References
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue
DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL,
Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H,
Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA,
Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada
R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin
JM, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ,
Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut
JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A,
Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA,
McDowell NG (2017) A multi-species synthesis of physiological mechanisms
in drought-induced tree mortality. Nature Ecology and Evolution 1:
1285-1291.
Avila RT, Cardoso AA, Batz TA, Kane CN, DaMatta FM, McAdam SAM (2021)
Limited plasticity in embolism resistance in response to light in leaves
and stems in species with considerable vulnerability segmentation.
Physiologia Plantarum 172: 2142-2152.
Blackman CJ, Brodribb TJ, Jordan GJ (2010) Leaf hydraulic vulnerability
is related to conduit dimensions and drought resistance across a diverse
range of woody angiosperms. New Phytologist 188: 1113-1123.
Bouche PS, Larter M, Domec J-C, Burlett R, Gasson P, Jansen S, Delzon S
(2014) A broad survey of hydraulic and mechanical safety in the xylem of
conifers. Journal of Experimental Botany 65: 4419-4431.
Bouda M, Windt CW, McElrone AJ, Brodersen CR (2019) In vivo pressure
gradient heterogeneity increases flow contribution of small diameter
vessels in grapevine. Nature Communications 10: 5645.
Brodersen CR, McElrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA
(2013) In Vivo Visualizations of Drought-Induced Embolism Spread inVitis vinifera . Plant Physiology 161: 1820-1829.
Brodribb TJ, Bienaimé D, Marmottant P (2016a) Revealing catastrophic
failure of leaf networks under stress. Proceedings of the National
Academy of Sciences of the United States of America 113: 865-4869.
Brodribb TJ, Carriquí M, Delzon S, McAdam SAM, Holbrook NM (2020a)
Advanced vascular function discovered in a widespread moss. Nature
Plants 6: 273-279.
Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and
point of death in water-stressed conifers. Plant Physiology 149:
575-584.
Brodribb TJ, Powers J, Cochard H, Choat B (2020b) Hanging by a thread?
Forests and drought. Science 368: 261-266.
Brodribb TJ, Skelton RP, McAdam SAM, Bienaimé D, Lucani CJ, Marmottant P
(2016b) Visual quantification of embolism reveals leaf vulnerability to
hydraulic failure. New Phytologist 209: 1403-1409.
Cardoso AA, Batz TA, McAdam SAM (2020a) Xylem Embolism Resistance
Determines Leaf Mortality during Drought in
<em>Persea americana</em>.
Plant Physiology 182: 547-554.
Cardoso AA, Visel D, Kane CN, Batz TA, García Sánchez C, Kaack L,
Lamarque LJ, Wagner Y, King A, Torres-Ruiz JM, Corso D, Burlett R, Badel
E, Cochard H, Delzon S, Jansen S, McAdam SAM (2020b) Drought-induced
lacuna formation in the stem causes hydraulic conductance to decline
before xylem embolism in Selaginella . New Phytologist 227:
1804-1817.
Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S (2015a)
Non-invasive measurement of vulnerability to drought induced embolism by
X-ray microtomography. Plant Physiol.
Choat B, Brodersen CR, McElrone AJ (2015b) Synchrotron X-ray
microtomography of xylem embolism in Sequoia sempervirenssaplings during cycles of drought and recovery. New Phytologist 205:
1095-1105.
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE
(2018) Triggers of tree mortality under drought. Nature 558: 531-539.
Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered
pits: new discoveries and impacts on whole-plant hydraulic function. New
Phytologist 177: 608-626.
Choat B, Drayton WM, Brodersen CR, Matthews MA, Shackel KA, Wada H,
McElrone AJ (2010) Measurement of vulnerability to water stress‐induced
cavitation in grapevine: a comparison of four techniques applied to a
long‐vesseled species. Plant Cell and Environment 33: 1502-1512.
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci
SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H,
Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A,
Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012)
Global convergence in the vulnerability of forests to drought. Nature
491: 752-755.
Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013)
Methods for measuring plant vulnerability to cavitation: a critical
review. Journal of Experimental Botany 64: 4779-4791.
Cuneo IF, Knipfer T, Brodersen CR, McElrone AJ (2016) Mechanical Failure
of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during
Drought. Plant Physiology 172: 1669-1678.
Dalla-Salda G, Fernández ME, Sergent A-S, Rozenberg P, Badel E,
Martinez-Meier A (2014) Dynamics of cavitation in a Douglas-fir
tree-ring: transition-wood, the lord of the ring? Journal of Plant
Hydraulics 1: e005.
Dixon HH, Joly J (1895) On the ascent of sap. Philosophical Transactions
of the Royal Society B: Biological Sciences 186: 563-576.
Gauthey A, Peters JMR, Carins-Murphy MR, Rodriguez-Dominguez CM, Li X,
Delzon S, King A, López R, Medlyn BE, Tissue DT, Brodribb TJ, Choat B
(2020) Visual and hydraulic techniques produce similar estimates of
cavitation resistance in woody species. New Phytologist 228: 884-897.
Guan X, Pereira L, McAdam SAM, Cao KF, Jansen S (2021) No gas source, no
problem: proximity to pre-existing embolism and segmentation affect
embolism spreading in angiosperm xylem by gas diffusion. Plant, Cell and
Environment 44: 1329-1345.
Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered
pit function II. Gymnosperm tracheids with torus-margo pit membranes.
American Journal of Botany 91: 386-400.
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in
wood density and structure are linked to prevention of xylem implosion
by negative pressure. Oecologia 126: 457-461.
Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB
(2015) The standard centrifuge method accurately measures vulnerability
curves of long-vesselled olive stems. New Phytologist 205: 116-127.
Jacobsen AL, Pratt RB, Venturas MD, Hacke UG (2019) Large volume vessels
are vulnerable to water-stress-induced embolism in stems of poplar. IAWA
Journal 40: 4-22.
Johnson KM, Brodersen CR, Carins-Murphy MR, Choat B, Brodribb TJ (2020)
Xylem embolism spreads by single-conduit events in three dry forest
angiosperm stems. Plant Physiology 184: 212-222.
Kaack L, Altaner CM, Carmesin C, Diaz A, Holler M, Kranz K, Neusser G,
Odstrcil M, Schenk HJ, Schmidt V, Weber M, Zhang Y, Jansen S (2019)
Function and three dimensional structure of intervessel pit membranes in
angiosperm xylem: a review. IAWA Journal 40: 673-702.
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi C, Zhang Y,
Schenk HJ, Schuldt B, Schmidt V, Jansen S (2021) Pore constrictions in
intervessel pit membranes provide a mechanistic explanation for xylem
embolism resistance in angiosperms. New Phytologist 230: 1829-1843.
Knipfer T, Brodersen CR, Zedan A, Kluepfel DA, McElrone AJ (2015)
Patterns of drought-induced embolism formation and spread in living
walnut saplings visualized using X-ray microtomography. Tree Physiology
35: 744-755.
Lamarque LJ, Corso D, Torres-Ruiz JM, Badel E, Brodribb TJ, Burlett R,
Charrier G, Choat B, Cochard H, Gambetta GA, Jansen S, King A, Lenoir N,
Martin-StPaul N, Steppe K, Van den Bulcke J, Zhang Y, Delzon S (2018) An
inconvenient truth about xylem resistance to embolism in the model
species for refilling Laurus nobilis L. Annals of Forest Science 75: 88.
Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M,
Schuldt B, Jansen S (2016) Intervessel pit membrane thickness as a key
determinant of embolism resistance in angiosperm xylem. IAWA Journal 37:
152-171.
Liese W, Bauch J (1967) On the closure of bordered pits in conifers.
Wood Science and Technology 1: 1-13.
Martin-StPaul NK, Longepierre D, Huc R, Delzon S, Burlett R, Joffre R,
Rambal S, Cochard H (2014) How reliable are methods to assess xylem
vulnerability to cavitation? The issue of ‘open vessel’ artifact in
oaks. Tree Physiology 34: 894-905.
Olson ME, Rosell JA (2013) Vessel diameter–stem diameter scaling across
woody angiosperms and the ecological causes of xylem vessel diameter
variation. New Phytologist 197: 1204-1213.
Pereira L, Bittencourt PRL, Rowland L, Brum M, Miranda MT, Pacheco VS,
Oliveira RS, Machado EC, Jansen S, R.V. R (2021) Using the pneumatic
method to estimate embolism resistance in species with long vessels: a
commentary on the article “A comparison of five methods to assess
embolism resistance in trees. Forest Ecology and Management 479: 118547.
Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005)
Torus-margo pits help conifers compete with angiosperms. Science 310:
1924.
Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM, Jones CS
(2008) Hydraulic integration and shrub growth form linked across
continental aridity gradients. Proceedings of the National Academy of
Sciences of the United States of America 105: 11248-11253.
Schenk HJ, Michaud JM, Mocko K, Espino S, Melendres T, Roth MR, Welti R,
Kaack L, Jansen S (2021) Lipids in xylem sap of woody plants across the
angiosperm phylogeny. The Plant Journal 105: 1477-1494.
Schumann K, Leuschner C, Schuldt B (2019) Xylem hydraulic safety and
efficiency in relation to leaf and wood traits in three temperateAcer species differing in habitat preferences. Trees 33:
1475-1490.
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett
MK, Buckley TN, McElrone AJ, Sack L (2017a) Outside-Xylem Vulnerability,
Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.
Plant Physiology 173: 1197-1210.
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H,
Buckley TN, McElrone AJ, Sack L (2017b) Leaf vein xylem conduit diameter
influences susceptibility to embolism and hydraulic decline. New
Phytologist 213: 1076-1092.
Sergent AS, Varela SA, Barigah TS, Badel E, Cochard H, Dalla-Salda G,
Delzon S, Fernández ME, Guillemot J, Gyenge J, Lamarque LJ,
Martinez-Meier A, Rozenberg P, Torres-Ruiz JM, Martin-StPaul NK (2020) A
comparison of five methods to assess embolism resistance in trees.
Forest Ecology and Management 468: 118175.
Skelton RP, Brodribb TJ, Choat B (2017) Casting light on xylem
vulnerability in an herbaceous species reveals a lack of segmentation.
New Phytologist 214: 561-569.
Sorek Y, Greenstein S, Netzer Y, Shtein I, Jansen S, Hochberg U (2021)
An increase in xylem embolism resistance of grapevine leaves during the
growing season is coordinated with stomatal regulation, turgor loss
point and intervessel pit membranes. New Phytologist 229: 1955-1969.
Torres-Ruiz JM, Cochard H, Mencuccini M, Delzon S, Badel E (2016) Direct
observation and modelling of embolism spread between xylem conduits: a
case study in Scots pine. Plant, Cell and Environment 39: 2774-2785.
Trifilò P, Raimondo F, Lo Gullo MA, Barbera PM, Salleo S, Nardini A
(2014) Relax and refill: xylem rehydration prior to hydraulic
measurements favours embolism repair in stems and generates artificially
low PLC values. Plant, Cell and Environment 37: 2491-2499.
Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and
emoblism. Annual Review of Plant Physiology and Plant Molecular Biololgy
40: 19-36.
Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013)
Xylem embolism threshold for catastrophic hydraulic failure in
angiosperm trees. Tree Physiology 33: 672-683.
Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL,
Pratt RB (2016) Single vessel air injection estimates of xylem
resistance to cavitation are affected by vessel network characteristics
and sample length. Tree Physiology 36: 1247-1259.
Wang Y, Pan R, Tyree MT (2015) Studies on the tempo of bubble formation
in recently cavitated vessels: a model to predict the pressure of air
bubbles. Plant Physiology 168: 521-531.
Wason J, Bouda M, Lee EF, McElrone AJ, Phillips RJ, Shackel KA, Matthews
MA, Brodersen C (2021) Xylem network connectivity and embolism spread in
grapevine (Vitis vinifera L.) Plant Physiology !86: 373-387.
Yang J, Michaud J, Jansen S, Schenk HJ, Zuo Y (2020) Dynamic surface
tension of xylem sap lipids. Tree Physiology 40: 433-444.
Zhang Y, Carmesin C, Kaack L, Klepsch MM, Kotowska M, Matei T, Schenk
HJ, Weber M, Walther P, Schmidt V, Jansen S (2020) High porosity with
tiny pore constrictions and unbending pathways characterize the 3D
structure of intervessel pit membranes in angiosperm xylem. Plant, Cell
and Environment 43: 116-130.