References
1. Dean Southwood SR. Host-Pathogen Interactions. Encyclopedia of
Bioinformatics and Computational Biology. 2019;3:103-12.
2. Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen:
sensing, adapting and competing. Nat Rev Microbiol. 2016;14(4):221-34.
3. Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic
Crosstalk Between Host and Parasitic Pathogens. Exp Suppl.
2018;109:421-58.
4. Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host
protein-protein interfaces modulates immunity. Semin Cell Dev Biol.
2016;58:136-45.
5. RT D. Molecular mimicry: antigen sharing by parasite and host and its
consequences. Am Nat 1964;98.
6. Diaz A, Ferreira A, Sim RB. Complement evasion by Echinococcus
granulosus: sequestration of host factor H in the hydatid cyst wall. J
Immunol. 1997;158(8):3779-86.
7. Meri T, Jokiranta TS, Hellwage J, Bialonski A, Zipfel PF, Meri S.
Onchocerca volvulus microfilariae avoid complement attack by direct
binding of factor H. J Infect Dis. 2002;185(12):1786-93.
8. Ludin P, Nilsson D, Maser P. Genome-wide identification of molecular
mimicry candidates in parasites. PLoS One. 2011;6(3):e17546.
9. Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ. Crystal structure of
invasin: a bacterial integrin-binding protein. Science.
1999;286(5438):291-5.
10. Sallee NA, Rivera GM, Dueber JE, Vasilescu D, Mullins RD, Mayer BJ,
et al. The pathogen protein EspF(U) hijacks actin polymerization using
mimicry and multivalency. Nature. 2008;454(7207):1005-8.
11. Stebbins CE, Galan JE. Structural mimicry in bacterial virulence.
Nature. 2001;412(6848):701-5.
12. Dong Yu ZY, Yuan Jin, Jing Zhou, Hongguang Ren, Mingda Hu, Beiping
Li, Wei Zhou, Long Liang, Junjie Yue. Evolution of bopA Gene in
Burkholderia: A Case of Convergent Evolution as a Mechanism for
Bacterial Autophagy Evasion. BioMed Research International. 2016;2016:7.
13. Zabriskie JB, Freimer EH. An immunological relationship between the
group. A streptococcus and mammalian muscle. J Exp Med.
1966;124(4):661-78.
14. Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism
of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102-11.
15. Venigalla SSK, Premakumar S, Janakiraman V. A possible role for
autoimmunity through molecular mimicry in alphavirus mediated arthritis.
Sci Rep. 2020;10(1):938.
16. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA.
Early events in lupus humoral autoimmunity suggest initiation through
molecular mimicry. Nat Med. 2005;11(1):85-9.
17. Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, Ito K, Nagy ZA, et
al. Identification of LFA-1 as a candidate autoantigen in
treatment-resistant Lyme arthritis. Science. 1998;281(5377):703-6.
18. Escoll P, Mondino S, Rolando M, Buchrieser C. Targeting of host
organelles by pathogenic bacteria: a sophisticated subversion strategy.
Nat Rev Microbiol. 2016;14(1):5-19.
19. Drayman N, Glick Y, Ben-nun-shaul O, Zer H, Zlotnick A, Gerber D, et
al. Pathogens use structural mimicry of native host ligands as a
mechanism for host receptor engagement. Cell Host Microbe.
2013;14(1):63-73.
20. Bulgin R, Raymond B, Garnett JA, Frankel G, Crepin VF, Berger CN, et
al. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE
effectors. Infect Immun. 2010;78(4):1417-25.
21. Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, et al.
Structural insights into host GTPase isoform selection by a family of
bacterial GEF mimics. Nat Struct Mol Biol. 2009;16(8):853-60.
22. Hraber P, O’Maille PE, Silberfarb A, Davis-Anderson K, Generous N,
McMahon BH, et al. Resources to Discover and Use Short Linear Motifs in
Viral Proteins. Trends Biotechnol. 2020;38(1):113-27.
23. Garg A, Kumari B, Kumar R, Kumar M. miPepBase: A Database of
Experimentally Verified Peptides Involved in Molecular Mimicry. Front
Microbiol. 2017;8:2053.
24. Mondino S, Schmidt S, Buchrieser C. Molecular Mimicry: a Paradigm of
Host-Microbe Coevolution Illustrated by Legionella. mBio. 2020;11(5).
25. Davey NE, Trave G, Gibson TJ. How viruses hijack cell regulation.
Trends Biochem Sci. 2011;36(3):159-69.
26. Minton K. Plant immunity: Host mimicry of pathogen virulence
targets. Nat Rev Immunol. 2015;15(7):401.
27. Doxey AC, McConkey BJ. Prediction of molecular mimicry candidates in
human pathogenic bacteria. Virulence. 2013;4(6):453-66.
28. de Groot NS, Torrent Burgas M. Bacteria use structural imperfect
mimicry to hijack the host interactome. PLoS Comput Biol.
2020;16(12):e1008395.
29. Guven-Maiorov E, Hakouz A, Valjevac S, Keskin O, Tsai CJ, Gursoy A,
et al. HMI-PRED: A Web Server for Structural Prediction of Host-Microbe
Interactions Based on Interface Mimicry. J Mol Biol.
2020;432(11):3395-403.
30. Schwikowski B, Uetz P, Fields S. A network of protein-protein
interactions in yeast. Nat Biotechnol. 2000;18(12):1257-61.
31. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan
SS, et al. Analysis of the human protein interactome and comparison with
yeast, worm and fly interaction datasets. Nat Genet. 2006;38(3):285-93.
32. Wolfe CJ, Kohane IS, Butte AJ. Systematic survey reveals general
applicability of ”guilt-by-association” within gene coexpression
networks. BMC Bioinformatics. 2005;6:227.
33. Durmus Tekir S, Cakir T, Ulgen KO. Infection Strategies of Bacterial
and Viral Pathogens through Pathogen-Human Protein-Protein Interactions.
Front Microbiol. 2012;3:46.
34. Franzosa EA, Xia Y. Structural principles within the human-virus
protein-protein interaction network. Proc Natl Acad Sci U S A.
2011;108(26):10538-43.
35. Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A,
Gursoy-Ozdemir Y. Neuropsychiatric Symptoms of COVID-19 Explained by
SARS-CoV-2 Proteins’ Mimicry of Human Protein Interactions. Front Hum
Neurosci. 2021;15:656313.
36. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers
M. BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 2006;34(Database issue):D535-9.
37. Durmus Tekir S, Cakir T, Ardic E, Sayilirbas AS, Konuk G, Konuk M,
et al. PHISTO: pathogen-host interaction search tool. Bioinformatics.
2013;29(10):1357-8.
38. Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated
database for host-pathogen interactions. Database (Oxford). 2016;2016.
39. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV,
Castagnoli L, et al. MINT: the Molecular INTeraction database. Nucleic
Acids Res. 2007;35(Database issue):D572-4.
40. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S,
Orchard S, et al. IntAct: an open source molecular interaction database.
Nucleic Acids Res. 2004;32(Database issue):D452-5.
41. Goll J, Rajagopala SV, Shiau SC, Wu H, Lamb BT, Uetz P. MPIDB: the
microbial protein interaction database. Bioinformatics.
2008;24(15):1743-4.
42. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 2017;45(D1):D158-D69.
43. Navratil V, de Chassey B, Meyniel L, Delmotte S, Gautier C, Andre P,
et al. VirHostNet: a knowledge base for the management and the analysis
of proteome-wide virus-host interaction networks. Nucleic Acids Res.
2009;37(Database issue):D661-8.
44. Launay G, Salza R, Multedo D, Thierry-Mieg N, Ricard-Blum S.
MatrixDB, the extracellular matrix interaction database: updated
content, a new navigator and expanded functionalities. Nucleic Acids
Res. 2015;43(Database issue):D321-7.
45. Brown KR, Jurisica I. Unequal evolutionary conservation of human
protein interactions in interologous networks. Genome Biol.
2007;8(5):R95.
46. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg
D. DIP: the database of interacting proteins. Nucleic Acids Res.
2000;28(1):289-91.
47. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, et al.
InnateDB: facilitating systems-level analyses of the mammalian innate
immune response. Mol Syst Biol. 2008;4:218.
48. Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological
database network. Bioinformatics. 2009;25(4):555-6.
49. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK,
DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the
functional annotation of proteins. Nucleic Acids Res. 2011;39(Database
issue):D225-9.
50. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux
PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature
matches and ProRule-associated functional and structural residues in
proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362-5.
51. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin
S, et al. The PANTHER database of protein families, subfamilies,
functions and pathways. Nucleic Acids Res. 2005;33(Database
issue):D284-8.
52. Duro N, Miskei M, Fuxreiter M. Fuzziness endows viral motif-mimicry.
Mol Biosyst. 2015;11(10):2821-9.
53. Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to
perturb host cell networks. Trends Biochem Sci. 2015;40(1):36-48.
54. Garamszegi S, Franzosa EA, Xia Y. Signatures of pleiotropy, economy
and convergent evolution in a domain-resolved map of human-virus
protein-protein interaction networks. PLoS Pathog. 2013;9(12):e1003778.
55. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Perez-Cobas AE,
Rolando M, et al. More than 18,000 effectors in the Legionella genus
genome provide multiple, independent combinations for replication in
human cells. Proc Natl Acad Sci U S A. 2019;116(6):2265-73.
56. Newcomb WW, Brown JC. Structure and capsid association of the
herpesvirus large tegument protein UL36. J Virol. 2010;84(18):9408-14.
57. Schipke J, Pohlmann A, Diestel R, Binz A, Rudolph K, Nagel CH, et
al. The C terminus of the large tegument protein pUL36 contains multiple
capsid binding sites that function differently during assembly and cell
entry of herpes simplex virus. J Virol. 2012;86(7):3682-700.
58. Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box
helicases: the Yin and Yang roles in viral infections. Biotechnol Genet
Eng Rev. 2018;34(1):3-32.
59. G A Cromie JCC, D R Leach. Recombination at double-strand breaks and
DNA ends: conserved mechanisms from phage to humans. Mol Cell.
2001;8:1163-74.
60. Yoshida T, Claverie JM, Ogata H. Mimivirus reveals Mre11/Rad50
fusion proteins with a sporadic distribution in eukaryotes, bacteria,
viruses and plasmids. Virol J. 2011;8:427.
61. Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral
damage: insights into bacterial mechanisms that predispose host cells to
cancer. Nat Rev Microbiol. 2017;15(2):109-28.
62. Lilley CE, Schwartz RA, Weitzman MD. Using or abusing: viruses and
the cellular DNA damage response. Trends Microbiol. 2007;15(3):119-26.
63. Cazzanelli G, Pereira F, Alves S, Francisco R, Azevedo L, Dias
Carvalho P, et al. The Yeast Saccharomyces cerevisiae as a Model for
Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells.
2018;7(2).
64. Keating JA, Striker R. Phosphorylation events during viral
infections provide potential therapeutic targets. Rev Med Virol.
2012;22(3):166-81.
65. Salomon D, Orth K. What pathogens have taught us about
posttranslational modifications. Cell Host Microbe. 2013;14(3):269-79.
66. Selbach M, Paul FE, Brandt S, Guye P, Daumke O, Backert S, et al.
Host cell interactome of tyrosine-phosphorylated bacterial proteins.
Cell Host Microbe. 2009;5(4):397-403.
67. Kumar R, Mehta D, Mishra N, Nayak D, Sunil S. Role of Host-Mediated
Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J
Mol Sci. 2020;22(1).
68. Wimmer P, Schreiner S. Viral Mimicry to Usurp Ubiquitin and SUMO
Host Pathways. Viruses. 2015;7(9):4854-72.
69. Crispin M, Doores KJ. Targeting host-derived glycans on enveloped
viruses for antibody-based vaccine design. Curr Opin Virol.
2015;11:63-9.
70. Crispin M, Ward AB, Wilson IA. Structure and Immune Recognition of
the HIV Glycan Shield. Annu Rev Biophys. 2018;47:499-523.
71. Wagh K, Kreider EF, Li Y, Barbian HJ, Learn GH, Giorgi E, et al.
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines
Neutralization Breadth. Cell Rep. 2018;25(4):893-908 e7.
72. Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan
Mimicry in HIV Vaccine Design. J Mol Biol. 2019;431(12):2223-47.
73. Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S,
Shrivastav A. Myristoylation: An Important Protein Modification in the
Immune Response. Front Immunol. 2017;8:751.
74. Resh MD. Trafficking and signaling by fatty-acylated and prenylated
proteins. Nat Chem Biol. 2006;2(11):584-90.
75. Maurer-Stroh S, Eisenhaber F. Myristoylation of viral and bacterial
proteins. Trends Microbiol. 2004;12(4):178-85.
76. Hewitt EW, Lehner PJ. The ABC-transporter signature motif is
required for peptide translocation but not peptide binding by TAP. Eur J
Immunol. 2003;33(2):422-7.
77. Ding H, Guo M, Vidhyasagar V, Talwar T, Wu Y. The Q Motif Is
Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase. PLoS One.
2015;10(10):e0140755.
78. Crua Asensio N, Munoz Giner E, de Groot NS, Torrent Burgas M.
Centrality in the host-pathogen interactome is associated with pathogen
fitness during infection. Nat Commun. 2017;8:14092.
79. Ahmed H, Howton TC, Sun Y, Weinberger N, Belkhadir Y, Mukhtar MS.
Network biology discovers pathogen contact points in host
protein-protein interactomes. Nat Commun. 2018;9(1):2312.