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1. Diffraction phase microscopy system  

 

Figure S1. The schematic design of the diffraction phase microscopy system. 

 

Diffraction phase microscopy (DPM) is a common-path quantitative phase microscopy 

(QPM) method that allows for highly sensitive measurement of cell morphology with 

nanometer-scale sensitivity.[1] As only one interferogram is needed to obtain a wide-

field phase map, high-speed image acquisition is possible with DPM. We have recently 

developed a portable DPM system with a low-cost to enable a broader adoption.[2] The 

DPM system, as illustrated in Figure S1, is used to measure the phase maps of the 

leukocytes. A 532 nm laser (Gem 532, Laser Quantum) is used as the illumination 

source for the system. The collimated laser beam first passes through the sample, and 

then the sample scattered field is collected by a water dipping objective lens with 

numerical aperture (NA) of 1.1 (LUMFLN60XW, Olympus). After that, the sample 



 
beam goes through a tube lens and forms an intermediate image at its back focal plane. 

A diffraction grating, placed at the intermediate image plane, produces multiple copies 

of the sample image. Two of the diffraction orders are selected by a subsequential 4f 

system formed by lens 1 and lens 2. The 1st order beam is filtered down to a DC beam 

(or reference beam) through a 10 μm diameter pinhole filter, placed at the Fourier plane 

of lens 1. The 0th order beam passes the 4f system without any filtering as serves as the 

signal beam. At the final imaging plane after lens 2, these two beams interfere with 

each other and form an interferogram which is then captured by a USB camera (FL3-

U3-13Y3M-C, Pointgrey). The imaging system has a total magnification of around 100, 

a lateral resolution of around 590 nm according to the Rayleigh criterion, and a field of 

view of 61 µm x 49 µm.  

 

2. Quantitative phase image processing  

The phase image processing mainly consists of phase retrieval[1] and segmentation, as 

shown in Figure S2. A Fourier transform is first performed over the raw interferogram 

(first column in Figure S2), and then a bandpass filter is used to select the +1 or -1 order 

signal. After that, the selected signal is shifted back to the origin of the frequency 

spectrum. An inverse Fourier transform is performed to obtain the complex sample field. 

Meanwhile, another interferogram taken in the sample-free region is used as the 

calibration image and the same processing is conducted to obtain the complex 

calibration field. Then the calibration complex field is divided from the sample complex 

field to obtain the calibrated sample field, from which the sample phase map is obtained. 

Subsequently, a phase unwrapping procedure is added to unwrap the sample phase map. 

Finally, we flatten and zero the phase map by removing the background tilt and 

subtracting the background phase value. Representative phase images for each major 

leukocyte type are shown in the second column in Figure S2. After obtaining the phase 

images, we select each individual cells with a segmentation algorithm[3] and create cell 

phase maps (third column in Figure S2). To ensure the same size for all the cell phase 

maps, we paste each cell phase map on a fixed-size template. 



 

 

Figure S2. Illustration of the quantitative phase image processing steps. The phase retrieval step is 

first performed over the raw interferograms (representative interferograms for each major leukocyte type 

are shown) to obtain the phase images. In the second step, a segmentation algorithm is used to select 

individual cells and create their phase maps.  

3. Comparison between the single-step classifier and the cascaded classifier 

Table S1. Comparison between single-step classifier and cascaded classifier on donor 2 

Experiment 
B cell 

(F1-score) 

T cell 

(F1-score) 

Monocyte 

(F1-score) 

Granulocyte 

(F1-score) 

Single-step 

classifier 
81.3% 78.8% 88.8% 92.8% 

Cascaded 

classifier 
80.9% 81.2% 90.2% 92.5% 

Table S2. Comparison between single-step classifier and cascaded classifier on donor 3 

Experiment 
B cell 

(F1-score) 

T cell 

(F1-score) 

Monocyte 

(F1-score) 

Granulocyte 

(F1-score) 

Single-step 

Classifier 
74.7% 56.4% 87.0% 83.7% 

Cascaded 

classifier 
75.3% 68.5% 94.5% 96.0% 



 
4. Detailed leukocyte classification results 

Table S3. Classification result from the monocyte-granulocyte-lymphocyte classifier 

 Predicted type Recall 
F1-

score 

Label type 

 Lymphocyte Monocyte Granulocyte   

Lymphocyte 197 2 1 98.5% 97.7% 

Monocyte 4 95 1 95.0% 94.0% 

Granulocyte 2 5 93 93.0% 95.4% 

Precision  97.0% 93.1% 97.9% Accuracy 96.3% 

 

Table S4. Classification result from the B-T lymphocyte classifier 

 Predicted type Recall F1-score 

Label type 

 B lymphocyte T lymphocyte   

B lymphocyte 86 14 86.0% 88.2% 

T lymphocyte 9 91 91.0% 88.8% 

Precision  90.5% 86.7% Accuracy 88.5% 

 

Table S5. Summarized classification result from the cascaded-ResNet 

 Predicted type Recall 
F1-

score 

Label 

type 

 B 

lymphocyte 

T 

lymphocyte 

Monocy

te 
Granulocy

te 
  

B 

lymphocyte 
86 14 0 0 86.0% 88.2% 

T 

lymphocyte 
9 88 2 1 88.0% 84.6% 

Monocyte 0 4 95 1 95.0% 94.0% 

Granulocyt

e 
0 2 5 93 93.0% 95.4% 

Precisio

n 
 90.5% 81.5% 93.1% 97.9% Accuracy 90.5% 

 

Table S6. Classification result from the CD4-CD8 classifier from one donor 

 Predicted type Recall F1-score 

Label type 

 CD4 CD8   

CD4 37 6 86.0% 80.4% 



 

CD8 12 31 72.1% 77.5% 

Precision  75.5% 83.8% Accuracy 79.1% 

 

5. Principal component analysis (PCA) 

We first reshaped each image with size of 300x300 into a 1x90000 sequence and then 

used the principal component analysis (PCA)[4] method to decrease the dimension from 

90000 to 256. At last, by using the t-distributed stochastic neighbor embedding (t-SNE) 

method,[5] we visualized the PCA extracted features in the 3-D plot. 

 

Figure S3. Visualization of the features extracted by PCA using the T-SNE method. a, Visualization 

of PCA features of monocytes, granulocytes, and lymphocytes. b, Visualization of PCA features of B 

and T lymphocytes. c, Visualization of PCA features of CD4 and CD8 cells. 

To evaluate the differentiation capability of PCA, we used a support vector machine 

(SVM) to analyze the features extracted by PCA. We compare the differentiation 

accuracy between PCA and our neural network model with results presented in Table 

S7. 

Table S7. Classification accuracy comparison between PCA and neural network  

Experiment 
B lymphocyte 

(F1-score) 
T lymphocyte 

(F1-score) 
Monocyte 
(F1-score) 

Granulocyte 
(F1-score) 

PCA 70.1% 68.2% 89.8% 91.5% 

Neural Network 88.2% 84.6% 94.0% 95.4% 

 

 

 



 
6. Neural network layer visualization 

 

Figure S4. Visualization of the outputs from neural network layers. a, Neural network outputs from 

each convolutional layer for a B lymphocyte. b, Neural network outputs from the last convolutional layer 

for a granulocyte. c, Neural network outputs from the last convolutional layer for a T lymphocyte. d, 

Neural network outputs from the last convolutional layer for a monocyte.  

 

 

 

 

 

 

 

 

 



 
7. Examples of misclassified leukocytes 

 

Figure S5. Selected examples of misclassified leukocytes. 

To explore the cause of the misclassification, we show the phase maps of several 

selected misclassified leukocytes and their corresponding actual types and predicted 

types (Figure S5). We suspect some of the misclassifications might be induced by 



 
mislabeling. For example, the leukocyte labeled as a T lymphocyte but predicted as a 

granulocyte has large phase values and a large area, which are not in accordance with 

typical features of T lymphocytes.  

8. Training set scale 

 

Figure S6. Average detection accuracy vs. total number of cells used for training. Each experiment 

was repeated 5 times to obtain the average detection accuracy.   

9. Detailed cross-donor classification results 

Table S8. Cross-donor testing result with cascaded-ResNet 

Test 

donor 
B lymphocyte 

(F1-score) 
T lymphocyte 

(F1-score) 
Monocyte 
(F1-score) 

Granulocyte 
(F1-score) 

1 N/A 82.5% 94.4% 97.5% 

2 80.9% 81.2% 90.2% 92.5% 

3 75.3% 68.5% 94.5% 96.0% 

4 N/A 81.3% 87.8% 90.9% 

5 94.9% N/A N/A N/A 

6 N/A 93.5% 91.3% 94.6% 

Average 83.7% 81.4% 91.6% 94.3% 

*N/A represents when such data is unavailable, or the dataset is too small to have a statistical 

significance. 

 

Table S9. Cross-donor testing result from the monocyte-granulocyte-lymphocyte classifier 

Test donor Lymphocyte 
(F1-score) 

Monocyte 
(F1-score) 

Granulocyte 
(F1-score) 



 

1 96.8% 94.4% 97.5% 

2 98.2% 90.2% 92.5% 

3 97.4% 94.5% 96.0% 

4 90.0% 87.8% 90.9% 

5 99.9% N/A N/A 

6 96.0% 91.3% 94.6% 

Average 96.4% 91.6% 94.3% 

*N/A represents when such data is unavailable, or the dataset is too small to have a statistical 

significance. 

 

Table S10. Cross-donor testing result from the B-T lymphocyte classifier 

Test donor 
B lymphocyte 

(F1-score) 

T lymphocyte 

(F1-score) 

1 N/A 85.5% 

2 81.7% 82.9% 

3 75.9% 71.5% 

4 N/A 92.0% 

5 94.9% N/A 

6 N/A 97.6% 

Average 84.1% 85.9% 

*N/A represents when such data is unavailable, or the dataset is too small to have a statistical 

significance. 

 

10. Intra-donor analysis 

In each intra-donor analysis test, the testing set consisted of 30 cells per type that were 

randomly chosen from each type. The rest (>70 cells per type) were used to train the 

ResNet-10 classifier. The result is summarized below: 

Table S11. Intra-donor testing result 

Test 

donor 
B lymphocyte 

(F1-score) 
T lymphocyte 

(F1-score) 
Monocyte 
(F1-score) 

Granulocyte 
(F1-score) 

1 N/A 100% 100% 100% 

2 90.3% 93.1% 93.5% 96.6% 

3 76.1% 68.0% 96.7% 98.3% 

4 N/A 88.1% 85.7% 96.6% 

5 N/A N/A N/A N/A 



 

6 N/A 96.7% 93.3% 96.7% 

Average 83.2% 89.2% 93.8% 97.6% 

*N/A represents when such data is unavailable, or the dataset is too small to have a statistical 

significance. 

 

11. Flow cytometry measurements  

 

Figure S7. Flow cytometry analysis for the purity of isolated leukocytes showing the polygonal 

gating for live leukocytes along with the fluorophore-conjugated antibodies for each leukocyte 

type. a, Anti-CD3-PE for T lymphocytes. b, Anti-CD-19-APC for B lymphocytes. c, Anti-CD-14-PerCP 

for monocytes. d, Anti-CD-66b-FITC for granulocytes. FSC: forward scatter; SSC: side scatter. 

The flow cytometry results for assessing the purity of isolated leukocytes are illustrated 

in Figure S7. The percentage population for T lymphocytes, B lymphocytes, monocytes, 

and granulocytes in representative isolated leukocyte samples were 83.5%, 89.7%, 

91.9%, and 99.2%, respectively.  



 
12. Comparison with results from existing methods 

Table S12. Comparison of AIRFIHA with existing methods on classification accuracy (F1-score) 

Method Labeling method 
Sample 

type 

Cross-

validation 
Result 

    Monocyte Granulocyte Lymphocyte 

Bright and 

dark field 

microscope[6] 

Fluorescence 

cytometry 
Human Yes 96.0% 

96.4% 

(Neutrophil) 

96.3% 

(Eosinophil) 

96.9% 

Lens-free 

holography[7] 

Fluorescence 

cytometry 
Human No 98.4% 98.5% 98.7% 

Lens-free 

holography[8] 

Negative 

Immunomagnetic 

depletion 

Human No 91.0% 92.8% 85.5% 

Third 

harmonic 

generation 

microscope[9] 

Density 

centrifugation + 

Scattered light 

cytometry + 

Negative 

fluorescence 

cytometry 

Human No 97.5% 97.5% 98.0% 

AIRFIHA 

Negative 

Immunomagnetic 

depletion 

Human No 94.0% 95.4% 97.7% 

AIRFIHA 

Negative 

Immunomagnetic 

depletion 

Human Yes 91.6% 94.3% 96.4% 

      
B 

lymphocyt

e 

T 

lymphocy

te 

Bright and 

dark field 

microscope[6] 

Fluorescence 

cytometry 
Human Yes   79.4% 75.7% 

Optical 

diffraction 

tomography[1

0] 

Fluorescence 

cytometry 
Mice No   88.4% 90.9% 

AIRFIHA 

Negative 

Immunomagnetic 

depletion 

Human No   88.2% 88.8% 

AIRFIHA 

Negative 

Immunomagnetic 

depletion 

Human Yes   84.1% 85.9% 

       CD4 CD8 

Optical 

diffraction 

tomography[1

0] 

Fluorescence 

cytometry 
Mice No    85.7

% 

88.8

% 

AIRFIHA 

Negative 

Immunomagnetic 

depletion 

Human No    80.4

% 

77.5

% 
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