r,Epy1)Ale(w,&1) - - - ez, &, )|dx

k
= Z |§j‘2M<§1a e 7§k7§k+1)

Jj=1

- (k - 1) R V(x)e(x, fl)e(xv 52) e 6(1), fk-i—l)dx

+ 2 Z / e(x,&)e(x, &) -~ Ve(z, &) - Ve(x, &) - - - e(x, €y )d
1<j<i<k’R?

Therefore,

/]Rd HT(f1,- -+, fo) frgr (x)da

/ T(H fr,- - afk)fk+1(x)dx+~-.+/
R

R T(fh T ,ka>fk+1($)d$
k=1 [ T V@) i (@)

+2 > /"'/m(fl,"' LG FL &) e LR F (Grn)
1<j<i<k

X Mj»l(gh e agka gk—&-l)dé-l t dfkdfk-n

(4.1)

Case s =1

2

|£k+1|2M(§17 o agka fk-‘rl)
= [ el gela o)+ Heo. G

R V(m)e(x, gl)e(x7€2) T 6(.73, €k+1)dx
- [ el i Ale(w. ) --el. 6o

y V(z)e(x,&)e(x, &) - ez, Epyr)da

+ Z / e(z,&)e(x, &) - Ve(z, &e(x, €j11) - - - Ve(x, Epyr)d
1<j<k /R

19
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Therefore,

/]Rd H%T(fl’ oy i) frorr (@) de

:/ / m(&n, - &) FHG) - FEE) (DA frgn) (€ha)
X &1 PM (&1, v €k Epgr)dEn - - - d€gdEpya
:/R T(fr, 5 f)V(@)| D fopr (z)da

w3 [ [t gt eI ) )

1<5<k
X Mjgi1(Erye s €y Eppr)dEr - - d€pdEpin

where M; (&1, -+, &ks Ept1) = fRd e(x,&1)e(x, &) - - Ve(z,&)-Ve(x, &) - - - e(x, Epyr)da
To the term involving new nonlinear spectral distribution ]\;[j,l(fl, oo &y &), fol-
lowing the arguments in the proof of theorem 1.6 and using interpolation, while to
the rest terms in (4.1) and (4.2), applying theorem 1.6 and sobolev embedding, we
have

Theorem 4.1 (Leibniz’s law of integer order derivations). For sufficiently good
potential V, e.g. V € C§°(R?) being positive almost everywhere, then V satisfies
H1,H2, and H3*, and by theorem 1.2 in [2], V belongs to the class of Bo and
the Riesz transform R = V(—=A + V)~Y2 is bounded on LP,1 < p < oo, so for

Zle p% = % =1- %, s > 0 being an integer, we have
k k k
(s e S D Wil TT Wfsllees + TL IS0 (43)
I=1 J=1,j#l j=1
and
k k
ITChs s )l S 3 il TT Millees- (4.4)
=1 J=1,j#1

Remark 4.2. The second term on the right hand side of (4.3) comes from the
contribution of the term containing V' (z) in (4.1) and (4.2).

4.2. Application 2: Scattering of the generalized mass-critical NLS with
good potential for small data in low dimensions. We consider the following
generalized mass-critical nonlinear Schrédinger equation with good potential in low
dimensions d = 1, 2:

iug — Au+Vu=F(u), u0,z)=u(z), zecR% (4.5)
when d = 1, F(u) = T(a, 4, u,u,u)(z); when d = 2, F(u) = T(4, u,u)(x). where
recalling that

T(fi, fore s fi) @ / /msl,sz,..,mfl(&)fz(&) @)

($,§1) (l’,fg) s (xafk) dgldé-? cee dfkv

and m is a Coifman-Meyer multiplier satisfying (1.15). Note that the case m =1
corresponds (up to a constant factor) to the product of fi,..., fx. Therefore,

(4.6)
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in this case, when V' = 0, the equation (4.5) becomes a classical mass-critical
nonlinear Schrodinger equation in d = 1,2. For good potential V: V satisfies
H1,H2, and H3, and V belongs to the class of By( e.g. V € C§°(R?) being positive
almost everywhere, then V satisfies H1, H2, and H3*, and V belongs to the class
of Bo, C Bs), by theorem 1.2 in [2], the Riesz transform ® = V(—A + V)~1/2 is
bounded on P, 1 < p < 0o, we have the scattering of the generalized mass-critical
NLS with good potential for small data in low dimensions d = 1, 2.

Theorem 4.3 (local wellposedness and small data scattering). For d = 1,2, The
equation (4.5) has the following properties:

(1) (Local wellposedness) For any ug € L2 (R?), there exists T (ug) > 0 such
that (4.5) is locally well posed on [—T,T]. The term T (ug) depends on the
profile of the initial data as well as its size. Moreover, (4.5) is well posed
on an open interval I CR, 0 € I;

(2) (Small data scattering) there exists eo(d) > 0, such that if

[uoll p2(gay < €0(d), (4.7)
then (4.5) is globally well posed and scattering, i.e. there exist u* € L2(R?)
such that

|lu(t) — eitAuiHLg — 0, ast— too. (4.8)

Proof. With the Strichartz estimate for the Schrodinger operator H = —A + V
in section 2, we can obtain local wellposedness and small data scattering for (4.5)
by the contraction mapping principle and bootstrap argument. Those steps are
standard. We recommend to refer to Section 1.3 in [9] for more details. Due to the
different nonlinear terms, we give the nonlinear estimates that may be used below:

t
\ [P uedr| e Sl s
0 L,." (RxRY) Lt,jf“ (RxR4)
1+4
S Hu” 2(dél+2> ’
L7 (RxR%)

and for example, when d = 2, T(@,u,u)(z) — T(9,v,v)(z) = T(a — v,u,u)(z) +
T(v,u —v,u)(z) + T(v,v,u — v)(z), therefore

Fu) - F
() = FO)I 2

t,g (RxR)

4 4
S ||u||d2(d+2> +||v||d2(d+2) ”“_U” 2(d+2) .
L,,% (RxRd) L,,¥ (RxR9) L, (RxR9)

Following the standard argument, we first get scattering for (4.5) with respect to
the Schrédinger operator H = —A + V' as follows,

|lu(t) — eitHuiHLi — 0, ast— foo. (4.9)

In addition, since wave operator €2 exists and is complete, we finally get scattering

for (4.5) in the sense of (4.8). O
ACKNOWLEDGMENTS

The author is supported in part by the Chinese Postdoc Foundation Grant
2019M660556.



22

(1]
2]

(3]
(4]
(5]
(6]
(7]
(8]

(9

(10]

(11]

(12]
(13]
(14]
(15]
[16]
(17]

(18]
(19]

20]
21]

(22]

23]
24]

[25]

KAILONG YANG

REFERENCES

S. Agmon, Spectral properties of Schrodinger operators and scattering theory. Annali della
Scuola Normale Superiore di Pisa. Classe di Scienze (4) 2, no. 2 (1975): 151-218.

P. Auscher and B. Ben Ali, Maximal inequalities and Riesz transform estimates on LP spaces
for Schrodinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble) 57(6)
(2007), 1975-2013.

A. Bényi, R.H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential
operators, Comm. Partial Differential Equations 28(2003)1161 — 1181.

A. Bényi, R.H. Torres, Almost orthogonality and a class of bounded bilinear pseudodifferential
operators, Math. Res. Lett.11 (2004) 1-11.

R.R. Coifman, Y. Meyer, Commutateurs d’intégrales singuliéres et oprateurs multilinéaires,
Ann. Inst. Fourier(Grenoble) 28 (1978) 177-202.

R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals,
Trans.Amer. Math. Soc. 212 (1975) 315-331.

R. Coifman, Y. Meyer, Au deld des opérateurs pseudo-différentiels, Astérisque 57 (1978)
1-185.

R. Coifman, Y. Meyer, Wavelets. Calderon- Zygmund and Multinear Operators, Cambridge
Stud. Adv. Math., vol.48, Cambridge University Press, Cambridge, 1997, translated from the
1990 and 1991 French originals by David Salinger.

B. Dodson. Defocusing nonlinear Schrédinger equations, volume 217 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2019.

D. Finco, and K. Yajima. The LP boundedness of wave operators for Schréodinger operators
with threshold singularities. II. even-dimensional case. Journal of Mathematical Sciences,The
University of Tokyo 13, no. 3 (2006): 277-346.

P. Germain, Z. Hani and S. Walsh , Nonlinear Resonances with a Potential: Multilinear
Estimates and an Application to NLS[J]. International Mathematics Research Notices, 2015,
2015(18): 8484-8544.

L. Grafakos, N.J. Kalton, The Marcinkiewicz multiplier condition for bilinear operators,
Studia Math. 146 (2001) 115-156.

J. Gilbert, A. Nahmod, Boundedness of bilinear operators with nonsmooth symbols, Math.
Res. Lett. 7 (2000) 767-778.

L. Grafakos, R.H. Torres, Multilinear Calder-Zygmund theory, Adv. Math. 165 (2002) 124-
164.

A. Jensen, K. Yajima, A remark on Lp-boundedness of wave operators for two-dimensional
Schrédinger operators. Comm. Math. Phys. 225 (2002), no. 3, 633-637.

C. Kenig, E.M. Stein, Multilinear estimates and fractional integrals, Math. Res. Lett. 6 (1999)
1-15.

M. Lacey, C. Thiele. LP estimates for the bilinear Hilbert transform for 2 < p < co. Ann. of
Math. 146 (1997) 693-724.

M. Lacey, C. Thiele, On Calderén’s conjecture, Ann. of Math. 149 (1999) 475-496.

C. Muscalu, T. Tao, C. Thiele, Multi-linear operators given by singular multipliers, J. Amer.
Math. Soc. 15 (2002) 469-496.

F. Pusateri and A. Soffer. Bilinear estimates in the presence of a large potential and a critical
NLS in 3d, arXiv:2003.00312.

N. Tomita, A Hérmander type multiplier theorem for multilinear operators. J. Funct. Anal.
259(2010) 2028-2044.

T. Ikebe, Eigenfunction expansions associated with the Schrédinger operators and their ap-
plications to scattering theory. Archive for Rational Mechanics and Analysis 5, no. 5 (1960):
1-34.

R. Weder, The W¥*P-continuity of the Schrédinger wave operators on the line. Comm. Math.
Phys. 208 (1999), no. 2, 507-520.

K. Yajima. The W*:P-continuity of wave operators for Schrédinger operators. Proceedings of
the Japan Academy, Series A, Mathematical Sciences 69, no. 4 (1993): 94-8.

K. Yajima. The W¥P-continuity of wave operators for Schrodinger operators. III. Even-
dimensional cases m > 4. Journal of Mathematical Sciences, The University of Tokyo 2, no.
2 (1995): 311-46.



MULTILINEAR DISTORTED MULTIPLIER ESTIMATE 23

[26] K. Yajima. The L? boundedness of wave operators for Schrodinger operators with threshold
singularities. I. The odd dimensional case. Journal of Mathematical Sciences, The University
of Tokyo 13, no. 1 (2006): 43-93.

INSTITUTE OF APPLIED PHYSICS AND COMPUTATIONAL MATHEMATICS, 100088, P.R.CHINA.
E-mail address: ykailong@mail.ustc.edu.cn



