References
Acuña-Rodríguez, I.S., Cavieres, L.A., Gianoli, E. (2006). Nurse effect in seedling establishment: Facilitation and tolerance to damage in the Andes of central Chile. Revista chilena de historia natural79 (3), 329-336. doi:10.4067/S0716-078X2006000300005
Armas, C., Rodríguez‐Echeverría, S., & Pugnaire, F. I. (2011). A field test of the stress‐gradient hypothesis along an aridity gradient. Journal of Vegetation Science22 (5), 818-827.
Armas, C., Ordiales, R., & Pugnaire, F. I. (2004). Measuring plant interactions: a new comparative index. Ecology85 (10), 2682-2686.
Arroyo, A. I., Pueyo, Y., Saiz, H., & Alados, C. L. (2015). Plant–plant interactions as a mechanism structuring plant diversity in a Mediterranean semi‐arid ecosystem. Ecology and evolution5 (22), 5305-5317.
Bakker, E. S., Dobrescu, I., Straile, D., & Holmgren, M. (2013). Testing the stress gradient hypothesis in herbivore communities: facilitation peaks at intermediate nutrient levels. Ecology94 (8), 1776-1784.
Bakker, E. S., Olff, H., Vandenberghe, C., De Maeyer, K., Smit, R., Gleichman, J. M., & Vera, F. W. (2004). Ecological anachronisms in the recruitment of temperate light‐demanding tree species in wooded pastures. Journal of Applied ecology41 (3), 571-582.
Baraza, E., Zamora, R., & A. Hódar, J. (2006). Conditional outcomes in plant–herbivore interactions: neighbours matter. Oikos113 (1), 148-156.
Berdugo, M., Maestre, F. T., Kéfi, S., Gross, N., Le Bagousse‐Pinguet, Y., & Soliveres, S. (2019). Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology107 (1), 190-202.
Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in ecology & evolution9 (5), 191-193.
Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., … & Michalet, R. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of ecology96 (1), 18-34.
Brooker, R. W., & Callaghan, T. V. (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos , 196-207.
Bruno, J. F., Stachowitz, J. J., & Bertness, M. D. 200. Inclusion of facilitation into ecological theory. Tree18 , 119-125.
Butterfield, B. J., Bradford, J. B., Armas, C., Prieto, I., & Pugnaire, F. I. (2016). Does the stress‐gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems. Functional Ecology30 (1), 10-19.
Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M., & Cerabolini, B. (2006). The functional basis of a primary succession resolved by CSR classification. Oikos112 (1), 10-20.
Callaway, R. M. (2007). Positive interactions and community organization. In Positive interactions and interdependence in plant communities  (pp. 295-333). Springer, Dordrecht.
Callaway, R. M., Ridenour, W. M., Laboski, T., Weir, T., & Vivanco, J. M. (2005). Natural selection for resistance to the allelopathic effects of invasive plants. Journal of ecology93 (3), 576-583.
Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., … & Cook, B. J. (2002). Positive interactions among alpine plants increase with stress. Nature417 (6891), 844-848.
Grime JP (1979) Plant strategies and vegetation processes. John Wiley and Sons, Chichester.
Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology78 (7), 1946-1957.
Cardon, Z. G., Stark, J. M., Herron, P. M., & Rasmussen, J. A. (2013). Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. Proceedings of the National Academy of Sciences110 (47), 18988-18993.
Bohlen, P. J., Groffman, P. M., Driscoll, C. T., Fahey, T. J., & Siccama, T. G. (2001). Plant–soil–microbial interactions in a northern hardwood forest. Ecology82 (4), 965-978.
Holzapfel, C., & Mahall, B. E. (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology80 (5), 1747-1761.
Fleischer, C., & Hommel, G. (2006). EMG-driven human model for orthosis control. In Human Interaction with Machines  (pp. 69-76). Springer, Dordrecht.
Davies, K. W., Bates, J. D., & Miller, R. F. (2007). The influence of Artemsia tridentata ssp. wyomingensis on microsite and herbaceous vegetation heterogeneity. Journal of Arid Environments69 (3), 441-457.
Diaz, S., Lavorel, S., McIntyre, S. U. E., Falczuk, V., Casanoves, F., Milchunas, D. G., … & Campbell, B. D. (2007). Plant trait responses to grazing–a global synthesis. Global Change Biology13 (2), 313-341.
Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs67 (3), 345-366.
Farzam, M., & Ejtehadi, H. (2017). Effects of drought and slope aspect on canopy facilitation in a mountainous rangeland. Journal of Plant Ecology10 (4), 626-633.
Filazzola, A., Westphal, M., Powers, M., Liczner, A. R., Woollett, D. A. S., Johnson, B., & Lortie, C. J. (2017). Non-trophic interactions in deserts: Facilitation, interference, and an endangered lizard species. Basic and Applied Ecology20 , 51-61.
Fugère, V., Andino, P., Espinosa, R., Anthelme, F., Jacobsen, D., & Dangles, O. (2012). Testing the stress‐gradient hypothesis with aquatic detritivorous invertebrates: insights for biodiversity‐ecosystem functioning research. Journal of Animal Ecology81 (6), 1259-1267.Gómez-Aparicio, L., Zamora, R., Gómez‐Aparicio, L., Zamora, R., Castro, J., & Hódar, J. A. (2008). Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores?. Journal of Vegetation Science19 (2), 161-172.
Graff, P., & Aguiar, M. R. (2011). Testing the role of biotic stress in the stress gradient hypothesis. Processes and patterns in arid rangelands. Oikos120 (7), 1023-1030.
Graff, P., Aguiar, M. R., & Chaneton, E. J. (2007). Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology88 (1), 188-199.
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The american naturalist111 (982), 1169-1194.
Gross, N., Börger, L., Soriano‐Morales, S. I., Le Bagousse‐Pinguet, Y., Quero, J. L., García‐Gómez, M., … & Maestre, F. T. (2013). Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. Journal of Ecology101 (3), 637-649.
He, Q., & Bertness, M. D. (2014). Extreme stresses, niches, and positive species interactions along stress gradients. Ecology95 (6), 1437-1443.
Holmgren, M., & Scheffer, M. (2010). Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology98 (6), 1269-1275.
Holthuijzen, M. F., & Veblen, K. E. (2015). Grass-shrub associations over a precipitation gradient and their implications for restoration in the Great Basin, USA. PloS one10 (12), e0143170.
Howard, K. S., Eldridge, D. J., & Soliveres, S. (2012). Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology13 (2), 159-168.
Jankju, M. (2016). Potential and constraints on dryland restoration: Case studies from Iran. Ecological restoration: Global challenges, social aspects and environmental benefits , 177-192.
Jankju, M. (2013). Role of nurse shrubs in restoration of an arid rangeland: effects of microclimate on grass establishment. Journal of Arid Environments89 , 103-109.
Jankju, M. (2008). Individual performances and the interaction between arid land plants affected by the growth season water pulses. Arid Land Research and Management22 (2), 123-133.
Kéfi, S., Rietkerk, M., Van Baalen, M., & Loreau, M. (2007). Local facilitation, bistability and transitions in arid ecosystems. Theoretical population biology71 (3), 367-379.
Le Bagousse‐Pinguet, Y., Gross, E. M., & Straile, D. (2012). Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos121 (1), 95-101.
López, R. P., Squeo, F. A., Armas, C., Kelt, D. A., & Gutiérrez, J. R. (2016). Enhanced facilitation at the extreme end of the aridity gradient in the Atacama Desert: a community‐level approach. Ecology97 (6), 1593-1604.
Louthan, A. M., Doak, D. F., Goheen, J. R., Palmer, T. M., & Pringle, R. M. (2014). Mechanisms of plant–plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah. Proceedings of the Royal Society B: Biological Sciences281 (1780), 20132647.
Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress‐gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology97 (2), 199-205.
Maestre, F. T., Valladares, F., & Reynolds, J. F. (2005). Is the change of plant–plant interactions with abiotic stress predictable? A meta‐analysis of field results in arid environments. Journal of Ecology93 (4), 748-757.
Maestre, F. T., Bautista, S., & Cortina, J. (2003). Positive, negative, and net effects in grass–shrub interactions in Mediterranean semiarid grasslands. Ecology84 (12), 3186-3197.
Maestre, F. T., Bautista, S., Cortina, J., & Bellot, J. (2001). Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecological Applications11 (6), 1641-1655.
Memariani, F., Zarrinpour, V., & Akhani, H. (2016). A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). Phytotaxa249 (1), 8-30.
Metz, J., & Tielbörger, K. (2016). Spatial and temporal aridity gradients provide poor proxies for plant–plant interactions under climate change: a large‐scale experiment. Functional Ecology30 (1), 20-29.
Milchunas, D. G., & Noy‐Meir, I. (2002). Grazing refuges, external avoidance of herbivory and plant diversity. Oikos99 (1), 113-130.
Pierce, S., Negreiros, D., Cerabolini, B. E., Kattge, J., Díaz, S., Kleyer, M., … & Tampucci, D. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Functional ecology31 (2), 444-457.
Pugnaire, F. I., Armas, C., & Maestre, F. T. (2011). Positive plant interactions in the Iberian Southeast: mechanisms, environmental gradients, and ecosystem function. Journal of arid environments75 (12), 1310-1320.
Team, R. C. (2013). RA lang environ stat comput. Development Core Team .
Rahmanian, S., Hejda, M., Ejtehadi, H., Farzam, M., Pyšek, P., & Memariani, F. (2020). Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Applied Vegetation Science23 (4), 551-561.
Rahmanian, S., Hejda, M., Ejtehadi, H., Farzam, M., Memariani, F., & Pyšek, P. (2019). Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecology and evolution9 (14), 8225-8237.
Rand, T. A. (2004). Competition, facilitation, and compensation for insect herbivory in an annual salt marsh forb. Ecology85 (7), 2046-2052.
Reisner, M. D., Doescher, P. S., & Pyke, D. A. (2015). Stress‐gradient hypothesis explains susceptibility to Bromus tectorum invasion and community stability in North America’s semi‐arid Artemisia tridentata wyomingensis ecosystems. Journal of Vegetation Science26 (6), 1212-1224.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal27 (3), 379-423.
Smit, C., Rietkerk, M., & Wassen, M. J. (2009). Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis. Journal of Ecology97 (6), 1215-1219.
Smit, C., Vandenberghe, C., Den Ouden, J., & Müller-Schärer, H. (2007). Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia152 (2), 265-273.
Smit, C., Den Ouden, J. A. N., & Müller‐Schärer, H. E. I. N. Z. (2006). Unpalatable plants facilitate tree sapling survival in wooded pastures. Journal of Applied ecology43 (2), 305-312.
Soliveres, S., García‐Palacios, P., Castillo‐Monroy, A. P., Maestre, F. T., Escudero, A., & Valladares, F. (2011). Temporal dynamics of herbivory and water availability interactively modulate the outcome of a grass–shrub interaction in a semi‐arid ecosystem. Oikos120 (5), 710-719.
Tirado, R., Bråthen, K. A., & Pugnaire, F. I. (2015). Mutual positive effects between shrubs in an arid ecosystem. Scientific Reports5 (1), 1-8.
Vandenberghe, C., Smit, C., Pohl, M., Buttler, A., & Freléchoux, F. (2009). Does the strength of facilitation by nurse shrubs depend on grazing resistance of tree saplings?. Basic and Applied Ecology10 (5), 427-436.
Verwijmeren, M., Rietkerk, M., Bautista, S., Mayor, A. G., Wassen, M. J., & Smit, C. (2014). Drought and grazing combined: contrasting shifts in plant interactions at species pair and community level. Journal of Arid Environments111 , 53-60.
TABLE 1 Basic characteristics and grazing history of the arid and semi-arid regions in northeastern Iran.