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Abstract

The generalized pooling problem (GPP) is a NP-hard problem for which the solution time

for securing a global optimal solution heavily depends on the strength of the problem for-

mulation. The existing GPP formulations use either quality variables (P-formulation and

the variants) or split-fraction variables (SF-formulation and the variants) to model the ma-

terial balance at the pools. This paper is the first attempt to develop theoretical results for

comparing the strength of P-formulation and SF-formulation. It is found that, an enhanced

version of P-formulation, called P+-formulation, is at least as strong as SF-formulation un-

der mild conditions. Furthermore, P+-formulation becomes identical to P-formulation when

the pooling network comprises only mixers and splitters. With additional conditions that

are often satisfied at the root node, P-formulation is proved to be as least as strong as SF-

formulation. The theoretical results are verified by the computational study of 23 problem

instances.

Keywords: Pooling Problem, Bilinear programming, Global optimization, P formulation,

Split fraction formulation

Introduction1

The generalized pooling problem (GPP) is an extension of the pooling problem in that2

it allows the interconnection between pools. It was first considered by Audet et al. [1] and3
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Figure 1: Network Structure of the Generalized Pooling Problem

has been widely applied to model many industrial problems, such as the crude oil blending4

problem [2, 3] and the natural gas transport problem [4]. The GPP can also be extended to5

model problems where materials can be removed or added at certain nodes of the network,6

such as water treatment networks [5, 6], water using networks [7, 8], and hydrogen networks7

[9, 10].8

The GPP considers a network of 3 hierarchies of nodes, i.e., source nodes s, pools b and9

demand nodes d, as shown in Fig. 1. Each source node s provides material with several10

quality measures θins,c,∀c ∈ C at cost βs. A flow from a source node or a pool can go to a pool11

or directly to a demand tank. The demand tanks include final products that are subject12

to quality limitation θout,Ld,c , θout,Ud,c and are sold at price βd. There are bounds on the total13

flow through each arc. The objective of optimization is to find the flows in the network that14

maximize the profit while satisfying the quality and flow rate constraints. Table 1 summarizes15

the list of symbols for the GPP. The units in the table are nominal and are merely to ensure16

the consistency of variable and parameter units. In this paper, we assume no mass loss in17

the pools. We also assume linear blending, i.e., qualities of a flow are linearly dependent18

on the composition of the flow. For convenience, we also limit the quality measure to the19

component mass fraction. Our results can be readily extended to other quality measures20
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Table 1: List of Symbols for the Generalized Pooling Problem

Index and Sets

s ∈ S Subset for supply tanks

b ∈ B Subset for pools

d ∈ D Subset for demand tanks

i, j ∈ N = S ∪B ∪D Nodes represent supply tanks, pools and demand tanks

(i, j) ∈ A Allowable arcs in network

j ∈ Ji Set of j that (i, j) ∈ A
i ∈ Ij Set of i that (i, j) ∈ A
c ∈ C Components

Parameters Units

βs/βd Cost/Profit for flow from s/to d. $/t

θins,c Concentration of component c in source tank s kg/t

θout,Ld,c /θout,Ud,c Demand tank lower/upper limit on component c kg/t

µLi /µ
U
i Lower/Upper bound of node capacity t/h

FL
ij/F

U
ij Lower/upper bound on total flow goes through each arc t/h

Variables Units

Fi Total flow goes through node i t/h

Fij Total flow along arc (i, j) t/h

fij,c Individual component flow along with arc (i, j) kg/h

fb,c Total component coming into pool b kg/h

pb,c Concentration of component c in pool b kg/t

xbj Split fraction variable.

because of the linear blending assumption.21

The GPP problem can be formulated in different forms. There are two major types of22

GPP formulations in the literature. One is the P-formulation [11] and the variants. The23

other is the split fraction formulation [12], called SF-formulation in this paper, and the24

variants. The major difference between the two is how the blending at the pools is modeled.25

Fig. 2 compares the mass balances at a pool in the P- and the SF-formulations. In P-26

formulation the mass balance of a component is modeled through the total flow and the27

quality variable (e.g., component fraction), while in SF-formulation it is modeled through28
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Figure 2: Pool mass balances in P-formulation and SF-formulation

individual component flows and split fraction variables.29

Seeking a global optimal solution for the GPP is difficult as it is known to be NP-hard [13].30

Within the classical branch-and-bound framework for global optimization, the solution effi-31

ciency largely depends on the lower bound obtained from the relaxation problem. A tighter32

relaxation problem provides a better lower bound and helps prune more nodes in the branch-33

and-bound tree. A formulation with a tighter relaxation is said to be a stronger formulation.34

Efforts have been made to develop stronger variants of P- and SF-formulations in order for35

more efficient global optimization. Alfaki et al. [14] proposed a variant of P-formulation,36

called multi-commodity flow formulation, where the quality variable is the commodity frac-37

tion rather than the component fraction. It is proved that, under mild bound consistency38

conditions, the multi-commodity flow formulation is at least as strong as the P-formulation.39

Boland et al. [15] further proposed other commodity based variants of P-formulation and40

demonstrated their computational performance through extensive simulation study. On the41

other hand, Lotero et al. [16] proposed a variant of SF-formulation for multi-period blending42

problems, and in this formulation commodity flows rather than component flows are consid-43

ered in mass balance equations. They proved that the proposed formulation is at least as44

strong as SF-formulation. Recently, Cheng and Li [17] proposed another commodity based45

variant of SF-formulation for wastewater treatment network optimization and proved that46

it is as least as strong as SF-formulation under mild conditions.47

However, there have been few results in the literature in comparing P-formulation and SF-48
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formulation. Karuppiah and Grossmann [18] proposed to use P-formulation rather than SF-49

formulation for optimization of integrated water systems. They thought the SF-formulation50

tended to have wider ranges variable bounds and lead to numerical difficulties. Castro et51

al. [6] solved a wastewater treatment network problem using both P-formulation and SF-52

formulation and showed that the computational time required by BARON[19] is less when53

using SF-formulation. Castro et al. [20] solved multi-period blending problems using a54

decomposition algorithm based on multi-parametric disaggregation, and they showed that55

SF-formulation results in better computational results than P-formulation.56

The original motivation of this paper was to compare the strength of P-formulation and57

SF-formulation systematically and explain why one formulation is better than the other58

for certain types of problems. We then found that theoretical comparison of P-formulation59

and SF-formulation was difficult. However, we have found that, a slightly stronger ver-60

sion of P-formulation, called P+-formulation in this paper, can be proved to be at least as61

strong as SF-formulation under mild bound consistency conditions. In certain conditions,62

the P+-formulation is equivalent to P-formulation. We have also compared the performance63

of P-formulation, SF-formulation, P+-formulation through computational study, and the re-64

sults are consistent with our theoretical results. To best of our knowledge, this is the first65

systematic computational comparison of P-formulation and SF-formulation for the GPP.66

The rest of the paper is organized as follows. We first states the three formulations under67

consideration, i.e., P-formulation, SF-formulation, and the P+-formulation first proposed in68

this paper. The next section proves the strength of P+-formulation over P-formulation and69

SF-formulation, and it also shows that P+-formulation is essentially P-formulation when70

viewing the pools as mixers connected with splitters. Then we discuss the strength of the71

formulations at the root node of branch-and-bound search. The next section provides and72

discusses the computational study results. The last section concludes the paper.73
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Formulations74

We consider the P-formulation in Alfaki et al.[14] and the SF-formulation in Quesada

and Grossmann [12]. But for convenience of comparison and discussion, we use a different

set of symbols for variables and parameters (as listed in Table 1). The P-formulation is:

(P): min
∑
s∈S

∑
j∈Js

βsFsj −
∑
d∈D

∑
i∈Id

βdFid (P-1)

s.t. fbj,c = Fbjpb,c, ∀b ∈ B, j ∈ Jb, c ∈ C, (P-2)

fsj,c = Fsjθ
in
s,c, ∀b ∈ B, j ∈ Jb, c ∈ C, (P-3)∑

i∈Ib

fib,c =
∑
j∈Jb

fbj,c, ∀b ∈ B, c ∈ C, (P-4)

∑
i∈Ib

Fib =
∑
j∈Jb

Fbj, ∀b ∈ B, (P-5)

∑
i∈Id

fid,c ≤
∑
i∈Id

Fidθ
out,U
d,c , ∀d ∈ D, c ∈ C, (P-6A)

∑
i∈Id

fid,c ≥
∑
i∈Id

Fidθ
out,L
d,c , ∀d ∈ D, c ∈ C, (P-6B)

∑
i∈Ib

Fib = Fb, ∀b ∈ B (P-7)

µL
s ≤

∑
j∈Js

Fsj ≤ µU
s , ∀s ∈ S (P-8)

FL
b ≤ Fb ≤ FU

b , ∀b ∈ B (P-9)

µL
d ≤

∑
i∈Id

Fid ≤ µU
d , ∀d ∈ D, (P-10)

FL
ij ≤ Fij ≤ FU

ij , ∀(i, j) ∈ A. (P-11)

pLb,c ≤ pb,c ≤ pUb,c, ∀b ∈ B, c ∈ C. (P-12)

The objective function given in Eq. (P-1) is to minimize the overall cost. Eq. (P-2) contains75

the bilinear term and it enforces the same component concentration in all outflows. Eq.76

(P-5) and Eq. (P-5) give total mass balance and component mass balance around pools,77
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respectively. Eq. (P-3) is the component mass balance around source nodes. Eq. (P-6A)78

and Eq. (P-6B) put quality bounds on the final products at demand nodes. Eq. (P-7) links79

the total flow goes through the pool Fb with the each inlet flow Fib. Eq. (P-8)-Eq. (P-10)80

give respectively the bounds on the total flow going through source nodes, pools and demand81

nodes. Eq. (P-11) puts bounds on the total flow going through the pipeline at each arc.82

Eq. (P-12) gives the bounds of the quality variable pb,c, which are determined by the stream83

quality at source nodes: pLb,c = mins∈S θ
in
s,c, p

U
b,c = maxs∈S θ

in
s,c.84
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The SF-formulation is:

(SF): min
∑
s∈S

∑
j∈Js

βsFsj −
∑
d∈D

∑
i∈Id

βdFid (SF-1)

s.t. fbj,c = fb,cxbj, ∀b ∈ B, j ∈ Jb, c ∈ C, (SF-2)

Fbj = Fbxbj, ∀b ∈ B, j ∈ Jb (SF-3)

fsj,c = Fsjθ
in
s,c, ∀s ∈ S, j ∈ Js, (SF-4)∑

j∈Jb

xbj = 1, ∀b ∈ B, (SF-5)

∑
j∈Jb

fbj,c = fb,c, ∀b ∈ B, c ∈ C, (SF-6)

∑
j∈Jb

Fbj = Fb, ∀b ∈ B, (SF-7)

fb,c =
∑
i∈Ib

fib,c, ∀b ∈ B, c ∈ C, (SF-8)

Fb =
∑
i∈Ib

Fib, ∀b ∈ B, (SF-9)

∑
i∈Id

fid,c ≤
∑
i∈Id

Fidθ
out,U
d,c , ∀d ∈ D, c ∈ C, (SF-10A)

∑
i∈Id

fid,c ≥
∑
i∈Id

Fidθ
out,L
d,c , ∀d ∈ D, c ∈ C, (SF-10B)

µL
s ≤

∑
j∈Js

Fsj ≤ µU
s , ∀s ∈ S (SF-11)

FL
b ≤ Fb ≤ FU

b , ∀b ∈ B (SF-12)

µL
d ≤

∑
i∈Id

Fid ≤ µU
d , ∀d ∈ D, (SF-13)

FL
ij ≤ Fij ≤ FU

ij , ∀(i, j) ∈ A. (SF-14)

0 ≤ xbj ≤ 1, ∀b ∈ B, j ∈ Jb. (SF-15)

Eq. (SF-1) gives the objective same as in P-formulation. Eq. (SF-2) and Eq. (SF-3) contain85

the bilinear term and they ensure that the same fraction of the total flow and the component86
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flows through pool b enter arc (b, j). Eq. (SF-5) states the sum of split-fraction variable xbj87

over all outflows must be 1. Eq. (SF-4) is the component mass balance around the source88

nodes. Eq. (SF-7) and Eq. (SF-9) are the total mass balance around pools. Eq. (SF-6) and89

Eq. (SF-8) are the component mass balance around pools. Eq. (SF-10A) and Eq. (SF-10B)90

are quality bounds on the final products. Eq. (SF-11) - (SF-13) put bounds on the total flow91

going through source nodes, pools and demand nodes respectively. Eq. (SF-14) put bounds92

on the total flow going through the pipeline at each arc. Eq. (SF-15) give bounds on xbj.93

The P+-formulation that we propose in this paper includes the same objective func-

tion and all constraints in P-formulation, plus additional variables fb,c, Fb and the relevant

equations:

(P+): min (P-1)

s.t. (P-2) - (P-12),

fb,c =
∑
j∈Jb

fbj,c, ∀b ∈ B, (P+-1)

Fb =
∑
j∈Jb

Fbj, ∀b ∈ B, (P+-2)

fb,c = Fbpb,c, ∀b ∈ B, c ∈ C. (P+-3)

Note that Eq. (P+-1) and Eq. (P+-2) are also included in SF-formulation. Eq. (P+-94

3) contains bilinear term so it incurs more nonconvexity. The additional constraints are95

redundant for P+-formulation in the sense that they do not alter global optimal solutions,96

but they do improve the strength of the formulation.97

Strength of the Formulations98

We compare the strength of the formulations by comparing the tightness of their convex

relaxations. The convex relaxation of P-formulation, the following formulation (P-R), is
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obtained by replacing the bilinear terms in (P-2) with their convex envelopes:

(P-R): min (P-1)

s.t. (P-3) - (P-12),

fbj,c ≤ FU
bjpb,c + Fbjp

L
b,c − FU

bjp
L
b,c, ∀b ∈ B, j ∈ Jb, c ∈ C, (P-2-R1)

fbj,c ≤ FL
bjpb,c + Fbjp

U
b,c − FL

bjp
U
b,c, ∀b ∈ B, j ∈ Jb, c ∈ C, (P-2-R2)

fbj,c ≥ FL
bjpb,c + Fbjp

L
b,c − FL

bjp
L
b,c, ∀b ∈ B, j ∈ Jb, c ∈ C, (P-2-R3)

fbj,c ≥ FU
bjpb,c + Fbjp

U
b,c − FU

bjp
U
b,c, ∀b ∈ B, j ∈ Jb, c ∈ C. (P-2-R4)

Similarly, the convex relaxation of P+-formulation is:

(P+-R): min (P-1)

s.t. (P-3) - (P-12),

(P+-1)− (P+-2),

(P-2-R1) - (P-2-R4),

fb,c ≤ FU
b pb,c + Fbp

L
b,c − FU

b p
L
b,c, ∀b ∈ B, c ∈ C, (P+-3-R1)

fb,c ≤ FL
b pb,c + Fbp

U
b,c − FL

b p
U
b,c, ∀b ∈ B, c ∈ C, (P+-3-R2)

fb,c ≥ FL
b pb,c + Fbp

L
b,c − FL

b p
L
b,c, ∀b ∈ B, c ∈ C, (P+-3-R3)

fb,c ≥ FU
b pb,c + Fbp

U
b,c − FU

b p
U
b,c, ∀b ∈ B, c ∈ C, (P+-3-R4)
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and the convex relaxation of SF-formulation is:

(SF-R): min (SF-1)

s.t. (SF-4) - (SF-15),

fbj,c ≤ fU
b,cxbj + fb,cx

L
bj − fU

b,cx
L
bj, ∀b ∈ B, j ∈ Jb, c ∈ C, (SF-2-R1)

fbj,c ≤ fL
b,cxbj + fb,cx

U
bj − fL

b,cx
U
bj, ∀b ∈ B, j ∈ Jb, c ∈ C, (SF-2-R2)

fbj,c ≥ fL
b,cxbj + fb,cx

L
bj − fL

b,cx
L
bj, ∀b ∈ B, j ∈ Jb, c ∈ C, (SF-2-R3)

fbj,c ≥ fU
b,cxbj + fb,cx

U
bj − fU

b,cx
U
bj, ∀b ∈ B, j ∈ Jb, c ∈ C, (SF-2-R4)

Fbj ≤ FU
b xbj + Fbx

L
bj − FU

b x
L
bj, ∀b ∈ B, j ∈ Jb, (SF-3-R1)

Fbj ≤ FL
b xbj + Fbx

U
bj − FL

b x
U
bj, ∀b ∈ B, j ∈ Jb, (SF-3-R2)

Fbj ≥ FL
b xbj + Fbx

L
bj − FL

b x
L
bj, ∀b ∈ B, j ∈ Jb, (SF-3-R3)

Fbj ≥ FU
b xbj + Fbx

U
bj − FU

b x
U
bj, ∀b ∈ B, j ∈ Jb. (SF-3-R4)

Since problem P+-R includes problem P-R plus additional constraints, the following99

proposition is obvious:100

Proposition 1. The optimal objective value of problem (P+-R) is no less than that of prob-101

lem (P-R).102

Next, we are to show P+-formulation is at least as strong as SF-formulation. Since

the two formulations include different variables, we make the following bound consistency

assumptions in order for a fair comparison.

xLbj =
FL
bj

FU
b

, ∀b ∈ B, j ∈ Jb, (b-1)

xUbj = min
(FU

bj

FL
b

, 1
)
, ∀b ∈ B, j ∈ Jb, (b-2)

fL
b,c = FL

b p
L
b,c, ∀b ∈ B, c ∈ C, (b-3)

fU
b,c = FU

b p
U
b,c, ∀b ∈ B, c ∈ C. (b-4)
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The lower bound of xbj given in Eq. (b-1) is a reasonable value one would infer from given103

variable bounds in P-formulation. Similarly, Eq. (b-2) provides a reasonable upper bound104

of xbj. Eq. (b-3) and Eq. (b-4) provide bounds of fb,c that could be inferred from given105

variables bounds in P-formulation.106

Proposition 2. If the bounds consistency conditions Eq. (b-1)-(b-4) hold, the optimal ob-107

jective value of problem (P+-R) is no less than that of problem (SF-R).108

Proof. Let (fb,c, fbj,c, Fb, Fbj, pb,c) be a feasible point for problem (P+-R). Using this point we109

construct a point (xbj, fb,c, fbj,c, Fb, Fbj) such that xbj =
Fbj

Fb
(∀b ∈ B, j ∈ Jb), and we show110

that this new point is feasible for problem (SF-R).111

First, we show that the point satisfies all constraints in (SF-R) except the convex en-112

velopes. Eq. (SF-4),(SF-6),(SF-9)-(SF-14) are same as Eq. (P-3), (P-13), (P-6)-(P-11)113

respectively. Eq. (SF-5) is satisfied since
∑

j∈Jb xbj =
∑

j∈Jb
Fbj

Fb
= 1,∀b. Eq. (SF-7) can be114

derived from Eq. (P-5) and Eq. (P-7). Eq. (SF-8) can be derived from Eq. (P-4) and Eq.115

(P+-1). Eq. (SF-15) is satisfied by the construction of xbj.116

Next, we show that the point satisfies Eq. (SF-2-R1) - Eq. (SF-2-R4). To prove Eq.

(SF-2-R1), we need to prove

L = fU
b,cxbj + fb,cx

L
bj − fU

b,cx
L
bj − fbj,c ≥ 0

From Eq. (P+-2-R2) and Eq. (P+-3-R4),

L ≥ fU
b,c

Fbj

Fb

+ (FU
b pb,c + Fbp

U
b,c − FU

b p
U
b,c)

FL
bj

FU
b

− fU
b,c

FL
bj

FU
b

− (FL
bjpb,c + Fbjp

U
b,c − FL

bjp
U
b,c)

= fU
b,c

Fbj

Fb

+ Fbp
U
b,c

FL
bj

FU
b

− fU
b,c

FL
bj

FU
b

− Fbjp
U
bc.
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According to condition (b-4), the above inequality can be further written as

L ≥ pUb,cF
U
b

Fbj

Fb

+ Fbp
U
b,c

FL
bj

FU
b

− pUb,cFU
b

FL
bj

FU
b

− Fbjp
U
bc

=
Fbjp

U
b,c

Fb

(FU
b − Fb) +

FL
bjp

U
b,c

FU
b

(Fb − FU
b )

= pUb,c(F
U
b − Fb)(

Fbj

Fb

−
FL
bj

FU
b

),

which is obviously non-negative.117

We can also show Eq. (SF-2-R2) is satisfied. Note that xUbj is either FU
bj/F

L
b or 1 depending

on which value is smaller. If xUbj = FU
bj/F

L
b , then from Eq. (P+-2-R1), Eq. (P+-3-R3) and

condition (b-3),

L = fL
b,cxbj + fb,cx

U
bj − fL

b,cx
U
bj − fbj,c

≥ fL
b,c

Fbj

Fb

+ (FL
b pb,c + Fbp

L
b,c − FL

b p
L
b,c)

FU
bj

FL
b

− fL
b,c

FU
bj

FL
b

− (FU
bjpb,c + Fbjp

L
b,c − FU

bjp
L
b,c)

=
Fbjp

L
b,c

Fb

(FL
b − Fb) +

FU
bjp

L
b,c

FL
b

(Fb − FL
b )

= pLb,c(Fb − FL
b )(

FU
bj

FL
b

− Fbj

Fb

) ≥ 0.

If xUbj = 1, then from Eq. (P-2-R3), Eq. (P+-1), Eq. (P+-2), and condition (b-3),

L = fb,c + fL
b,c

Fbj

Fb

− fL
b,c − fbj,c

=
∑
j′ 6=j

fbj′,c + fL
b,c

Fbj

Fb

− fL
b,c

≥
∑
j′ 6=j

Fbj′p
L
b,c + fL

b,c

Fbj

Fb

− fL
b,c

= pLb,c(Fb − Fbj + FL
b

Fbj

Fb

− FL
b )

= pLb,c(Fb − FL
b )(1− Fbj

Fb

) ≥ 0.
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Similarly, we can prove Eq. (SF-2-R3) and Eq. (SF-2-R4) are satisfied. To prove Eq.

(SF-2-R3), from Eq. Eq. (P-2-R3), Eq. (P+-3-R1), and condition (b-3), we have

L = fbj,c − fL
b,cxbj − fb,cxLbj + fL

b,cx
L
bj

≥ (FL
bjpb,c + Fbjp

L
b,c − FL

bjp
L
b,c)− fL

b,c

Fbj

Fb

− (FU
b pb,c + Fbp

L
b,c − FU

b p
L
b,c)

FL
bj

FU
b

+ fL
b,c

FL
bj

FU
b

=
Fbjp

L
b,c

Fb

(Fb − FL
b )−

FL
bjp

L
b,c

FU
b

(Fb − FL
b )

= pLb,c(Fb − FL
b )(

Fbj

Fb

−
FL
bj

FU
b

) ≥ 0.

To prove Eq. (SF-2-R4), consider the two possible values of xUbj. If xUbj = FU
bj/F

L
b , then from

Eq. (P-2-R4), Eq. (P+-3-R2), and condition (b-4),

L = fbj,c − fU
b,cxbj − fb,cxUbj + fU

b,cx
U
bj

≥ (FU
bjpb,c + Fbjp

U
b,c − FU

bjp
U
b,c)− fU

b,c

Fbj

Fb

− (FL
b pb,c + Fbp

U
b,c − FL

b p
U
b,c)

FU
bj

FL
b

+ fU
b,c

FU
bj

FL
b

=
Fbjp

U
b,c

Fb

(Fb − FU
b ) +

FU
bjp

U
b,c

FL
b

(FU
b − Fb)

= pUb,c(F
U
b − Fb)(

FU
bj

FL
b

− Fbj

Fb

) ≥ 0.

If xUbj = 1, then from Eq. (P-2-R2), Eq. (P+-1), Eq. (P+-2), and condition (b-4),

L = −fb,c − fU
b,c

Fbj

Fb

+ fU
b,c + fbj,c

= −
∑
j∗6=j

fbj∗,c − fU
b,c

Fbj

Fb

+ fU
b,c

≥ −
∑
j∗6=j

Fbj∗p
U
b,c − pUb,cFU

b

Fbj

Fb

+ pUb,cF
U
b

= pUb,c(−Fb + Fbj − FU
b

Fbj

Fb

+ FU
b )

= pUb,c(F
U
b − Fb)(1−

Fbj

Fb

) ≥ 0
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Finally, we show that the point satisfies Eq. (SF-3-R1) - (SF-3-R4). To prove Eq. (SF-

3-R1), we show that

L = FU
b xbj + Fbx

L
bj − FU

b x
L
bj − Fbj

= FU
b

Fbj

Fb

+ Fb

FL
bj

FU
b

− FU
b

FL
bj

FU
b

− Fbj

= (FU
b − Fb)(

Fbj

Fb

−
FL
bj

FU
b

) ≥ 0

For ((SF-3-R2),

L = FL
b xbj + Fbx

U
bj − FL

b x
U
bj − Fbj

= FL
b

Fbj

Fb

+ Fbx
U
bj − FL

b x
U
bj − Fbj

= (Fb − FL
b )(xUbj −

Fbj

Fb

)

= (Fb − FL
b )(min{

FU
bj

FL
b

, 1} − Fbj

Fb

) ≥ 0

For Eq. (SF-3-R3),

L = Fbj − FL
b xbj − Fbx

L
bj + FL

b x
L
bj

= Fbj − FL
b

Fbj

Fb

− Fb

FL
bj

FU
b

+ FL
b

FL
bj

FU
b

= (Fb − FL
b )(

Fbj

Fb

−
FL
bj

FU
b

) ≥ 0
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For Eq. (SF-3-R4),

L = Fbj − FU
b xbj − Fbx

U
bj + FU

b x
U
bj

= Fbj − FU
b

Fbj

Fb

− Fbx
U
bj + FU

b x
U
bj

= (FU
b − Fb)(x

U
bj −

Fbj

Fb

)

= (FU
b − Fb)(min{

FU
bj

FL
b

, 1} − Fbj

Fb

) ≥ 0

Therefore, point (xbj, fb,c, fbj,c, Fb, Fbj) is feasible for problem (SF-R). Since problem (SF-118

R) and problem (P+-R) have the same objective function, point (xbj, fb,c, fbj,c, Fb, Fbj) and119

(fb,c, fbj,c, Fb, Fbj, pb,c) attain the same objective value. In other words, for any feasible point120

for problem (P+-R), a feasible point for (SF-R) that attains the same objective function121

exists. Hence the optimal objective value of problem (P+-R) cannot be less than that of122

(SF-R).123

Proposition 2 indicates that the P+-formulation is as least as strong as the SF-formulation.124

The proof does not rely on the specific values of the variable bounds. At any node of the125

branch-and-bound tree, P+-formulation would be better than a SF reformulation that has126

consistent bounds. Therefore, P+-formulation is likely to have significant computational127

advantage over SF-formulation in a branch-and-bound framework.128

P+-formulation is an enhanced P-formulation because of the additional variables fb,c, Fb129

and the relevant constraints. fb,c, Fb are the sum of (component or total) flows going through130

pool b, which are often dispensable for establishing material balances in P-formulation. How-131

ever, if we view the pool as a mixer connected with a splitter, fb,c, Fb will naturally be132

included in P-formulation. As shown in Fig. 3, a mixer is a pool with multiple inflows and133

one outflow, while a splitter is a pool with one inflow and multiple outflows. When viewing a134

general pool as the two special pools, the component flows and the total flow between the two135

pools are fb,c, Fb. In this case, the P-formulation is also the P+-formulation, and according136
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b

Figure 3: A Pool as a mixer connected with a splitter

to Proposition 2, it is at least as strong as SF-formulation. Many real-world GPP networks137

contain only mixers/splitters or only a few pools have multiple inflows and outflows, such138

as gasoline blending networks and natural gas transmission networks. So for these problems139

P-formulation is identical, or almost identical, to P+-formulation, and therefore likely to be140

better than SF-formulation. On the other hand, when a mixer is directly connected with a141

splitter in a GPP network, viewing the two as a multi-input multi-output pool might not be142

a good idea although it would lead to a smaller problem size. In the computational study,143

we will see that the slight complexity introduced in the P+-formulation usually leads to144

significant improvement in computational performance.145

Strength of the Formulations at the Root Node146

P+-formulation usually exhibits better computational performance than P-formulation147

and SF-formulation, as will be seen in the computational study. However, the three formu-148

lations often achieve the same lower bound at the root gap. In this section we explain why149

they often have the same root gap.150

Proposition 3. Assume that at the root node xLbj = 0 and xUbj = 1 for problem (SF-R). If151

17



bound consistency conditions (b-1)-(b-4) hold, then the optimal objective value of Problem152

(P-R) is no less than that of Problem (SF-R).153

Proof. Let (Fbj, fbj,c, pb,c) be a feasible solution to problem (P-R). We construct a new point154

(Fbj, fbj,c, xbj, Fb, fb,c) such that xbj =
Fbj

Fb
(∀b ∈ B, j ∈ Jb), Fb =

∑
j∈Jb Fbj and fb,c =155 ∑

j∈Jb fbj,c (∀b ∈ B). We prove the proposition by showing that the new point is feasible156

for problem (SF-R). Like in the proof for Proposition 2, it is easy to show that the point157

satisfies all constraints in (SF-R) except the convex envelopes. So it is left to show that the158

point satisfies the convex envelopes Eq. (SF-2-R1) - Eq. (SF-3-R4).159

From Eq. (P-2-R2), fbj,c ≤ Fbjp
U
b,c, and from condition (b-4) it becomes

fbj,c ≤ Fbj

fU
b,c

FU
b

≤ fU
b,c

Fbj

Fb

= fU
b,cxbj.

Note that xLbj = 0 at the root nodes, so we have proved Eq. (SF-2-R1). Similarly, Eq.

(SF-2-R3) is satisfied because from Eq. (P-2-R3) and condition (b-3),

fbj,c ≥ Fbj

fL
b,c

FL
b

≥ fL
b,c

Fbj

Fb

= fL
b,cxbj.

To prove (SF-2-R2), we need to show that

L = fL
b,cxbj + fb,cx

U
bj − fL

b,cx
U
bj − fbj,c

= fL
b,c

Fbj

Fb

+ fb,c − fL
b,c − fbj,c

=
∑
j′ 6=j

fbj′,c + fL
b,c

Fbj

Fb

− fL
b,c
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is non-negative. From Eq. (P-2-R3) and condition (b-3), we get

L ≥
∑
j′ 6=j

Fbj′p
L
b,c + fL

b,c

Fbj

Fb

− fL
b,c

= pLb,c(Fb − Fbj + FL
b

Fbj

Fb

− FL
b )

= pLb,c(Fb − FL
b )(1− Fbj

Fb

) ≥ 0,

so Eq. (SF-2-R2) is satisfied. Similarly, to prove Eq. (SF-2-R4) we can show that, from Eq.

(P-2-R2) and condition (b-4),

L = −fb,cxUbj − fU
b,cxbj + fU

b,cx
U
b,c + fbj,c

= −fb,c − fU
b,c

Fbj

Fb

+ fL
b,c + fbj,c

= −
∑
j′ 6=j

fbj′,c − fU
b,c

Fbj

Fb

+ fU
b,c

≥ −
∑
j′ 6=j

Fbj′p
U
b,c − fU

b,c

Fbj

Fb

+ fU
b,c

= pUb,c(−Fb + Fbj − FU
b

Fbj

Fb

+ FU
b )

= pUb,c(F
U
b − Fb)(1−

Fbj

Fb

) ≥ 0.

The proof for Eq. (SF-3-R1) and Eq. (SF-3-R4) follows a similar yet simpler procedure.

So we only provide major steps here. Eq. (SF-3-R2) is satisfied because

Fbj ≤ Fbj
FU
b

Fb

= FU
b xbj.

Eq. (SF-3-R2) is satisfied because

FL
b xbj + Fbx

U
bj − FL

b x
U
bj − Fbj = (Fb − FL

b )(1− Fbj

Fb

) ≥ 0.
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Eq. (SF-3-R3) is satisfied because

Fbj ≥ Fbj
FL
b

Fb

= FL
b xbj.

Eq. (SF-3-R4) is satisfied because

−FU
b xbj − Fbx

U
bj + FU

b x
U
bj + Fbj = (FU

b − Fb)(1−
Fbj

Fb

) ≥ 0.

160

Proposition 4. The optimal objective value of Problem (P+-R) is the same to that of Prob-

lem (P-R) if the following conditions hold:

FL
b ≤

∑
j∈Jb

FL
bj, ∀b ∈ B, (b-5)

FU
b ≥

∑
j∈Jb

FU
bj , ∀b ∈ B. (b-6)

Proof. From Proposition 1, the optimal objective value of (P+-R) is no less than that of161

(P-R). So we only need to prove the optimal objective value of (P-R) is no less than that of162

(P+-R). To prove this, consider any feasible point of (P-R), say (fbj,c, Fbj, pb,c), and we show163

that we can always construct a feasible point of (P+-R) that attains the same objective value.164

Let fb,c =
∑

j∈Jb fbj,c and Fb =
∑

j∈JB Fbj, and we can show that point (fbj,c, Fbj, pb,c, fb,c, Fb)165

is feasible for (P+-R) as follows.166

Obviously, the point satisfies the constraints that are also in the P-formulation. The

point also satisfies Eq. (P+-1) and Eq. (P+-2) by construction. From Eq. (P-2-R1) and

20



condition (b-6),

fb,c =
∑
j∈Jb

fbj,c

≤
∑
j∈Jb

FU
bjpb,c +

∑
j∈Jb

Fbjp
L
b,c −

∑
j∈Jb

FU
bjp

L
b,c

=
∑
j∈Jb

FU
bj (pb,c − pLb,c) + Fbp

L
b,c

≥ FU
b (pb,c − pLb,c) + Fbp

L
b,c,

so the point satisfies Eq. (P+-3-R1). Similarly, we can show that the point satisfies Eq.167

(P+-3-R2) (because of (P-2-R2) and (b-5)), Eq. (P+-3-R3) (because of (P-2-R3) and (b-5)),168

and Eq. (P+-3-R4) (because of (P-2-R4) and (b-6)). This completes the proof.169

For many GPP problems, at the root node FL
b = FL

bj = 0, so condition (b-5) holds. In170

addition, if the capacities of pools are sufficiently large, then (b-6) also holds. Therefore,171

Proposition 4 explains why in many cases P+-formulation and P-formulation have the same172

root gap.173

Computational Study174

The goal of the computational study is to compare the strength and the solution efficiency

of P+, P and SF formulation. For convenience, we compare the strength of the formulations

only through their root gaps. The root gap δ is defined as

δ =
|Objgop −Objroot|

|Objgop|
× 100%,

where Objgop is the optimal objective value of the optimization problem, and Objroot is the175

optimal objective of the convex relaxation problem obtained at the root node of the branch-176

and-bound search. The solution efficiency is shown by the solution time or the optimality177

gap if the solver cannot converge to its global optimum within time limit.178
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The simulation was performed on a virtual machine with 3-core 3.40 GHz CPU, 4GB179

memory, and Ubuntu 16.04 operating system. All problems are formulated on GAMS 32.3.0180

[21]. The NLP problems are solved by BARON 20.4.14. BARON is set to use CONOPT 4.22181

as local NLP solver and CPLEX 12.10.0 as LP solver. The run time limit is set to be 1 hour,182

and the relative and absolute termination tolerance are set to be 10−2.183

We consider 23 instances as shown in Table 2, in which L1-L15 are from Alfaki and184

Haugland [14], X1 is Example 3 from Cheng et al. [22], X2 is modified from Case study B from185

Li et al. [23], and X3A-X5B are additional instances we have created. Network structures and186

parameters of all problem instances (except X1) can be found in the supplementary material.187

The computational results in Table 2 are organized as follows. The second column gives the188

objective value at the solution returned by BARON, either with guaranteed optimality or189

not (depending on whether the gap is closed at termination). The third to fifth column190

provide the root gaps returned by P+-, P- and SF-formulations. The last three columns191

report the solution times for the three formulations. If an instance cannot be solved within192

the time limit, the optimality gap at termination is reported instead.193

We have the following observations regarding the root gaps of the three formulations.194

First, P+-formulation provides no worse root gap than P-formulation and SF-formulation,195

which is implied by the Proposition 1 and Proposition 2. Second, P-formulation provides no196

worse root gap than SF-formulation, which is implied by the Proposition 3 given that for197

all the problem instances the initial upper and lower bounds of split-fraction variables are 1198

and 0. Third, for instances L2-L4, L6-L14 and X1, P+ and P yield the same root gap. This199

is expected from Proposition 4, as these problems have sufficiently large pool capacities. On200

the other hand, for instances X3-A, X4-B and X5-B where conditions (b-5)-(b-6) are not201

satisfied, P+ provides tighter relaxation than P-formulation at the root node.202

We also have the following observations regarding the solution times. First, P+-formulation203

is not always better than P-formulation, and vice versa. For instances where P+-formulation204

provides better root gap (i.e., X3-A, X4-B, X5-B), P+-formulation requires much less solu-205
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Table 2: Comparison of computational results of the three formulations

Instance Obj Root Gap δ Sol. Time (s)/ Opt. Gap

P+ P SF P+ P SF

L1 -42.58 0.98% 0.98% 1.96% 0.1 0.1 0.1

L2 -549.80 81.76% 81.76% 81.76% 7.63% 1955.8 38.60%

L3 -549.80 55.35% 55.35% 55.35% 1.21% 1776.1 32.08%

L4 -561.04 57.36% 57.36% 57.36% 36.45% 8.94% 36.45%

L5 -877.65 17.64% 17.64% 20.21% 856.7 699.7 14.52%

L6 -450.00 44.44% 44.44% 44.44% 0.4 1.0 4.7

L7 -3500.00 0.00% 0.00% 0.00% 0.1 0.1 0.1

L8 -1100.00 9.09% 9.09% 9.09% 8.33% 8.33% 8.33%

L9 -8.00 0.00% 0.00% 0.00% 0.9 0.9 0.5

L10 -8.00 0.00% 0.00% 0.00% 1.4 0.2 4.5

L11 -8.00 0.00% 0.00% 0.00% 0.1 0.1 1.4

L12 -400.00 50.00% 50.00% 50.00% 0.5 1.1 7.8

L13 -600.00 100.00% 100.00% 100.00% 0.6 0.8 24.8

L14 -750.00 16.67% 16.67% 16.67% 0.3 0.5 4.00

L15 -439182.59 44.17% 44.17% 44.17% 4.2 5.8 9.6

X1 -22.99 5.56% 5.56% 5.56% 0.9 0.7 1.4

X2 -8540.43 32.80% 32.80% 36.12% 14.3 3.6 23.14%

X3-A -1518.67 25.73% 26.95% 30.91% 297.8 666.6 17.40%

X3-B -1694.07 17.36% 17.36% 17.36% 26.3 873.1 275.6

X4-A -704.98 18.18% 18.18% 18.18% 647.9 864.4 2212.0

X4-B -472.35 40.04% 40.33% 40.33% 0.5 7.3 7.1

X5-A -10151.30 25.62% 25.62% 25.69% 658.4 1023.9 851.7

X5-B -7709.53 26.22% 29.87% 31.12% 106.9 2101.6 1636.1
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tion time than P-formulation. If P+ doesn’t provide better root gap (i.e., same root gap as206

by P-formulation), then the solution time required by P+-formulation may be much worse207

(L2-L4, X2), slightly worse (L5), similar, or still much better (X3-B, X4-A, X5-A) than208

the solution time required by P-formulation. The under-performance of P+-formulation is209

not unexpected, because P+-formulation contains more bilinear terms than P-formulation210

and the computational performance reflects whether the advantage of tighter relaxation out-211

weighs the disadvantage of more nonconvex terms. Second, comparing P+-formulation and212

SF-formulation, we see that P+ always provides a better solution time. Finally, comparing P-213

formulation and SF-formulation, we see that for P-formulation provides better solution time214

than SF-formulation in all instances except X3-B, X4-B and X5-B. SF-formulation performs215

much better than P-formulation for instances X3-B, X4-B and X5-B in spite of worse root216

gaps, and the reason may be that SF-formulation provides tight relaxations at some child217

nodes of the branch-and-bound tree. This indicates that when comparing P-formulation and218

SF-formulation, a tighter root gap does not ensure a better solution time. For instances219

that have sufficiently large pool capacities and FL
ij = 0 (i.e., L2-L14, X1, X2), P-formulation220

provides both a tighter root gap and a better solution time than SF-formulation. An ex-221

planation for this is that, for these instances the conditions (b-5)-(b-6) hold at not only the222

root node but also many child nodes in the branch-and-bound tree, so according to Propo-223

sition 4 P-formulation is as strong as P+-formulation and therefore often stronger than the224

SF-formulation at these nodes.225

Concluding Remarks226

In this paper, we have developed a new GPP formulation, P+-formulation, by adding to227

the classical P-formulation additional variables and bilinear terms. We have proved that P+-228

formulation is at least as strong as P-formulation (Proposition 1) or SF-formulation (Proposi-229

tion 2), under mild bound consistency conditions. While the P+-formulation achieves tighter230

relaxation at the cost of more nonconvex constraints, it can provide better computational per-231
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formance (especially for difficult problems) as shown in the computational study. Moreover,232

when the pooling network comprises only mixers and splitters, P+-formulation is equivalent233

to P-formulation, so in this case P-formulation is at least as strong as SF-formulation. With234

additional conditions on the variable bounds, we can prove that P-formulation is at least as235

strong as SF-formulation and/or P+-formulation (Propositions 3 and 4). These conditions236

usually hold at the root node of a branch-and-bound search, which explains why the root237

gap of P-formulation is often no worse than that of SF-formulation. If these conditions hold238

also at many child nodes of the branch-and-bound tree, then P-formulation can result in239

less solution time than SF-formulation. In the computational study, P-formulation gener-240

ally results in better computational time than SF-formulation, and one possible reason is241

that the conditions (such as (b-5) and (b-6)) allowing P-formulation to be stronger than242

SF-formulation hold at many branch-and-bound nodes.243
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[10] A. Fonseca, V. Sá, H. Bento, M. L. Tavares, G. Pinto, L. A. Gomes, Hydrogen distribu-275

tion network optimization: a refinery case study, Journal of Cleaner Production 16 (16)276

(2008) 1755–1763.277

[11] C. A. Haverly, Studies of the behavior of recursion for the pooling problem, ACM Sigmap278

Bulletin (25) (1978) 19–28.279

26



[12] I. Quesada, I. E. Grossmann, Global optimization of bilinear process networks with280

multicomponent flows, Computers & Chemical Engineering 19 (12) (1995) 1219–1242.281

[13] M. Alfaki, D. Haugland, Strong formulations for the pooling problem, Journal of Global282

Optimization 56 (3) (2013) 897–916.283

[14] M. Alfaki, D. Haugland, A multi-commodity flow formulation for the generalized pooling284

problem, Journal of Global Optimization 56 (3) (2013) 917.285

[15] N. Boland, T. Kalinowski, F. Rigterink, New multi-commodity flow formulations for286

the pooling problem, Journal of Global Optimization 66 (4) (2016) 669–710.287

[16] I. Lotero, F. Trespalacios, I. E. Grossmann, D. J. Papageorgiou, M.-S. Cheon, An MILP-288

MINLP decomposition method for the global optimization of a source based model of289

the multiperiod blending problem, Computers & Chemical Engineering 87 (2016) 13–35.290

[17] X. Cheng, X. Li, A multi-commodity flow formulation for the optimal design of wastew-291

ater treatment networks, Computers & Chemical Engineering 134 (2020) 106681.292

[18] R. Karuppiah, I. E. Grossmann, Global optimization for the synthesis of integrated293

water systems in chemical processes, Computers & Chemical Engineering 30 (4) (2006)294

650–673.295

[19] N. V. Sahinidis, Baron: A general purpose global optimization software package, Journal296

of Global Optimization 8 (2) (1996) 201–205.297

[20] P. M. Castro, New MINLP formulation for the multiperiod pooling problem, AIChE298

Journal 61 (11) (2015) 3728–3738.299

[21] E. Bringas, R. Karuppiah, M. F. San Román, I. Ortiz, I. E. Grossmann, Optimal ground-300

water remediation network design using selective membranes, Industrial & Engineering301

Chemistry Research 46 (17) (2007) 5555–5569.302

27



[22] X. Cheng, K. Tang, X. Li, New multi-commodity flow formulations for the pooling303

problem, IFAC-PapersOnLine 51 (18) (2018) 162–167.304

[23] X. Li, E. Armagan, A. Tomasgard, P. I. Barton, Long-term planning of natural gas305

production systems via a stochastic pooling problem, in: American Control Conference306

(ACC), 2010, IEEE, 2010, pp. 429–435.307

28


