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Abstract

High dimensional models typically require a large computational overhead for multiphysics appli-

cations, which hamper their use for broad-sweeping domain interrogation. Herein, we develop a

modeling framework to capture the through-plane fluid dynamic response of electrodes and flow

fields in a redox flow cell, generating a computationally inexpensive two-dimensional (2D) model.

We leverage a depth averaging approach that also accounts for variations in out-of-plane fluid mo-

tion and departures from Darcy’s law that arise from averaging across three-dimensions (3D). Our

Resulting depth-averaged 2D model successfully predict the fluid dynamic response of arbitrary

in-plane flow field geometries, with discrepancies of < 5 % for both maximum velocity and pressure

drop. This corresponds to reduced computational expense, as compared to 3D representations (<

1% of duration and 10% of RAM usage), providing a platform to screen and optimize a diverse set

of cell geometries.
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Nomenclature

List of symbols

s total perimeter of Ωpr [m]

s′ length of the Ωpc − Ωpr interfaces [m]

x̃ non-dimensional spatial parameter ranging from 0 to 1 [–]

H thickness [m]

K1 non-dimensional parameter in estimating λopt [–]

K2 non-dimensional parameter in estimating λopt [–]

L electrode or channel length [m]

Q volumetric flow rate [m3 s−1]

w width [m]

∆p pressure drop [Pa]

p depth-averaged pressure [Pa]

u depth-averaged velocity [m]

i 3D index (i ∈ {x, y, z}) [–]

j 3D index (j ∈ {x, y, z}) [–]

k 2D index (k ∈ {x, y}) [–]

l 2D index (l ∈ {x, y}) [–]

N number of channels [–]

n outward unit normal vector [–]

p pressure [Pa]

x coordinate in channel length direction [m]

y coordinate in channel width direction [m]

z coordinate in half-cell thickness direction [m]

3



u velocity [m s−1]

Greek symbols

Γ boundaries [–]

κ permeability [m2]

λ pressure gradient corrector [–]

Ω computational domains [–]

κ equivalent permeability [m2]

ε equivalent porosity [m2]

µ viscosity [Pa s]

ρ density [kg m−3]

ε porosity [–]

Subscripts

ch channels

eq equivalent quantity

e electrode

in inlet

opt optimal

out outlet

pc porous-channel

pr porous-rib

rib rib

tot electrode and flow field (rib or channel)

ref reference quantity

Abbreviations

IDFF Interdigitated flow field
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PFF Parallel flow field

RAM Random-access memory

RFB Redox flow battery

SFF Serpentine flow field

VRFB Vanadium redox flow battery

1. Introduction

Despite distinct advantages over the other battery systems, broad commercialization of redox

flow batteries (RFBs) has been hampered by technical challenges, such as polarization losses that

lower the power density, as well as appreciably pumping work that limits the energy efficiency

[1–4]. To mitigate these issues, significant efforts have been made to bolster performance without

increasing cost, such as leveraging alternative redox couples with fast kinetics [5], improving elec-

trode morphologies to unlock higher surface area and enhanced mass-transport properties [1], and

identifying new membranes for higher selectivity [6, 7]. Among these efforts, flow field engineering

can be an effective and potentially more accessible approach, realizable by altering geometries [8]

without modifications at the material level.

As one of the several key RFB components, the flow field serves multiple major functions [9, 10],

including, but not limited to: (i) offering mechanical support of the electrodes, (ii) providing a low-

resistance path for the electric current, and (iii) uniformly distributing the reactants over electrode

to reduce the mass transport polarization. However, conventional flow field designs originate from

PEMFC and are optimized for physical domains aberrant to that of RFBs [11]. As such, there have

been various modeling pursuits to improve flow field architectures, but these computational thrusts

are hindered by the highly non-linear fluid dynamic relationships that manifest in high-dimensional

models [11, 12]. Consequently, while various three-dimensional (3D) models exist for RFB [8, 9, 12–

21], high-throughput screening of diverse, multidimensional structures can be intractable. For

example, the necessity for large computer resources (e.g., memory, power supply, etc.) limits the

scalability of the 3D models to millimeters [20, 21], reducing their efficacy in full-scale applications

[12, 22]. All of these motivate reduced models that retain fluid dynamic information for both the
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flow field and the porous electrode.

Reduced models are an attractive as, if appropriately posed, they accurately capture high-

dimensional functionalities with drastically smaller computational overhead. Indeed, various re-

search efforts have generated low-order models for multiphysics simulations [11, 23–27], enabling

rapid processing of highly non-linear physical domains. For example, Behrou et al. recently gener-

ated a two-dimensional (2D) model that successfully predicts the fluid dynamic and electrochemical

performance in the through-plane direction of PEMFCs [28]. Consequently, designs like the ser-

pentine and parallel flow fields were modeled in 2D at a fraction of the computational resources, as

compared to in-plane models [27]. The resulting model employed depth-averaging, which averages

along a spatial direction to reduce computational complexity, and was accurate across various flow

field rib and channel geometries. This model was later incorporated into topological optimization

algorithms, engendering new structures for improved PEMFC operation. Despite success in pre-

dicting the PEMFC fluid dynamic and electrochemical behaviors for traditional flow field designs,

direct use of depth-averaging in RFB models results in large pressure drop discrepancies when

compared to the 3D model predictions. We posit the inaccuracies of the depth-averaged model are

due to the neglected pressure loss contributions from in-plane and out-of-plane motions in porous

electrode portion under the channels. This motivated us to revisit the equations and derivations

reported by Behrou et al. [28] to generate an extended modeling framework, which we then apply

to the fluid dynamics of a redox flow cell.

Herein, we describe the formulation of a depth-averaged model for RFB flow fields and electrodes,

where we derive a system of equations for two domains, the electrode / flow field channel and

the electrode / flow field rib that, when combined, create one-half of the RFB cell. We then

compare these equations with 3D simulations to identify a correction parameter for out-of-plane

pressure loss that we subsequently scrutinize across a range of flow field geometries. We conclude

by demonstrating the computational lightness of our depth-averaged model and highlight areas to

improve the model for follow-up studies.

2. Physical Model

This section presents the numerical method to reduce the computationally-expensive 3D fluid

dynamics problem to a 2D representation without sacrificing accuracy. The fluid dynamic operating

equations are similar across RFB chemistries; however, for this work we elect to use a vanadium
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redox flow cell as an example. A comprehensive detail on the 3D model (e.g., governing equations

and model parameters) can be found in Cheng et al. [27]. Unless otherwise stated, we omit the

detailed formulation of the governing equations and model parameters, which are provided in the

Supporting Information. Additionally, along with the assumptions previously reported for the 3D

model [27], we hypothesize that the flow field depth is constant for all numerical examples presented

in this work.

2.1. Depth-averaging scheme

Typical numerical depth-averaging schemes neglect variations of flow and transport properties

across at least one spatial direction and have been employed for modeling of fluid flow over a range

of length scales [29–33]. The application of the depth-averaging scheme for multiphysics energy

storage and conversion systems, such as fuel cells or RFBs, is less well studied and remains an

active area of research [28] Behrou et al. applied the depth-averaging scheme on modeling and

design optimization of gas flow channels in PEMFCs [28]. However, a direct use of their depth-

averaging approach in RFB model yields a large discrepancy in pressure drop compared to the 3D

model predictions, as discussed in Section S1 of the Supporting Information. Here, we revisit the

depth-averaging approach presented in Behrou et al. and address the pressure discrepancy with a

generalized numerical framework, which is subsequently used to contemplate a diverse array of flow

field geometries for RFB cells [28].

As reported in Behrou et al. and shown as Fig. 1, a 2D depth-averaging plane consisting of

porous-channel (Ωpc) and porous-rib (Ωpr) regions is chosen as the 2D computational domain to

account for the simultaneous effects of flow field geometry and the under-rib flow [28]. The equiva-

lent bulk properties (i.e., porosity, ε, and permeability, κ) for porous-channel and porous-rib regions

are approximated as follows:

(·) =


(·)eHe + (·)chHch

He +Hch
, in Ωpc

(·)eHe + (·)ribHch

He +Hch
, in Ωpr

(1)

where (·) is the depth-averaged quantity and (·) indicates a generic bulk property and H is the

thickness, with subscript e, ch, and rib referring to electrode, channel, and rib, respectively.
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z = Htot

Depth-ave
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= channel (    ) + electrode (    )
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= rib (    ) + electrode (    )
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Figure 1: Schematic representations of: (a) a half-cell including membrane, electrode, and channels of flow field,

and (b) a planar computational domain reduced from (a) via depth-averaging, aimed to characterize the half-cell

fluid dynamic behavior for any arbitrary flow field geometry. Htot is the sum of He and Hch, which are thickness of

electrode and flow field, respectively.

2.2. Governing equations

As shown in Fig. 1, the 3D fluid dynamic state variables (i.e., the velocity vector, ui, and the

pressure, p, with i ∈ {x, y, z}) are reduced to planar quantities through depth-averaging process as
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follows:

(·) =
1

He +Hch

∫ He+Hch

0

(·) dz, (2)

where (·) refers to a generic 3D state variable and (·) is the corresponding depth-averaged value

that is henceforth adopted. In addition, for convenience, we define an overall thickness as Htot =

He + Hch. For brevity, only important findings and conclusions present in this work, and the

comprehensive details can be found in the Supporting Information.

2.2.1. Conservation of mass

The 3D continuity equation can be depth-averaged due to the non-slip boundary conditions at

both ends (i.e., z = 0 and z = He +Hch in Ωpc, and z = 0 and He in Ωpr) and the constant depth

assumption, where the depth of channel and electrode is assumed to stay constant [31]:

∂uk
∂xk

= 0 in Ωpr ∪ Ωpc, (3)

where k stands for the planar index (k ∈ {x, y}), differentiating from the 3D index i or j (i, j ∈

{x, y, z}). The details of the relevant derivations can be found in the Section S2.1 of the Supporting

Information.

2.2.2. Conservation of momentum in Ωpc

The 3D momentum equation consists of the incompressible Navier-Stokes equation in the free

flow channel and Brinkman equation in the porous electrode, both of which are highly non-linear.

Therefore, we introduce approximations to simplify the depth averaging procedure. Specifically,

we assume (i) the viscous effects dominate such that inertia terms on the pressure gradient are

negligible; (ii) the Brinkman equation governing the fluid dynamic behavior in the electrode [27]

is assumed to be interchangeable with Darcy’s law [34]; and, (iii) the flow pattern in channel can

be approximated as Poiseuille flow [35]. These assumptions are further investigated and justified

through additional studies in Section S2.2 of the Supporting Information.

Consequently, the 2D momentum conservation equation deviates from the one reported in

Behrou et al. [28]. We derive the 2D momentum conservation equation by depth-averaging of

the 3D version as follows:

ρ

ε2ul
∂uk
∂xl

= − ∂p

∂xk
+
µ

ε

∂

∂xl

∂uk
∂xl
− 12µ

H2
ch

uk +
He

Htot

∂p

∂xk
in Ωpc, (4)
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where l represents another 2D index distinct from k, µ is the electrolyte viscosity, ρ is the electrolyte

density, and ε refers to the depth-averaged porosity, defined in Eq. (1). Compared to the reported

momentum equation in Behrou et al. [28], Eq. (4) has an additional term, He/Htot · ∂p/∂xk,

derived from the Darcy term in the 3D Brinkman equation [27] over the electrode portion under

the channels [36]. This term refers to in-plane pressure drop contribution due to in-plane motion

in porous electrode portion under the channels [36]. In Behrou et al. [28], −µ/κ ·uk is used instead

[28], where κ is the corresponding depth-averaged permeability. However, κ =∞ in Ωpc, according

to its definition given in Eq. (1), meaning −µ/κ ·uk is null in Ωpc. Consequently, the pressure drop

contribution due to in-plane motions under the porous electrode / channel portion is neglected in

that work [28].

2.2.3. Conservation of momentum in Ωpr

Following similar operations derived in Ωpc (i.e., averaging the 3D governing equations along

the z direction according to the defined planar state variables), the 3D conservation of momentum

stated in Cheng et al. [27] can be depth-averaged as

ρ

ε2ul
∂uk
∂xl

= − ∂p

∂xk
+
µ

ε

∂

∂xl

∂uk
∂xl
− µ

κ
uk in Ωpr, (5)

where p in Ωpr is defined as follows:

p =
1

He

∫ He

0

p dz in Ωpr. (6)

Unlike Eq. (2), the depth-averaged pressure equation (Eq. (6)) prevents a large jump at the Ωpc-Ωpr

interfaces. Details on the derivations and verification can be found in Section S2.3 of the Supporting

Information.

Eqs. (3)–(5) are still unable to provide an acceptable fluid dynamic prediction for the 2D half cell

model because an important flow behavior is absent from the derived momentum equations (i.e.,

Eqs. (4) and (5)). This mismatch is related to the pressure discontinuity at the Ωpc-Ωpr interfaces,

which can be captured with the 3D model, revealing the limitations of the 2D formulation.

As an example, we use the 3D simulation with interdigitated flow field (IDFF) presented in

Cheng et al. [27] to illustrate the existence of this pressure discontinuity at the Ωpc-Ωpr interfaces

and its impact on the 2D model. The distribution of depth-averaged 3D pressure (i.e., p, defined

as Eq. (2) in Ωpc and Eq. (6) in Ωpr) along a y-directed line with x = 0 is shown in Fig. 2a. The
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results clearly demonstrate this discontinuity at the Ωpc-Ωpr interface. Furthermore, comparison

of the y-directed depth-averaged 3D pressure distribution with the corresponding 2D version, as

depicted in Fig. 2a, shows that the 2D model cannot capture this discontinuity, thus leading to a

significant pressure discrepancy.

To investigate this discontinuity, the 3D pressure distribution along two y-directed lines at

x = 0 across half channel (z = He + Hch/2) and half electrode (z = He/2) are compared with

the corresponding depth-averaged 3D pressure at the same x location (Fig. 2b). The discontinuity

stems from the out-of-plane pressure losses, due to out-of-plane fluid motion (Fig. 3). To address

this issue with minimal complexity, we introduce a dimensionless correction factor, λ, to adjust the

pressure gradient in Ωpr of the 2D model. As illustrated in Fig. 2c, the correction factor in Ωpr is

defined as:

λ =

∂p
∂xk

∣∣∣
uncorrected

∂p
∂xk

∣∣∣
corrected

in Ωpr, (7)

where ∂p/∂xk|uncorrected is the pressure gradient defined in Eq. (5). Hence, the uncorrected pressure

gradient term in Eq. (5) can be replaced by λ ∂p/∂xk|corrected as follows:

ρ

(λε)
2ul

∂uk
∂xl

= − ∂p

∂xk
+

µ

λε

∂

∂xl

∂uk
∂xl
− µ

λκ
uk in Ωpr. (8)

Additional details on the derivation can be found in Section S2.3 of the Supporting Information. For

simplicity, the subscript “corrected” is eliminated from Eq. (8). The optimal value of the pressure

gradient correction factor also varies with respect to the rib width and the electrode thickness as:

λopt =
K1

He

wrib
+K2

, (9)

where K1 and K2 are scalar constants close to 1 and with a weak dependency on He, hence Eq. (9)

can be approximated as:

λopt =
1

He

wrib
+ 1

. (10)

Moreover, further studies in this work demonstrate that Eq. (10) also holds for cases without a

well-defined rib width if replacing wrib in Eq. (10) with an equivalent rib widths (wrib,eq) estimated

as follows:

wrib,eq ≈
Arib

s/2
, (11)

where Arib and s are the total area and perimeter of the porous rib region (Ωpr), respectively.

Further details on the derivation of Eqs. (9)–(11) are given in Section 2.4.
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Out-of-plane 
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Figure 2: Comparison of pressure distribution along y direction for IDFF [27] at lines with same x location of

x = 0 for different models including: (a) three lines for the depth-averaged 3D, uncorrected 2D, and corrected 2D

models, respectively; (b) a line for the depth-averaged 3D model and two lines with different z locations (z = He

and He + Hch/2) for the 3D model. In addition, (c) is a local enlargement of (a), and (d) is a schematic legend of

the relevant x = 0 lines, including two of the 3D model (z = He and He + Hch/2), one of the depth-averaged 3D

model, and one of the reduced 2D model. All data is obtained from simulations at Qref (10 mL min−1). ∆p refers to

the overall 3D pressure drop.
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Figure 3: Schematic representation of the out-of-plane motion that causes out-of-plane pressure loss and thus leads

to pressure continuity at the Ωpc-Ωpr interfaces.

2.3. Boundary conditions

Following Behrou et al. [28], at the inlet (Γin), the 3D fixed flow rate condition can be depth-

averaged as:

−Htot ·
∫

Γin

uk nk ds = Q at Γin, (12)

where Q is the volumetric flow rate and nk is the outward unit normal vector. At the outlet (Γout),

the pressure is greater than zero at the electrode portion (0 ≤ z ≤ He) of Γout. Therefore, an

accurate depth-averaged pressure condition at the outlet is considered as follows:

pout =
1

Htot

(∫ He

0

p dz +

∫ Htot

He

p dz

)
=

1

Htot

∫ He

0

p dz at Γout. (13)

Eq. (13) is difficult to implement, given the pressure integration across the electrode is encompassed

by the z = 0 to Htot range of the 2D model. Therefore, an approximated version is employed:

pout = 0 Pa at Γout. (14)

This approximation also has good agreement when He is below a certain threshold; for example,

pout is smaller than 2 % of the overall 3D pressure drop if He < 4Hch, as shown in Fig. 5c.

2.4. Pressure gradient correction factor λ in Ωpr

This section presents the full details on Eqs. (9)–(11) above.
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2.4.1. Parametric study of λ

We perform a parametric study to investigate the impact of flow fields and cell parameters on

the behavior of λ. To generalize λ, we consider various flow field properties, such as the flow field

type (e.g., IDFF, parallel flow field (PFF), and serpentine flow field (SFF)), the channel geometry,

the channel and electrode thicknesses, and the channel and rib widths.

Impact of flow field types. We consider three distinct flow field types (IDFF, PFF, and SFF) as

shown in Fig. 4a revealing that the optimal λ does not depend on flow field type, as all values

converge to 0.73. The subsequent studies in this section show that convergence is dependent on

their identical electrode thickness and rib width. Additionally, the IDFF possesses the greatest

sensitivity to λ as compared to PFF and SFF, whereby IDFF has the highest percentage of flow

rate penetrating into the porous media [37, 38]. Thus, we only consider the IDFF in the following

parametric studies.

Figure 4: Variation of relative pressure discrepancies with respect to the value of λ from 0.1 to 1 for: (a) different

flow field types, i.e., IDFF, PFF, and SFF, and (b) three IDFF geometries with different curvatures.

Impact of the channel curvature. Three different IDFF geometries with different curvatures are

investigated. The first is straight channels with channel width of wch. The second and third are

defined by wch cos (πx̃) and wch cos (2πx̃), respectively. The parameter x̃ is a dimensionless spatial

parameter ranging from 0 to 1, corresponding to the left and right channel sides, respectively.
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Therefore, the curvature can be analyzed in ascending order as first, second, and third, as shown

in the legend of Fig. 4b, where the curvature distribution of three cases along channel length is

calculated [39] and plotted. Similarly, all other geometrical parameters are fixed. The results shown

in Fig. 4b suggest that the channel curvature does not affect the value of λ. Such independence

can be explained as follows: the pressure gradient correction factor λ directly stems from the out-

of-plane motions, which shows negligible correlation with the channel curvature. Furthermore, as

the curvature mainly affects the configuration in the channel-length direction while the channel-

width direction stays the same throughout 0 ≤ x̃ ≤ 1, the result suggests that factor that possibly

impinges λ should be along the channel-width direction instead of the channel-length direction, if

not considering the out-of-plane direction. Hence, we can use a straight IDFF to continue the study

without considering the effect of channel curvature.

Impact of number of flow channels. A straight IDFF with five different number of channels (2, 4,

7, 9, and 11) is studied. The results given in Fig. S14a of Supporting Information reveal that the

number of channels does not impact on the value of optimal λ. The arithmetic mean and standard

deviation of the five obtained optimal λ values are 0.7310 and 0.0017, respectively. This result is

as expected since changing the number of channels only alters the number of repeating units in

the flow field and cannot affect the configuration inside the repeating unit. The critical influencing

factor is expected to be within a repeating unit (e.g., two channels and an electrode portion in

between them) of the flow field presented in the numerical experiments. To this end, for the rest of

this study, all the following numerical experiments will be implemented on a straight, two-channel

IDFF as depicted in Fig. S15 of Supporting Information. Unless otherwise stated, all the control

variables are valued according to Cheng et al. [27].

Impact of the channel length and width. Similarly, as shown in Fig. S14b and c of Supporting

Information, under a range channel lengths (L) and widths (wch), the arithmetic mean is ca. 0.73

with negligible standard deviations (e.g., 0.0003 for L and 0.0041 for wch, respectively). Therefore,

it can be assumed that neither the channel length nor the channel width has significant effects on

the optimal λ. The independence of the channel length is consistent with the analysis in channel

curvature. Furthermore, the independence of the channel width suggests the rib width might be

the influencing factor that affects value of λ, considering our analysis in channel curvature, i.e., the

influencing factor should be along the channel-width direction.
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Figure 5: (a) Variation of the optimal λ with respect to different channel thickness; (b) pressure distribution along a z-

directed centered line crossing outlet for different Hch/He ratios; (c) variation of the non-dimensional depth-averaged

outlet pressure with respect to Hch/He ratio ranged from 0.1 to 3.9. ∆p is the overall pressure drop.

Impact of the channel thickness. Further study on the channel thickness, as demonstrated in Fig. 5a,

shows that the optimal λ is approximately constant with Hch only when Hch/He ' 0.5. In the

contrast, when Hch/He / 0.5, the optimal value of λ rises rapidly as Hch/He decreases. As shown

in Fig. 5b, the lower the channel thickness, the higher the depth-average pressure and the further

away from the approximated outlet boundary condition (Eq. (14)). Additionally, the change in the

overall pressure drop (i.e., pout/∆p) decreases with respect to Hch/He (Fig. 5c). Therefore, it is

reasonable to acknowledge that the rapid increase of the optimal λ during lower Hch/He interval is
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ascribed to the invalidity of the approximated outlet boundary condition (Eq. (14)). To this end, we

can assume that the Hch/He scope of the study will not beyond the lower non-constant region (i.e.,

Hch/He / 0.5), thus simplifying the problem and concluding that the optimal λ is not dependent

on the channel thickness. This assumed range is widely consistent to experimental configurations

reported in prior literature [9, 10, 37, 41–49]. For example, Xu et al. found an optimal electrode

thickness of ca. 2/3 of channel thickness, which results in Hch/He ≈ 1.5 [43].

Impact of the rib width. A wide range of rib widths (wrib) ranging from 0.01He to 0.98He, where

He = 3.15× 10−4 m [27], is tested in our numerical experiments and reflects two pristine Freuden-

berg H23 electrodes (Fuel Cell Store) stacked and compressed by ca. 20%. Results shown in Fig. 6b

reveal that the optimal λ presents a clear relationship with the ratio He/wrib as follows:

λopt =
0.98

He

wrib
+ 1.03

, (15)

where the numbers 0.98 and 1.03 are obtained through the curve-fitting, implemented using the

MATLAB®curve fitting toolbox [50].

Impact of the electrode thickness. Furthermore, similar numerical experiments for the trend of the

optimal λ with respect to He/wrib are repeated for various electrode thicknesses (Fig. 6). The

range of He/wrib between 0 and 1 is in good agreement with values extracted from related exper-

imental configurations reported in previous literature [9, 10, 37, 41–46, 49, 51, 52]. A relationship

between λopt and He/wrib arises from these values, and we posit these are related through Eq. (9),

where the scalar constants K1 and K2 increase with He. Indeed, the fitted trend is similar to

Eq. (10) as long as the electrode thickness is greater than 1× 10−4 m, as shown in Fig. 6a. This

range (He > 1× 10−4 m) is a common lower bound found in electrode offerings; for example, the

minimum uncompressed thicknesses of five commercial electrodes has been previously reported as

(2.1± 0.1)× 10−4 m [53]. Overall, thicker electrodes increase the available active surface area and

improve the performance; but when not limited by the active sites, the additional thickness leads

to higher ohmic losses and hinders electrochemical performance [43].

2.4.2. Equivalent rib-width estimation

Despite the obtained relationship between λopt, He, and wrib, there are still obstacles in gener-

alizing a reduced planar model for arbitrary flow field geometries. Either Eq. (9) or Eq. (10) are
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Figure 6: Variation of the optimal λ with respect to different rib width (wrib), which is non-dimensionalized as ratio

He/wrib, for: (a) He = 1 × 10−4 m, (b) He = 3.15 × 10−4 m, and (c) He = 1 × 10−3 m.
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obtained through a simplified straight, two-channel IDFF (Fig. S15 of Supporting Information),

where the rib width is unique and well-defined. However, this may not always be the case, as

evinced by the geometry reported in Ibrahimoglu et al. [54]. Hence, we present an approximated

approach to estimate the equivalent rib width across arbitrary geometries.

As observed in Fig. 7, the average rib width for an IDFF-like geometry with N straight channels

(with or without tapering) with well-defined channel length (L) can be approximated as follows:

wrib,eq =
Arib

NL
, (16)

where Arib is the total area of porous rib region. We note that Eq. (16) can be extended to a more

L

y

x

Porous channel (Ωpc) Porous rib (Ωpr)

Arithmetic
mean

(a) (b) (c)

Figure 7: Schematic representations of the procedure to estimate the equivalent rib width (i.e., wrib,eq) for an

IDFF-like flow field with straight channels and well-defined channel length. N = 3 in this example.

generic, IDFF-like geometry without a clearly-defined L (e.g., Fig. 8a). Here, we take the advantage

of the apparent positive correlation between NL and half of the length of the Ωpc-Ωpr interfaces,

shown by s′/2. Hence, Eq. (16) can be approximated as:

wrib,eq ≈
Arib

s′/2
. (17)

Further numerical studies show that replacing s′ with s, which refers to the total perimeter of

the porous rib region (Ωpr), gives better agreement especially for larger Ωpr area (e.g., Fig. 8b),

as it can be considered a pseudo-hydraulic diameter. Therefore, we conclude a more generalized

estimation of the equivalent rib width as stated in Eq. (11).
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y

x

Porous channel (Ωpc)

Porous rib (Ωpr)

Perimeter of Ωpr region (   )

Ωpc - Ωpr interface (   )

(a) (b)

Figure 8: Schematic representations of: (a) a IDFF-like generic geometry with highlighted Ωpc-Ωpr interfaces to

illustrate the positive correlation between s/2 and NL, and (b) a generic geometry with highlighted Ωpr perimeter

(i.e., s′) that will be used to estimate the equivalent rib width.

3. Model calibration and validation

3.1. Numerical solution

In this paper, we employ computational configurations similar to those reported in Cheng et al.

[27], using COMSOL Multiphysics®[55]. The three-node triangle and four-node tetrahedral el-

ements are used to discretize the 2D and 3D models, respectively. Mesh refinement studies are

performed to ensure negligible discretization errors, with details on the mesh refinement studies

given in Section S4 of the Supporting Information.

A machine with Intel® Core™ i5-8500 (Hexa-Core, 3.00 GHz) processor with a random-access

memory (RAM) of 32 GB is used for all numerical simulations. Furthermore, the computational

resource consumed for each p-Q point is compared between the 2D and 3D models (Table 1). As

expected, the 2D models demand less than < 1 % of the duration and < 10 % of the RAM usage as

compared to the corresponding 3D models. All other model and material parameters are adopted

from Cheng et al. [27].

Table 1: Comparison of consumed computational resources averaged for each p−Q point between 3D and 2D models

(for the IDFF geometry).

Case Memory usage Average simulation duration

3D 29.2 GB 891.4 s / point

2D 2.1 GB 5.9 s / point
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3.2. 2D model verification

In this section, we verify the reduced 2D model by considering a diverse range of flow field

geometries. Apart from the aforementioned three classical straight-channel flow fields with well-

defined rib widths (i.e., IDFF, PFF, and SFF) [27, 56], four different geometries artificially designed

by the authors and three geometries described in previous literature [46, 54, 57] are simulated and

carefully examined by comparing the fluid dynamic responses of the 2D and 3D models. All

geometries have the same dimensions as the stated classical ones, whose geometric parameters

can be found in the Supporting Information of Milshtein et al. [56]. Additionally, to examine the

effectiveness of the approximated λopt, the corresponding results obtained from Eq. (10) are also

included. For the brevity, only results from four representative cases are presented in this section,

whereas the others are discussed in Section S5 of Supporting Information.

As depicted in the first and second sub-figures of each geometry in Fig. 9 (i.e., Fig. 9 a1 to d1

and a2 to d2), the corrected 2D models show good agreement in both the velocity and pressure

fields, as compared to the full 3D domains at the reference flow rate of 10 mL min−1, regardless of

how the λ is estimated. Further studies are performed by comparing the pressure drop prediction

between the 2D and 3D models at different flow rates ranging from 0.1 to 1.5× of the reference

flow rate [27, 28], which are presented in the third sub-figure of each case in Fig. 9. It can be

observed that the 2D and 3D pressure drops closely match across all geometries within the low flow

rate region, with the maximum relative discrepancy at 1 mL min−1 being 2.9 % and 4.2 % for λ1

(estimated via Eq. (15)) and λ2 (estimated via Eq. (10)), respectively. This agreement is a result of

accounting for all significant physics that govern the desirable fluid dynamic phenomena, including

the in-plane and out-of-plane motions in porous electrode portion of Ωpc. The discrepancy for λ1

can be ascribed to error in the estimation of the equivalent rib width, after comparison between the

two groups presented in Fig. 9 — with and without a well-defined rib width. The former (Fig. 9a

and b) results in a maximum discrepancy smaller than 0.5 % when using λ1, whereas for the latter

(Fig. 9c and d), the corresponding discrepancies are closer to 3 %. Furthermore, using λ2 leads

to additional 1 − 1.5 % discrepancy with respect to λ1 within the low flow rate region (e.g., at

1 mL min−1). Nevertheless, the results demonstrate that the 2D model can provide a reasonable

pressure drop prediction with respect to the 3D simulations across a diverse range of flow field

geometries, particularly in the low flow rate region.

However, deviations increase at elevated flow rates for certain geometries (i.e., Fig. 9b c and
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Figure 9: Comparison of fluid dynamic responses between 2D and 3D model with IDFF [27] (a), SFF [56] (b), and

flow field geometries from [57] (c) and [54] (d) in velocity (1) and pressure (2) at Qref (10 mL min−1), and pressure

drop versus various flow rates from 1 − 15 mL min−1 (3). λ1 and λ2 refer to values estimated through Eq. (15) and

Eq. (10), respectively.
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d); for example, the discrepancy at 15 mL min−1 for SFF reaches 6.69 % using λ2. This is caused

by the channel bends, as discussed in Behrou et al. [28]. Fig. S24 of the Supporting Information

presents the result from further investigations on such effect, taking SFF as an example. A new 3D

pressure drop that eliminates the effects of channel bends (“3D - single channel” of Fig. S24a of the

Supporting Information) is estimated by multiplying the single-channel pressure drop (Fig. S24b of

the Supporting Information) by the number of channels. As shown in Fig. S24 of the Supporting

Information, eliminating the bend effect significantly reduces the discrepancy at high flow rate, from

≈ 7 % to < 2 %. This effect can be averted by augmenting an additional quadratic Forchheimer drag

term [36] , which changes with respect to the geometry [28] and will be the focus of future work.

Additionally, the two different λ estimations give very close results of ca. 1− 1.5 % throughout the

entire flow rate range; therefore, we can directly use Eq. (10) for analyzing a new geometry.

4. Conclusions

In this work, we generate a depth-averaged, 2D fluid dynamic model for the electrode and flow

field domains in a redox flow half cell. Comparing with the 3D simulations, we are able to capture

the pressure discrepancies using a correction factor, λ, whose optimal value is evaluated across

various flow field geometries. We find that λ is best described through the empirical relationships

between the electrode thickness and the rib width, enabling model accuracy between the depth-

averaged model and the 3D model of < 5%. Furthermore, for structures with ill-defined channel

widths, we propose an equivalent rib quantity, accounting for the total rib area and its entire

wetted perimeter, including the inlet and outlet interfaces. Effectively a hydraulic diameter, this

quantity enables good agreement between the depth-averaged and 3D fluid dynamic models of

generic, hypothetical, and previously published flow field domains.

This depth-averaged model can enable high-throughput simulations of fluid dynamic behavior

across various flow fields with minimal computational overhead. However, integration of the electro-

chemical process is needed to fully describe RFB cell performance, and will be the focus of follow-up

studies. Importantly, this modeling approach affords a platform for diverse topological optimization

procedures, leveraging the computational lightness to realize bottom-up flow field designs tuned for

a particular electrochemical environment.
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