References
1. Gupta, R.S., et al., The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics, 2011.128 (1): p. e9-17.
2. Osborne, N.J., et al., Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol, 2011. 127 (3): p. 668-76 e1-2.
3. Dupuis, R., et al., Food Allergy Management at School. J Sch Health, 2020. 90 (5): p. 395-406.
4. Investigators, P.G.o.C., et al., AR101 Oral Immunotherapy for Peanut Allergy. N Engl J Med, 2018. 379 (21): p. 1991-2001.
5. Galvin, A.D., et al., Children and caregiver proxy quality of life from peanut oral immunotherapy trials. Clin Transl Allergy, 2022.12 (12): p. e12213.
6. Avery, N.J., et al., Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol, 2003. 14 (5): p. 378-82.
7. Kulis, M.D., et al., Immune mechanisms of oral immunotherapy.J Allergy Clin Immunol, 2018. 141 (2): p. 491-498.
8. Kim, E.H. and A.W. Burks, Food allergy immunotherapy: Oral immunotherapy and epicutaneous immunotherapy. Allergy, 2020.75 (6): p. 1337-1346.
9. Burks, A.W., et al., Treatment for food allergy. J Allergy Clin Immunol, 2018. 141 (1): p. 1-9.
10. de Jong, E. and A. Bosco, Unlocking immune-mediated disease mechanisms with transcriptomics. Biochem Soc Trans, 2021.49 (2): p. 705-714.
11. Armingol, E., et al., Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet, 2021.22 (2): p. 71-88.
12. Kamimoto, K., et al., Dissecting cell identity via network inference and in silico gene perturbation. Nature, 2023.614 (7949): p. 742-751.
13. Cao, J., et al., The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019. 566 (7745): p. 496-502.
14. Tsang, J.S., et al., Improving Vaccine-Induced Immunity: Can Baseline Predict Outcome? Trends Immunol, 2020. 41 (6): p. 457-465.
15. Kumar, B.V., T.J. Connors, and D.L. Farber, Human T Cell Development, Localization, and Function throughout Life. Immunity, 2018. 48 (2): p. 202-213.
16. Byron, S.A., et al., Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet, 2016.17 (5): p. 257-71.
17. Karisola, P., et al., Integrative Transcriptomics Reveals Activation of Innate Immune Responses and Inhibition of Inflammation During Oral Immunotherapy for Egg Allergy in Children. Front Immunol, 2021. 12 : p. 704633.
18. Bjorkander, S., et al., Transcriptome changes during peanut oral immunotherapy and omalizumab treatment. Pediatr Allergy Immunol, 2022. 33 (1): p. e13682.
19. Watson, C.T., et al., Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun, 2017. 8 (1): p. 1943.
20. Gowthaman, U., et al., Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019.365 (6456).
21. Monian, B., et al., Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J Clin Invest, 2022. 132 (2).
22. Anvari, S., et al., Memory and naive gamma delta regulatory T-cell gene expression in the first 24-weeks of peanut oral immunotherapy. Clin Immunol, 2021. 230 : p. 108820.
23. Kiyotani, K., et al., Characterization of the B-cell receptor repertoires in peanut allergic subjects undergoing oral immunotherapy.J Hum Genet, 2018. 63 (2): p. 239-248.
24. Ruiter, B., et al., Expansion of the CD4(+) effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. J Allergy Clin Immunol, 2020. 145 (1): p. 270-282.
25. Lee, K.H., et al., Identifying gene network patterns and associated cellular immune responses in children with or without nut allergy. World Allergy Organ J, 2022. 15 (2): p. 100631.
26. Wambre, E., et al., A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med, 2017. 9 (401).
27. Mitson-Salazar, A., et al., Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol, 2016.137 (3): p. 907-18 e9.
28. Ashley, S.E., et al., Remission of peanut allergy is associated with rewiring of allergen-driven T helper 2-related gene networks. Allergy, 2022. 77 (10): p. 3015-3027.
29. Jones, A.C., et al., Rewiring of gene networks underlying mite allergen-induced CD4 + Th-cell responses during immunotherapy. Allergy, 2020. 75 (9): p. 2330-2341.
30. Troy, N.M., et al., Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses. BMC Med Genomics, 2016.9 : p. 9.
31. Imran, S., et al., Immuno-epigenomic analysis identifies attenuated interferon responses in naive CD4 T cells of adolescents with peanut and multi-food allergy. Pediatr Allergy Immunol, 2022.33 (11): p. e13890.
32. Seumois, G., et al., Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol, 2020.5 (48).
33. Pritchard, A.L., et al., Innate interferons inhibit allergen and microbial specific T(H)2 responses. Immunol Cell Biol, 2012.90 (10): p. 974-7.
34. Subrata, L.S., et al., Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J Immunol, 2009. 183 (4): p. 2793-800.
35. Huber, J.P., et al., IFN-alpha suppresses GATA3 transcription from a distal exon and promotes H3K27 trimethylation of the CNS-1 enhancer in human Th2 cells. J Immunol, 2014. 192 (12): p. 5687-94.
36. Ryan, J.F., et al., Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proc Natl Acad Sci U S A, 2016. 113 (9): p. E1286-95.
37. Wang, W., et al., Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy. Clin Immunol, 2020.219 : p. 108568.
38. Hadis, U., et al., Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria.Immunity, 2011. 34 (2): p. 237-46.
39. Bertolini, T.B., et al., Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol, 2021. 359 : p. 104251.
40. Noval Rivas, M., et al., Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity, 2015. 42 (3): p. 512-23.
41. Syed, A., et al., Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol, 2014.133 (2): p. 500-10.
42. Varshney, P., et al., A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol, 2011. 127 (3): p. 654-60.