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Abstract  24 
Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning 25 
of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern 26 
Germany using landscape-scale metatranscriptomics, to understand the responses of active 27 
communities across the three domains of life, Bacteria, Archaea, and eukaryotes, to land use. These 28 
KH are proxies of the millions of small standing water bodies of glacial origin spread across the 29 
northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive 30 
agriculture since the 1950s. In contrast to a parallel eDNA study which revealed the homogenization 31 
of biodiversity across KH conceivably resulting from long-lasting intensive agriculture, land-use type 32 
affected the structure of the active KH communities during spring crop fertilization, but not a month 33 
later. This effect was more pronounced in eukaryotes than in bacteria. In contrast, gene expression 34 
patterns did not differ between months or across land-use type, suggesting a high degree of functional 35 
redundancy across the KH communities. Variability in gene expression was best explained by active 36 
community structure, suggesting that these changes in functioning are primarily driven by interactions 37 
between organisms. Our results show that influences of the surrounding landscape result in temporary 38 
changes in the activity of different community members. Thus, even in KH where biodiversity has 39 
been homogenized, communities continue to respond to land management. This needs to be considered 40 
when developing sustainable management options for restoration purposes and for successful 41 
mitigation of further biodiversity loss in agricultural landscapes. 42 

  43 
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Introduction 44 

During the first half of the 20th century, Germany, as much as the rest of Central Europe, was 45 
characterized by low input agriculture. Starting in the 1950s, intensive industrialized agriculture with 46 
increasing use of fertilizers and pesticides became standard (Bauerkämper, 2004; Sommer, Gerke, & 47 
Deumlich, 2008). This type of agriculture practice has negative consequences on biodiversity, notably 48 
for plants (Altenfelder, Raabe, & Albrecht, 2014; Meyer, Wesche, Krause, & Leuschner, 2013), birds 49 
(Donald, Sanderson, Burfield, & van Bommel, 2006; Endenburg et al., 2019; Puente-Sánchez et al., 50 
2018), invertebrates (Wilson, Morris, Arroyo, Clark, & Bradbury, 1999), and amphibians (G. Berger, 51 
Pfeffer, & Kalettka, 2011; Gert Berger et al., 2018). In addition, plant, insect, and mammal 52 
communities have been homogenized in arable areas (Baessler & Klotz, 2006; Macdonald & Johnson, 53 
2000; Olden, Comte, & Giam, 2016; Spear & Chown, 2008; Vargas, Arismendi, & Gomez-Uchida, 54 
2015), as is typically reported after land use intensification (Smart et al., 2006a).  55 
 56 
Kettle holes (KH) (known as potholes in North America) are small depressions in the landscape formed 57 
by the melting of trapped ice after the retraction of glaciers at the end of the last glaciation ca. 12,000 58 
years ago. This has left, to this day, numerous KH sprinkled across northern Europe, northern North 59 
America, and northern Asia, reaching up to 40 per km2 in northeast Germany (Kalettka & Rudat, 60 
2006). Accordingly, KH are the dominant aquatic landscape element in the region (Kalettka & Rudat, 61 
2006) and hotspots of biological activity (Nitzsche et al., 2017) serving as mineralization grounds for 62 
both aquatic and land derived organic matter (Nitzsche et al., 2017; Onandia et al., 2018). 63 
Geographically close KH can differ in terms of biogeochemistry (Attermeyer, Grossart, Flury, & 64 
Premke, 2017), hydrology and biodiversity (Altenfelder et al., 2014; Lischeid & Kalettka, 2012; 65 
Platen, Kalettka, & Ulrichs, 2016), suggesting that they play a critical role in determining overall 66 
regional biodiversity (Joniak, Kuczyńska-Kippen, & Nagengast, 2007; Lischeid & Kalettka, 2012; 67 
Novikmec et al., 2016; Pätzig, Kalettka, Glemnitz, & Berger, 2012; Platen et al., 2016). KH serve as 68 
habitats for invertebrates with and without aquatic stages, refuge and breeding grounds for many 69 
amphibians as well as feeding areas for terrestrial organisms (Gert Berger, Graef, & Pfeffer, 2013; 70 
Heim et al., 2018). Thus, alongside hosting a dynamic and diverse internal food web, KH are key 71 
components in aquatic-terrestrial interlinked food webs and important steppingstones for many 72 
terrestrial species.  73 

Ionescu et al. (submitted) used an environmental DNA (eDNA) approach for biodiversity assessment 74 
of KH in the northeastern German lowlands dominated by three different land-use types: arable fields, 75 
grasslands, and forests. In contrast to the hypothesis that the community structure in KH of arable 76 
fields has been shaped by decades of intensive industrialized farming, no differences in species 77 
richness or community composition were found between KH in forest, grassland and arable patches in 78 
the same region. Instead, KH biodiversity appeared to be homogenized across the region, a common 79 
effect of intensive land use (Buhk et al., 2017; Meyer et al., 2013; Onandia et al., 2021; Smart et al., 80 
2006b), indicating that intensive agriculture has also affected the KH not directly located in arable 81 
fields. Chemical analyses of sediment cores (Kleeberg, Neyen, Schkade, Kalettka, & Lischeid, 2016; 82 
Nitzsche et al., 2017) indicated that intensive agriculture has led to high phosphorus and nitrogen 83 
inputs into KH, likely resulting in the observed eutrophication (Lischeid et al., 2018). Since most KH 84 
in the study area are connected via groundwater (Lischeid et al., 2018), the chemical effects of 85 
agriculture could thereby also extend to KH in the surrounding grasslands and forests and forest 86 
patches. 87 

Environmental DNA analyses have been increasingly applied as a non-invasive, highly sensitive 88 
monitoring tool (Andújar, Arribas, Yu, Vogler, & Emerson, 2018; Beng & Corlett, 2020; Bylemans, 89 
Gleeson, Duncan, Hardy, & Furlan, 2019; Deiner et al., 2017). However, one of the limitations of the 90 
approach is that eDNA analyses capture not only the active community but also organisms that are 91 
inactive or have long abandoned the investigated habitat, with an expected eDNA lifetime in water of 92 
lentic systems like the KH in the order of a few days to weeks (J. B. Harrison, Sunday, & Rogers, 93 
2019) and much longer (months, years, decades) for sediments (Corinaldesi, Beolchini, & Dell’Anno, 94 
2008; Sakata et al., 2020). Therefore, eDNA can reveal long-term environmental changes but likely 95 
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falls short of revealing short-term effects of land-use change, especially in highly dynamic ecosystems 96 
such as KH, unless those effects are very strong. Metatranscriptomics is a remedy to this limitation. 97 
The approach refers to analyses of the full set of expressed genes in a community as obtained by 98 
sequencing the total RNA. This provides information specifically on the active organisms, both on 99 
community composition, derived from known taxonomic markers such as the small and large rRNA 100 
subunits, and on functionality, derived from the expression patterns of functional genes. RNA-based 101 
expression patterns typically represent recent activities at timescales ranging from minutes to hours - 102 
given the short half-life of RNA. As a result, the likelihood of observing large and transient organisms 103 
in metatranscriptomic analysis is low. Thus, this type of analysis targets organisms currently or 104 
recently active in the sampled volume of water. Importantly, since more active organisms produce 105 
more ribosomes, the relative abundance of rRNA transcripts represents the distribution of activities 106 
within the community which may be unrelated to the abundance of individual organisms. Therefore, 107 
we will refer to metatranscriptomics derived rRNA data as the “active community structure” 108 
(Blazewicz, Barnard, Daly, & Firestone, 2013).  109 

In this study, we aimed to determine the taxonomic and functional diversity of the active communities 110 
in 67 KH located in arable fields, grasslands and forests, distributed within an area of ca. 150 km2. We 111 
expected the active community structure and their spatio-temporal gene expression patterns to depend 112 
on land-use practices and related environmental conditions at the time of sampling. Accordingly, we 113 
hypothesized that in a region characterized by industrialized agriculture and biodiversity homogenized 114 
across KH, land use is reflected by organismic activity, resulting in some KH organisms being more 115 
active than others at certain times. Specifically, we addressed three main questions: 1) Does land use 116 
shape the structure of the active community as reflected in deep sequencing of total RNA? 2) Does 117 
land use drive the gene expression patterns of meta-communities? 3) Is there metabolic functional 118 
redundancy within the KH meta-ecosystem in agricultural landscapes? 119 

 120 

Methods 121 

Study site 122 

The sampling focused on 67 kettle holes (KH) in northeastern Germany (Uckermark district, State of 123 
Brandenburg; Fig. 1), 52 of which were sampled in May and 43 five weeks later in June. No samples 124 
were taken in dried-up KH, resulting in a total of 41 KH sampled on both occasions. Of the samples 125 
KH 36, 7, 9, and 28, 6, 9 were in arable fields, grasslands and forest in May and June, respectively. 126 
The area is among the least populated regions in Germany. The study area has long been used for 127 
extensive agriculture, with >90 % of the land used as arable fields (Kalettka & Rudat, 2006). This 128 
includes areas where land use was changed from arable fields to grasslands nearly two decades ago 129 
(Serrano et al., 2017). Since the 1950s, agriculture in the area was industrialized, which included 130 
increased fertilizer and pesticide use. 131 

KH were categorized according to the predominant land-use type within a perimeter of ca. 50 m. 132 
Accordingly, all KH in crop fields (rapeseed, corn, wheat, barley, rye, triticale), are referred to as 133 
“arable field KH,” both those directly adjacent to the fields and those surrounded by natural vegetation. 134 
KH in grasslands are referred to as “grassland KH”. “Forest KH”, located in the Kiecker nature reserve 135 
(Nordwestuckermark, Brandenburg), comprised KH in vast mixed forests (beech and oak) as well as 136 
in forest patches (> 100 m in diameter) surrounded by arable fields (Fig. 1). However, the last category 137 
was treated as “arable fields” in analyses where we applied a stricter definition of forests. 138 

Sampling 139 

Water Samples for RNA analysis were collected during two sampling campaigns (each 2-3 days) in 140 
late spring and early summer 2017, together with samples collected for eDNA analysis (Ionescu et al. 141 
submitted). Water samples were taken whenever water was available. To obtain a representative 142 
sample from each water body, total volumes of ca. 20 L were collected from 5-15 different locations 143 
in each KH, with the number of individual samples varying with KH size. The water was combined in 144 
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prewashed buckets and mixed, before 1.7 L were resampled for RNA analysis into plastic canisters 145 
containing 800 mL RNA-stabilizing solution (15 mM EDTA, 18.5 mM sodium citrate, 4 M ammonium 146 
sulfate). Samples were placed in iceboxes containing a mixture of ice and table salt to lower the 147 
freezing point. Upon arrival in the laboratory, the samples were frozen at -80 °C until further analyses.  148 

RNA extraction and processing 149 
Before RNA extraction, standard volumes of water (2.3 L: sample + fixative) were sequentially filtered 150 
on a Nalgene filtration tower (ThermoFisher Scientific, Dreieich, Germany). Polycarbonate filters with 151 
pore sizes of 10 and 5 µm (Millipore TCTP04700, TMTP04700, Merck, Darmstadt, Germany) were 152 
used, as well as combusted GF/F and polycarbonate filters with 0.2 µm pore size (Whatman 153 
WHA1825047, Millipore GTTP04700, Merck, Darmstadt, Germany). All filter diameters were 47 mm. 154 
The entire water volume was passed through all filters. The filters were rinsed twice with 50 mL 155 
autoclaved MQ water to remove salts and subsequently flash frozen.  156 

To avoid introducing batch effects (Bálint, Márton, Schatz, Düring, & Grossart, 2018), Eppendorf 157 
tubes containing the filters representing sample-fractions were shuffled and randomly allocated to 158 
separate batches. RNA was extracted following a phenol/chloroform procedure modified from 159 
Nercessian et al. (2005). In brief, a CTAB extraction buffer containing SDS and N-lauryl sarcosine 160 
was added to the samples together with an equal volume of phenol/chloroform/isoamylalcohol 161 
(25:24:1) solution. The samples underwent a bead-beating treatment, followed by centrifugation, 162 
cleaning with chloroform, and precipitation with PEG-6000 (Sigma-Aldrich, Taufkirchen, Germany). 163 
The precipitated DNA/RNA mix was rinsed with 1 mL 70 % ethanol, dried, and dissolved in water. 164 
Finally, all extractions belonging to a given sample were pooled.  165 

DNA was removed by two sequential treatments with the TurboDNAfree Kit (Invitrogen 166 
ThermoFisher Scientific, Dreieich, Germany), after which the samples were transferred to an 167 
RNAstable 96-well plate (Sigma-Aldrich, Taufkirchen, Germany) for shipment. A total of 98 samples 168 
were sequenced at MrDNA (Molecular Research, Shallowater, Texas, USA) according to the 169 
following procedure: The RNA samples were resuspended in 30 µL of nuclease-free water and cleaned 170 
using the RNeasy PowerClean Pro Cleanup Kit (Qiagen, Germantown, MD, USA). The concentration 171 
of total RNA was determined using the Qubit® RNA Assay Kit (Life Technologies, Thermofisher, 172 
Grand Island, NY, USA). Next, 750 ng of total RNA were used to remove the remaining DNA 173 
contamination using Baseline-ZERO™ DNase (Epicentre, Lucigen, Middleton, WI, USA) according 174 
to the manufacturer's instructions, followed by a purification step with RNA Clean & Concentrator-5 175 
columns (Zymo Research, Irvine, CA, USA). DNA-free RNA samples were used for library 176 
preparation using the TruSeq™ RNA LT Sample Preparation Kit (Illumina, Hayward, CA, USA) 177 
according to the manufacturer’s instructions. Following library preparation, the final concentration of 178 
all the libraries were measured using the Qubit® dsDNA HS Assay Kit (Life Technologies, 179 
Thermofisher), and the average library size was determined using the Agilent 2100 Bioanalyzer 180 
(Agilent Technologies, Cedar Creek, TX, USA). The libraries were then pooled in equimolar ratios of 181 
2 nM, and 6 pM of the library pools was clustered using the cBot (Illumina, Hayward, CA, USA) and 182 
sequenced 2x125 paired end reads on 20 lanes for 250 cycles using the HiSeq 2500 system (Illumina, 183 
Hayward, CA, USA). The sequenced data was submitted to the NCBI short read archive under project 184 
number PRJNA640812 (https://www.ncbi.nlm.nih.gov/sra/PRJNA640812). 185 

Raw files of paired end reads were quality-trimmed using Trimommatic (V 0.39) (Bolger, Lohse, & 186 
Usadel, 2014). Ribosomal RNA reads were removed by stringent mapping to a database of SSU, LSU 187 
and 5S rRNA assembled manually from the SSU and LSU Silva databases (V132) (Quast et al., 2013). 188 
Subsequently the SSU rRNA was annotated using PhyloFlash (Gruber-Vodicka, Seah, & Pruesse, 189 
2020) and Kraken2 (Wood, Lu, & Langmead, 2019). The non-rRNA sequences were further checked 190 
using BARNAP (V 0.9). The clean non-rRNA reads of each sample were individually processed 191 
according to the Trinotate (https://github.com/Trinotate/Trinotate.github.io/wiki) pipeline, including 192 
assembly with Trinity V 2.6.5 (Grabherr, Haas, & Yassour, 2011), protein prediction using 193 
TransDecoder (https://github.com/TransDecoder/TransDecoder), and annotation with Diamond 194 
BlastP and BlastX (Buchfink, Xie, & Huson, 2015) against the Uniprot database. Sequences were also 195 
annotated with hmmsearch (Gough, Karplus, Hughey, & Chothia, 2001) and the pFam (Finn et al., 196 
2014) database. Kallisto (V 0.44) (Bray, Pimentel, Melsted, & Pachter, 2016) was used to map the 197 
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reads from each sample against the samples’ assembled transcripts resulting in TPM-normalized 198 
counts. The data was merged to generate abundance matrices for statistical analysis. BlastP, BlastX, 199 
EC-number and Subsystems’ matrices were obtained and separately analyzed. The presented results 200 
stem from the Subsystem annotation of the data. More information on SEED subsystems is available 201 
at: https://www.theseed.org/wiki/SEED_Viewer_Manual. 202 

 203 

Analysis of physico-chemical properties 204 

Temperature (Temp), conductivity (Cond), pH, and oxygen saturation (O2 Sat) were measured in situ 205 
during sampling using a portable multi-probe (HI98194, Hanna Instruments, Vöhringen, Germany). 206 
An additional 1 L of water was collected for analyses of nutrients and other major ions as detailed 207 
below. The collected water was immediately frozen by placing it in a container with ice mixed with 208 
table salt (NaCl). 209 

Water analysis followed standard methods as defined by the German Institute for Standardization, 210 
DIN). Ca, Mg, K, Na, and total Fe were analyzed using inductively coupled plasma optical emission 211 
spectrometry (ICP-iCAP 6300 DUO, ThermoFisher Scientific GmbH, Dreieich, Germany). Br, Cl, 212 
NO3

-, NO2
- and SO4

2- were analyzed using ion chromatography (882 Compact IC plus, Deutsche 213 
Metrohm GmbH & Co. KG, Filderstadt, Germany). Ammonium (NH4

+) and ortho-phosphate (o-PO4
3-214 

) were measured spectrophotometrically (SPECORD 210 plus, Analytik Jena AG, Jena, Germany). 215 
Total phosphorus (TP) was measured as soluble reactive phosphorus after microwave digestion 216 
(Gallery™ Plus, Microgenics GmbH, Hennigsdorf, Germany). Dissolved organic carbon (DOC), total 217 
organic carbon (TOC) and total nitrogen (TN) were determined using an elemental analyzer (TOC-218 
VCPH, Shimadzu Deutschland GmbH, Duisburg, Germany) with chemiluminescence detection. The 219 
specific absorption coefficient at 254 nm (SAC) was measured using a spectrophotometer (SPECORD 220 
210 plus) as an approximation of the dissolved aromatic carbon content (Weishaar et al., 2003). The 221 
ratio of SAC to DOC concentration was used as a rough indicator of DOC composition. The specific 222 
UV absorbance at 254 nm (SUVA254) correlates with the hydrophobic organic acid fraction of DOM 223 
(Spencer, Butler, & Aiken, 2012) and is a useful proxy for DOM aromatic content (Weishaar et al., 224 
2003) with a higher SUVA254 value indicating a higher content of aromatic molecules. 225 
 226 

Statistical analysis 227 

Multivariate (NMDS, PCA, CAP, PERMANOVA) and diversity (richness and evenness) analyses 228 
were conducted using the Primer6 (V 6.1.1) + PERMANOVA Package (V 1.0.1) (Primer-E, Quest 229 
Research Limited, Auckland, New Zeeland). NMDS was conducted using Bray-Curtis dissimilarity, 230 
retaining the ordination with the lowest calculated stress out of 1000 iterations. PERMANOVA was 231 
used to test for the effects of land-use type, seasonality (i.e., campaign number) or both. CAP 232 
(Canonical Analysis of Principal coordinates) was used to plot the data according to factors found by 233 
PERMANOVA to have a significant effect. Distance-based Linear Models with Redundancy Analysis 234 
(DBLM-RDA) were used to test for the effects of water chemistry on community structure. Univariate 235 
analyses (Mann-Whitney’ test, Dunn’s test) and diversity indices (e.g. Chao I) were calculated using 236 
the PAST4 software (Hammer, Harper, & Ryan, 2009). Ternary plots were generated using the ggtern 237 
package (Hamilton & Ferry, 2018) in R V3.5 (R Core Team 2018). An indicator species analysis was 238 
done using the indicspecies R package (V.1.7.8; Cáceres & Legendre 2009) testing for the IndVal 239 
index, as well as Pearson’s phi coefficient of association (Chytrý, Tichý, Holt, & Botta‐Dukát, 2002). 240 
The latter was calculated based on both presence/absence and sequence frequencies data and included 241 
the appropriate functions and corrections according to the indicspecies package manual (ver. 1.7.8). 242 
Indicator species analysis was conducted using the most elaborate annotation matrix (containing 243 
50,000 taxa across the 3 domains Archaea, Bacteria, and eukaryotes). Additionally, the outcome of 244 
the analysis was corrected for the fact that there were more sites in arable fields than in grasslands and 245 
forests. Data for ternary plots were generated as the average relative sequence frequency per 246 
taxon/function within each land-use type or as average transcript TPM abundance per land-use type. 247 

 248 
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Results  249 

Physico-chemical properties 250 

Water physico-chemical characteristics (Fig. 2; Table S1) varied greatly among KH within land-use 251 
types (i.e., forest, grassland, or arable fields). Only a few variables were significantly different among 252 
land-use types or sampling campaigns (Table S2). Most evident was an increase in water temperature 253 
between May and June. Furthermore, oxygen saturation was significantly lower in forest KH than in 254 
arable fields, with grassland KH having intermediate saturation levels. Potassium (K) concentrations 255 
in forest KH remained low in June and significantly differed from those surrounded by arable fields. 256 
Magnesium (Mg) and chloride (Cl) concentrations in arable fields were significantly higher than in 257 
forest KH in May but did not differ from those in grassland KH. Conductivity in arable field KH was 258 
higher than in forest KH in both campaigns. Total N and P concentrations were high in almost all KH 259 
but did not significantly differ between land-use types nor between sampling times. NH4 260 
concentrations were significantly higher in forest KH in both campaigns. A significant difference in 261 
SUVA254 values was observed between May and June, however, within a single campaign, no 262 
significant differences were observed between land-use types. The low SUVA254 values of samples 263 
from arable fields in June are likely due to a low number of samples due to technical issues with the 264 
measurement. Accordingly, the difference between arable fields in June and the other two land-use 265 
types is likely insignificant. 266 

 267 

Determinants of active community structures 268 

Metatranscriptomic analysis of the total of 98 samples resulted in 47±7 and 5±1 million rRNA and 269 
non-rRNA paired end reads per sample, respectively, after quality trimming. These sequences were 270 
separated and analyzed individually (see Methods). The community analysis was clustered according 271 
to the assigned taxonomic name. While different taxonomic annotation methods (see Methods) 272 
resulted in different numbers of taxa, the results of the subsequent analyses did not qualitatively differ 273 
(Fig. S1). Similarly, functions assigned to assembled transcripts from each sample using different 274 
methods (see Methods), resulted in similar qualitative results (Fig. S1). The eukaryotic component of 275 
the rRNA was 7 times larger than the bacterial (Bacteria and Archaea) one on average (3 time larger 276 
by median), therefore, when possible, the two communities were also analyzed separately. 277 

Parameters that by distance-based linear models significantly contribute individually to the structure 278 
of the active community are shown in Fig. 3A-C. However, only a few of these (in bold) were 279 
significant contributors when the same parameters were tested in an additive, sequential manner (Table 280 
S3). Temperature (Temp), pH, conductivity (Cond) and O2 saturation (O2 Sat) were significant drivers 281 
for the overall and eukaryotic community structure. However, only pH and temperature significantly 282 
affected the active bacterial (Bacteria and Archaea) community. The three redundancy-analysis plots 283 
generated, using distance-based linear models, show a clear temporal separation between the active 284 
communities of mid-spring and early summer (Fig. 3A-C). 285 

The structures (abundance matrix) of the active bacterial and eukaryotic communities from both 286 
sampling campaigns were correlated with each other (Mantel test, Spearman’s rho=0.46, p=0.01). 287 
Therefore, we further investigated how much of the variability in the active bacterial community can 288 
be explained by that of the eukaryotic community. Based on the top 90 eukaryotic taxa (of all 97 289 
samples), the first two axes of the distance-based redundancy analysis explain 37 % of the total 290 
bacterial variability (Fig. 3D). Distance-based linear models show that 19 eukaryotic taxa significantly 291 
(p≤0.05) explain 47 % of the bacterial variability with the amoeba Arcella sp. alone accounting for >7 292 
% (Table S4). Eleven of the remaining taxa are plants or algae producing potential bacterial substrates 293 
or inhibitors. 294 

The same set of tests was applied to the functional data (i.e., profiles of expressed genes) from the 295 
same samples. No environmental variable, whether individually or sequentially, were significantly 296 
related to the observed pattern of functionality (Table S3), contrasting with the active community 297 
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structure. Furthermore, a principal component analysis shows no clear sample separation either 298 
between sampling campaigns or among land-use types (Fig. 3E-F).  299 

We tested to what extent the structure of the bacterial (Fig. 3E) or eukaryotic (Fig. 3F) active 300 
community could explain the observed functional variability. Our analysis shows that the main active 301 
taxa from both domains independently explain a large portion of the functional variability. The first 302 
two axes of the redundancy analyses, relating the structure of the bacterial (Fig. 3E) and eukaryotic 303 
(Fig. 3F) active communities to the observed functional variability, explain over 50 % of the total 304 
variation (Table S5), indicating that the main taxa from both domains explain a large portion of the 305 
overall variability in functionality. However, despite explaining a similar proportion of the variability, 306 
the directionality of the vectors (lines in Fig. 3E vs Fig. 3F) suggests different associations of the 307 
bacterial and eukaryotic communities with functionality. A distance-based redundancy analysis using 308 
a combined matrix consisting of the top 45 bacterial and 45 eukaryotic taxa further supported this 309 
result. This matrix also explains a total of ca. 50 % of the variability across the first two axes of a 310 
distance-based redundancy analysis. However, the bacterial and eukaryotic components individually 311 
explain 44 and 41 %, respectively, of the functional variability, suggesting that the two domains 312 
account for different functions. 313 

Similarly, to the distance-based redundancy analysis, nonmetric multidimensional scaling analysis 314 
(NMDS) also shows a clear separation of bacterial and eukaryotic communities among the two 315 
sampling campaigns (Fig. 4A). In contrast, no clear separation is apparent among land-use types (Fig. 316 
4A). However, PERMANOVA shows that land use has as minimal yet significant effect on the 317 
distribution pattern of the active community, explaining ca. 4 % of the overall variability. The sum of 318 
the individual and combined effects of sampling time and land use explain in total 12 % of the 319 
variability among samples. Canonical Analysis of Principal coordinates using a factor combining 320 
sampling period and land use highlights the separation between samples based on these two variables 321 
(Fig. 4B). A clear separation between samples taken at different time points is evident as well as among 322 
land-use types in May, specifically between forest and the other two land-use types (arable fields and 323 
grassland). The separation based on land-use type of the June samples is less pronounced. To test for 324 
effects of classifying tree patches embedded in arable fields as forests, arable fields, or an independent 325 
group, the same analysis was conducted by applying either a strict or loose (standard) definition to 326 
forest KH, allocating the tree patches to the arable field (Fig. 4C) or forest category (Fig. 4B), 327 
respectively. The strict definition resulted in a more apparent separation of the grassland samples taken 328 
in May and a tighter aggregation of all samples in June (Fig. 4C). Nevertheless, the strict land-use 329 
definition has a marginal influence on the overall temporal and spatial distribution pattern (p=0.08). 330 
Classifying the tree-patches as a 4th land-use type (Fig. 4D) results in a separation pattern in between 331 
the loose and strict land-use definition and, while explaining less of the variability, it is statistically 332 
significant (p=0.01). 333 

PERMANOVA analysis conducted separately on the bacterial and eukaryotic communities reveals 334 
that the combined effect of land use and sampling time explains ca. 18 % and 13 % of the variability, 335 
respectively. The strict land-use definition had no significant effect on the distribution patterns of either 336 
bacteria or eukaryotes when analyzed separately.  337 

Differentiating crop types on arable fields (rapeseed, corn, wheat, barley, rye, triticale) explained a 338 
similarly low proportion of variability (ca. 4 %), and only when assessed in combination with the 339 
sampling period. Separate analyses for bacteria and eukaryotes show that crop type only significantly 340 
affected bacteria, explaining again ca. 4 % of the variability and separating the taxa into several groups 341 
(Fig. S2). 342 

The significance of sampling time, land-use type, and crop type were also tested as explanatory factors 343 
of the distribution of expressed functional genes. Land use alone or in combination with either of the 344 
two other factors had no significant influence. However, sampling time and crop type explained ca. 7 345 
% (p=0.005) and ca. 4 % (p=0.04) of the variability, respectively.  346 

Ternary plots displaying the distribution of communities and functions according to land-use type (Fig. 347 
5) show that few taxa are strongly associated with a specific land-use type. This is evident by the 348 
concentration of the bright colors in the center of the plots as opposed to the mostly purple colors at 349 
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the vertex, in line with the low percentage of active-community variability explained by land-use type 350 
(<4). Splitting the overall community into May and June samples and into bacteria and eukaryotes 351 
reveals that the plume of taxa associated with forests is due mostly to bacteria sampled in June, whereas 352 
active eukaryotes are most strongly associated with arable fields and grasslands in May. In June, the 353 
eukaryotic community shifts upward to the center of the plot. Overall, most active taxa were widely 354 
distributed across all land-use types displaying similar activity levels in all land-use types. 355 

Fewer taxa were identified as indicator species of arable fields than forests or grasslands based on the 356 
analysis of presence-absence data (Fig. 6). However, consideration of community activity levels 357 
increases the number of indicator taxa for arable fields by nearly 20 times (11 and 176 taxa for P/A 358 
and quantitative analysis (Quant), respectively). In both types of analyses, the maximum association 359 
factors (ranging between 1 for strong and 0 for none) of taxa with arable fields were lower than for 360 
taxa associated with forests or grasslands (0.6, 0.9, 0.9 P/A; 0.4, 0.6, 0.5 Quant, for arable fields, forest 361 
and grassland, respectively). Among the eukaryotes, only three taxa were statistically significant 362 
indicators of arable fields based on P/A data: two green algae (Nephroselmis sp. and Carteria sp.) and 363 
a ciliate of the order Stichotrichia (likely Stylonychia sp.). However, accounting for community 364 
activity halved the association factor for eukaryotes from a maximum of 0.68 (P/A) to 0.32 (Quant), 365 
attributed to Tribonema sp., a filamentous green alga. The association of bacteria with arable fields 366 
was loose with maximum association factors of 0.6 and 0.4 for P/A and quantitative analyses, 367 
respectively. The gastropod Planorbarius corneus was the most important indicator of P/A analyses 368 
in forest KH, whereas Trachelomonas, a flagellate of the family Euglenaceae, dominated in grassland 369 
KH. As for the communities in KH of arable fields, a quantitative analysis based on community activity 370 
reduced the overall association factors and placed microorganisms such as ciliates and fungi at the top 371 
of the indicator list.  372 

 373 

Community Functional Performance 374 

The overall and seasonal functional ternary plots show minimal land-use-specific associations and 375 
similarly small changes between the two sampling periods (Fig. 5). To further inspect this, we 376 
compared the normalized gene expression (see Methods) for different metabolic pathways grouped 377 
into Subsystems of the Seed database (Overbeek et al., 2005) as well as tested for their correlation with 378 
the measured environmental parameters (Fig. 7). Samples were grouped according to sampling time, 379 
land-use type, or both and then compared pairwise. Some Subsystems were correlated with 380 
environmental variables (Fig. 7A), yet interestingly, these were mostly with physical properties 381 
(temperature, pH, conductivity) and concentrations of other ions rather than with nutrients (P or N). 382 
Separating the data into the two sampling months shows a correlation of several N and P related 383 
subsystems with N and P concentrations in May but not in June (Supplementary Data 1). These 384 
correlations were not evident when the data was further analyzed according to the different land-use 385 
types. Excluding subsystems for which expression was detected only in one or two sets of samples, 386 
significant differences between groups were observed in 22 cases (Figs 7 and S1). The photosynthesis 387 
and CO2 fixation Subsystem showed the lowest gene expression in forest KH in June, but no significant 388 
differences in expression among land-use types in May. No differences in expression were detected 389 
between arable fields and grasslands for either functional Subsystem and in either May or June.  390 

The expression of genes involved in nitrogen fixation and ammonia assimilation was higher in June 391 
than in May in KH located in arable fields and even more so for those in grasslands. Gene expression 392 
related to iron transport was also higher in June (Fig. S3) in parallel with an increase in siderophore 393 
production.  394 

Transcripts categorized as contributing to general phosphorus metabolism were higher expressed in 395 
May, with no difference among land-use types. In contrast, genes related to bacterial and eukaryotic 396 
phosphorus scavenging, such as phosphate transporters and “DING” binding proteins (Berna, Bernier, 397 
Chabrière, Perera, & Scott, 2008), were more often expressed in June. 398 

The quality of carbon provided to KH in forests, grasslands, and arable fields is expected to differ 399 
because of differences in vegetation cover in the riparian zone and the extent of aquatic-terrestrial 400 
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coupling. This influence can be seen in differences in SUVA254 of DOC (Fig. 2). Accordingly, some 401 
differences were observed for carbon metabolism. Subsystems involved in metabolism of larger sugars 402 
were mostly detected in May. Specifically, the metabolism of di- and oligo-saccharides in May was 403 
significantly higher in samples from forest KH, and a similar tendency was also observed in June. In 404 
contrast differences were apparent in fermentation processes and organic acid metabolism when 405 
focusing on specific processes (functional subsystem Level 3; Fig. S3), although they were not 406 
significantly different when grouped at Level 2 in the subsystem hierarchy. For example, the 407 
fermentation of mixed acids was highest in forest KH in May, whereas the synthesis of acetone, 408 
ethanol, and butanol was higher in grasslands at the same time. Differences between land-use types 409 
were also observed for organic acid metabolism in May, when arabinose utilization was highest in 410 
grassland KH and tricarballylate utilization in forest KH. 411 

 412 

The overall expression profile of functional genes was not significantly affected by land-use type. To 413 
evaluate whether land-use type affects other properties of the community functionality, we 414 
investigated the functional richness (number of different functions) and evenness for the three land-415 
use types and the two sampling periods, reasoning that low functional richness and evenness could be 416 
indicative of specialist communities. Functional richness (Fig. 8A) varied across samples but was not 417 
significantly different among land-use types or between sampling points. Functional evenness (Fig. 418 
8B) varied across samples as well. Values were as low as 0.2 in some samples suggesting that in June, 419 
the evenness in forest and grassland KH is higher than in arable field KH (Mann-Whitney and Dunn’s 420 
tests, p=0.04). This suggests that arable fields enrich for certain metabolic pathways. 421 

 422 

Discussion 423 

In this study we demonstrate that land-use type has a time-dependent, temporary, effect on the structure 424 
of active prokaryotic and eukaryotic communities in KH, despite the overall biodiversity 425 
homogenization observed in this agricultural KH meta-ecosystem (Ionescu et al., submitted). Thus, 426 
we confirm our hypothesis that the activity of organisms, as reflected by profiles of environmentally 427 
short-lived RNA, may reveal patterns not observed in eDNA analyses or traditional surveys. 428 
Furthermore, our results show that while land use partially determines which organisms are active, the 429 
functional profile, as seen by the type of expressed genes, remains largely unaffected, across time and 430 
land-use type, pointing to functional redundancy. 431 

 432 

Physical and Chemical parameters of the KH water  433 

Lischeid et al. (2018) found the KH in our study area to be connected via a shallow aquifer. This is 434 
consistent with our observation that only a few of the numerous physical and chemical variables 435 
measured in this study showed significant differences among land use types or time of sampling. The 436 
lower oxygen saturation in forest KH during both sampling campaigns is likely a combination of lower 437 
photosynthesis due to shading by the forest canopy and increased respiration resulting from high 438 
organic matter inputs derived from forest soil, leaf litter and riparian vegetation. This interpretation is 439 
supported by high ammonia concentrations suggesting high rates of organic matter mineralization in 440 
forest KH (Hargreaves, 1998). 441 

The high N and P concentrations measured in (almost) all KH highlight long-term effects of intensive 442 
agriculture in the area, which led to the eutrophication of all KH in the study area (Lischeid et al., 443 
2018). The elevated conductivity, K+ and Cl- concentrations in arable-field KH are possible evidence 444 
of fertilization of the fields shortly before or during our study, as already suggested for KH in the area 445 
(Lischeid & Kalettka, 2012). Elevated concentrations of K+ are commonly observed in arable fields 446 
due to fertilization (Spiess, 2011). The higher pH, also considering the higher NO3 and O2 saturation 447 
in arable fields in May, is likely a result of higher photosynthesis possibly driven by a recent input of 448 
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nutrients. However, K+ and Cl- did not remain elevated throughout the year, which may point to 449 
homogenization of water chemistry of the KH among land-use types by shallow groundwater flow. 450 

 451 

Determinants of active community structure 452 

Respiration and photosynthesis, and thus primary production, can shape the overall community 453 
structure by driving changes in O2 concentration, pH and autochthonous DOC. This notion is supported 454 
by the significant effects of O2 saturation and pH we observed on the structure of the active community. 455 
The significant relationship we observed between O2 and the structure of the active eukaryotic 456 
communities is most likely due to the high sensitivity of the larger, more complex, organisms to low O2 457 
concentrations (Knoll & Sperling, 2014). Conductivity, which may change as a result of evaporation 458 
and intrusion of brackish groundwater (Nitzsche et al., 2017), had a significant effect on the entire 459 
community and specifically on its eukaryotic component. In agreement with this finding, conductivity 460 
negatively affected rotifer abundance and alfa-diversity in KH in our study area (Onandia et al., 2021). 461 
This suggests that the bacterial communities in these KH are more tolerant than higher organisms to 462 
changes in conductivity within the range encountered here. 463 

Interactions between the eukaryotic and bacterial communities appear to be the strongest driver 464 
shaping the structure of the active community (i.e., the activity distribution among the different 465 
organisms). Algae and plants account for 11 of the 19 eukaryotic taxa which significantly explain the 466 
variability in the structure of the active bacterial community, indicating either a strong link to primary 467 
production or nutrient cycling via the decomposition of plants and algae. Previous findings in one of 468 
the studied ponds suggest that an important proportion of the bioavailable nutrient concentrations in 469 
ponds originate from submerged macrophyte decomposition (Onandia et al., 2018). The testate 470 
amoeba Arcella, which feeds on algae, cyanobacteria, fungi, ciliates, and bacteria (Laybourn & 471 
Whymant, 1980), accounts for more than 7 % of the variability in the structure of the active bacterial 472 
community. Arcella is a generalist amoeba (Tsyganov & Mazei, 2006), common in eutrophic waters 473 
and an important consumer of both bacteria and their grazers and hence may affect the bacterial 474 
community in opposite ways (Wilkinson & Mitchell, 2010). Similarly, fungi, which account for most 475 
of the additional eukaryotic taxa that significantly explain the bacterial community, can also affect 476 
bacterial community diversity and activity through both positive or negative interactions such as 477 
resource competition or organic matter mineralization (Bahram et al., 2021; Deveau et al., 2018; Wagg, 478 
Schlaeppi, Banerjee, Kuramae, & van der Heijden, 2019).  479 

Land-use type had different effects on the structure of the active KH communities in May and June. A 480 
clear separation among land-use types is evident in May, whereas in June the land-use effect is less 481 
pronounced, especially when the KH located in small patches of wood surrounded by arable fields are 482 
considered KH in arable fields rather than forests. This indicates that despite similar chemical and 483 
physical characteristics of the KH water, land use directly adjacent to the KH influences the structure 484 
of the active community in some periods, notwithstanding the overall homogenization of biodiversity 485 
observed in the studied KH (Ionescu et al., submitted). The greater effect of land use and sampling 486 
time on the active bacterial community compared to the eukaryotic community agrees with the finding 487 
that crop type had a statistically significant effect only on the active bacterial community. This suggests 488 
that the active bacterial communities in KH were influenced by the farming activities close to the time 489 
of sampling. This also demonstrates that the vegetation around KH does not completely buffer for the 490 
effects of the surrounding landscape as proposed by Joniak et al. (2017). 491 

Even though some changes occurred between May and June related to land-use-type associations of 492 
active bacterial and eukaryotic communities, a large proportion of taxa showed no association with a 493 
particular land-use type. This does not imply the selection of generalists over functionally specialized 494 
organisms, but rather that specialists were widespread across the different land-use types. This is most 495 
evident by the diverse functional repertoire observed both in May and in June. Therefore, it is likely 496 
that many organisms are more responsive to within KH biotic interactions and subsequently to 497 
environmental parameters, than to land-use type. This is well supported by the large percentage of 498 
variability in the active bacterial community that is explained by the structure of the active eukaryotic 499 
community and vice-versa. The changes occurring in the active bacterial communities between May 500 
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and June, however, differed from those occurring in the eukaryotic communities. Furthermore, since 501 
only the bacteria responded to crop type, we propose that the community responses to land-use type 502 
were driven by factors other than inter-organismic interactions alone. These may include measured 503 
parameters such as concentrations of different N species, P and O2, but also, for example crop-related 504 
parameters which were not determined such as toxic water-soluble extracts of crops (Far & 505 
Bagherzadeh, 2018; Mustarichie, Sulistyaningsih, & Runadi, 2020). 506 

Our indicator species analysis was conducted to identify organisms whose activity was tightly linked 507 
to a specific land-use type. The presence-absence data for the active taxa in the communities show that 508 
only a few bacterial and eukaryotic taxa are indicative of arable fields. Nevertheless, a quantitative 509 
analysis increased the number of taxa specifically associated with arable fields nearly 20-fold, 510 
suggesting that these additional taxa are present in forests and grasslands, but have a much lower 511 
activity level there, as derived from rRNA sequence coverage. A remarkable finding of the analysis is 512 
that regardless of the method used for identifying indicator species, only microorganisms were 513 
recognized as specific indicators of arable fields. In contrast, indicator species of grassland and forest 514 
KH alone or in combination with arable fields also included larger organisms (Table S6) such as 515 
zooplankton (e.g., Ischnomesus sp.), worms (e.g., Trieminentia sp.) and insects (e.g., the pest 516 
Sitodiplosis mosellana). However, the absolute taxonomic identification of these larger organisms 517 
should be clarified in targeted studies using long-read sequencing approaches of one or more 518 
phylogenetic markers. Overall, these observations made using the indicator species analysis suggest 519 
both an overall homogenization in biodiversity in the area and an increased activity of certain 520 
microorganisms in KH from arable fields.  521 

In addition to bacteria and fungi, the nature of other eukaryotic indicator species is in general 522 
agreement with the overall eutrophic nature of the sampled KH described by Lischeid et al. (2018). 523 
Ecological information on the three eukaryotic taxa identified as indicative of KH in arable fields 524 
(Nephroselmis sp., Carteria sp., Stichotrichia sp.) is scarce. Carteria sp. can be present in various 525 
aquatic habitats ranging from oligotrophic lakes (Padisák, Hajnal, Krienitz, Lakner, & Üveges, 2010) 526 
to extreme acid lakes (Nixdorf, Wollmann, & Deneke, 1998). However, consistent with our results, 527 
Carteria sp has recently been found to form blooms in eutrophic lakes (González & Roldán, 2020). 528 
Although Stichotrichia is mostly dominant in oligotrophic waters (Desvilettes & Bec, 2009), some 529 
species have also been recorded in hypertrophic environments (Šimek et al., 2019). Similarly, the top 530 
indicative taxa of forest and grassland KH, Planorbarius corneus and Trachelomonas sp., respectively, 531 
are also known to occur in eutrophic waters (Costil & Clement, 1996; Peczuła, Szczurowska, & 532 
Poniewozik, 2014; Solórzano et al., 2011).  533 

Our quantitative analysis ranked microorganisms such as ciliates, fungi, and bacteria at the top of the 534 
indicator species list across all land-use types. However, this is to be expected as the probability of 535 
retrieving RNA from microorganisms in our samples is higher than for higher organisms.  536 

 537 

Community Functional Performance 538 

Functional redundancy emerges as an inherent property of the KH communities, when the same tool 539 
used to investigate the structure of the active communities is applied to analyze patterns of gene 540 
expression. Land-use type could not explain functional variation (i.e. gene expression patterns) and a 541 
temporal effect of crop type explained only a small fraction of the overall variation. The latter effect 542 
can likely be attributed to the same portion of the bacterial community that responded to crop type. 543 
Additionally, no physical or chemical variables could be identified to explain the distribution of 544 
expressed functional genes, indicating that the observed effects of water chemistry on the structure of 545 
the active community did not translate to variations in community functions. Despite sampling time 546 
explaining ca. 7 % of the variation in functional gene expression, a principal component analysis could 547 
not separate the functional community profiles according to the time of sampling. Thus, the active 548 
communities sampled in May and June differed from one another, but their functionality remained 549 
unchanged between the two months. This suggests that different organisms perform the same processes 550 
at different time points. This conclusion is also apparent in the ternary plots indicating minimal land-551 
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use specific associations of functions and similarly small differences between the two sampling periods 552 
(Fig. 5j-l). 553 

Despite obvious differences in light availability between the tree-covered forest KH and most KH 554 
located in grassland and arable fields, it appears that light, and consequently photosynthesis, were not 555 
the main drivers behind the partial community separation observed in May. Photosynthesis and CO2 556 
fixation genes expression were lowest in forest KH in June, likely due to light limitation by the 557 
covering tree canopy; however, no separation in the community was observed at this time point. In 558 
contrast, in May, when the active communities could be partially separated according to land use, no 559 
significant differences in photosynthesis and CO2 fixation gene expression levels were detected 560 
between the three land-use types. Furthermore, no changes were observed between the expression of 561 
the genes between arable fields or grasslands from May to June. 562 

Genes for nitrogen fixation and phosphorus scavenging in arable fields were higher in June than in 563 
May. This suggests these nutrients were less available in late spring, which might be related to fertilizer 564 
application at this time. Nitrogen fixation is triggered by the absence of combined nitrogen sources 565 
such as ammonia, nitrate, urea etc. Similarly, scavenging of phosphorus via alkaline phosphatase or 566 
DING proteins (Berna et al., 2008) increases as phosphorus concentration decreases. Accordingly, the 567 
increase in expression of these genes in June suggests that N availability in KH decreased from May 568 
to June, or N demand increased. This further supports the notion that the separation of the structure of 569 
the active communities according to land-use type in May indicates the effect of pulsed fertilization 570 
applied to the arable fields reaching all KH water. This is reflected in temporal changes of the structure 571 
of the active community (i.e. not necessarily their physical abundance) between May and June. In June, 572 
grassland KH were characterized by an even higher increase in nitrogen fixation genes than those in 573 
arable fields, highlighting a delayed but similar change in nitrogen availability in grassland KH. The 574 
proximity of these KH to arable fields may result in indirect fertilization from arable fields and vice 575 
versa. The strong simultaneous decrease in NH4 from May to June in grassland and arable field KH 576 
and the overall low NO3 concentration further explain the strong increase in the expression of N 577 
fixation genes in June. According to information passed by local landowners to Dr. Gernot Verch from 578 
the Leibniz Centre for Agricultural Landscape Research (ZALF), fertilization in 2017 in the study area 579 
took place between March – May and ceased at least two weeks before the June sampling campaign. 580 

Although elevated potassium concentrations in KH of arable fields could also be due to fertilization, 581 
the lack of changes in the expression of potassium homeostasis genes, which increases in limiting 582 
conditions (Schramke et al., 2017), suggests that potassium availability is sufficient in the studied KH. 583 

In this study, we have examined the structure and functionality of active KH communities at the genetic 584 
level. Yet, land-use type may also affect organismic traits that are not genetically detectable, especially 585 
for larger organisms. For example, body size, coloration, feeding habits and other behavior, habitat 586 
use etc. (McKie, Sandin, Carlson, & Johnson, 2018; Potapov, Klarner, Sandmann, Widyastuti, & 587 
Scheu, 2019), may not be seen in our transcriptome. Therefore, to fully elucidate land-use and other 588 
effects on community structure and functions requires complementing eDNA and eRNA data with 589 
information on further organismic features such as morphological, functional and behavioral traits. 590 
Additionally, because of the short lifetime of RNA in the environment, it is likely that larger organisms 591 
which could not be directly sampled are absent or incorrectly represented in the eRNA data sets. 592 

 593 

Conclusions 594 

Our eRNA based study shows that current land use has a time-dependent effect on the structure of the 595 
active members of bacterial and eukaryotic communities. Thus, it becomes evident that aquatic 596 
bacterial (Bacteria and Archaea) and eukaryotic KH communities react to the input of nutrients and 597 
organic matter from the surrounding terrestrial landscape by modifying their activity patterns even 598 
when community composition remains unchanged due to biodiversity homogenization. Community 599 
structure of the active aquatic bacteria can respond to crop type. Such relationships are hidden when 600 
analyses are restricted to determining community structure using eDNA, highlighting the 601 
complementary analyses of eRNA based studies. 602 
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In contrast to the activity level of the studied communities, the overall functionality assessed by 603 
determining expression patterns of functional genes were barely influenced by sampling time or land-604 
use type highlighting a functional redundancy across the landscape. Additionally, only a small portion 605 
of the overall variation can be explained by water temperature and chemistry. Given the apparent 606 
functional redundancy, it is not surprising that neither land-use type nor environmental parameters, 607 
can explain the functional variability. 608 

Yet, functional-gene expression is quite well (50 %) explained by the active community structure of 609 
bacteria, eukaryotes, and both combined. Our data suggest that site-specific interactions among 610 
organisms constitute the main drivers of changes in organismic structure of the active KH communities 611 
and their specific metabolic activities.  612 

Biodiversity homogenization due to anthropogenic activity appears to be a reoccurring pattern in 613 
different types of ecosystems (Buhk et al., 2017; Holman et al., 2021; Meyer et al., 2013; Smart et al., 614 
2006a). This is further accompanied by a continuous decrease in biodiversity (Díaz et al., 2019; S. 615 
Harrison, Spasojevic, & Li, 2020; Urban, 2015). Our study demonstrates that the activity of different 616 
members of these communities, despite being homogeneously distributed across the landscape, 617 
respond to land-use related activities, such as fertilization. To mitigate further loss in biodiversity, and 618 
as a step towards restoration, conservation policies should be applied not only to pristine ecosystems 619 
but also to those that were under negative anthropogenic influence for long periods of time as it 620 
becomes obvious that the local communities are still sensitive to land-use specific input.  621 
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Figures 898 

 899 

 900 
Figure 1. Overview map of the sampling area (150 km2) located ca. 60 km north of Berlin, Germany 901 
(left panel), and local distribution of the sampled kettle holes, 67 in total. Color codes of the kettle 902 
holes refer to the surrounding land-use type: arable fields (orange n = 47), forest (brown, n = 11) and 903 
grassland (green, n = 9) (right panel). The map was produced using the Google Maps tool.  904 

 905 
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 906 
Figure 2. Physical and chemical variables characterizing kettle holes (KH) sampled in May and June 907 
2017 for RNA analysis. The solid line shows the median in each box while the cross marks the mean. 908 
Whiskers mark the 25th and 75th percentile. Table S1 provides detailed information for each variable, 909 
and all KH and Table S2 shows the significance by which each land-use type and sampling point differ 910 
from each other.  911 
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 912 
Figure 3. RNA-based community composition (A-C) in a redundancy analysis generated by distance-913 
based linear models accounting for all physical and chemical variables detailed in Fig. 2 and Table S1. 914 
All single variables contributing significantly to the variation are shown. Only those marked in red 915 
were significant in a sequential additive model (see main text and Table S3). Panel D shows that 37% 916 
of variability in the community structure of active bacteria can be explained by the first two axes of a 917 
distance-based linear model redundancy analysis based on the 90 most expressed eukaryotic species. 918 
Redundancy analyses of the explanatory power of the bacterial (E) and eukaryotic (F) communities on 919 
functional diversity. In both cases, the first two axes explain ca. 50 % of the observed functional 920 
variability. Details on the specific taxa contributing to the patterns of panels D and E-F are given in 921 
Tables S4 and S5, respectively. 922 

 923 



22 
 

 924 
Figure 4. Nonmetric multidimensional scaling of the active bacterial and eukaryotic communities (A) 925 
showing temporal; separation between the samples (triangles - May vs. squares - June) as highlighted 926 
by the orange — peach shading, but no separation based on land-use types (3D stress 0.13). Canonical 927 
analysis of principle components (B, C, D) highlighting the distribution pattern of the active bacterial 928 
and eukaryotic communities by sampling period (CAP1) and land-use type (CAP2), based only on the 929 
species contributing to the significance of these parameters as tested with PERMANOVA. Panels B, 930 
C and D differ in their definition of forests. In panel B KH in large forests and tree-patches amidst 931 
arable field are classified as forest KH. In panel C, the latter tree patches are classified as arable fields, 932 
while in D they are assigned to their own group. 933 

 934 
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 935 
Figure 5. Ternary plots depicting associations of taxa and functions to specific land-use types 936 
throughout the study or separated according to sampling period (May or June 2017). The closer a point 937 
is to a vertex of the triangular plot, the stronger is its association with the respective land-use type. The 938 
community composition is further divided into bacteria (Archaea and Bacteria) and eukaryotes. 939 
Individual hexagons are colored by the square-root-normalized number of taxa in the area they cover, 940 
with purple hexagons containing single taxa and red ones two or several dozens.  941 
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 942 
Figure 6. Indicator species analysis based on presence/absence (P/A) and sequence frequency (Qua.) 943 
data, the latter serving as a proxy for community activity. Note the logarithmic scale of the y-axis. 944 
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 945 

Figure 7. Correlation of gene expression levels with environmental variables as grouped in different 946 
Subsystems (A) and normalized median expression values (B). In panel A, only significant correlations 947 
are shown (p<0.05). Additional correlation matrices as in panel A are given in Fig. S4 and the Pearson 948 
r values (-0.45 < r <0.45) are given as a Supplementary data 1 for the entire dataset or for the different 949 
months and land-use combinations. In panel B, the samples are grouped according to sampling month 950 
(May and June) and land-use type (agricultural field – A, grassland – G, forest – F). Colors represent 951 



26 
 

median values calculated per group using the TPM-normalized gene expression data (See Fig. S5). All 952 
median values calculated for one Subsystem were normalized as a fraction of the maximal value within 953 
that subsystem so that values always ranged between 0 (no expression) and 1 (maximal expression for 954 
that subsystem). The list of Subsystems is sorted according to relative expression level, with the most 955 
expressed Subsystem on top and the least expressed at the bottom. Filled triangle to the left suggest a 956 
general significant difference between samples taken in May and June. Filled circles to the right of the 957 
May and June color bars indicate significant differences between two or more land-use types within a 958 
given month (e.g., arable field vs. forest KH in May). Filled circles to the right of the May/June 959 
comparison indicate significant differences between May and June for one or more land-use types 960 
(e.g., arable fields KH in May vs. June). Pairs of sample groups differing from one another are marked 961 
in Fig. S5. More information on the SEED functional subsystems is available at 962 
https://rast.nmpdr.org/seedviewer.cgi?page=SubsystemSelect.  963 
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 965 

 966 

 967 
 968 

Figure 8. Box plots showing the overall functional richness (A) and evenness (B) of active 969 
communities in KH grouped according to land-use type and sampling period. Median and mean values 970 
are depicted by solid and dotted lines, respectively. Whiskers mark the 25th and 75th percentile. Dots 971 
represent 5 and 95 percentiles. 972 


