Metabarcoding data may provide abundance information
As expected, and in accordance with other studies investigating the
quantitative power of metabarcoding in spiders (Kennedy et al., 2020) or
other taxa (Thomas et al., 2016; Deagle et al., 2018; Lamb et al., 2019;
Krehenwinkel et al., 2017; Schenck, Geisen, Kleinbölting, &
Traunspurger, 2019), our results indicate that the relative read
abundance (RRA) of a taxon is positively related to its proportion in
both weight and abundance. However, the strength of this relation is not
constant across spider families, which dissipates the possibility of
using a unique correction factor to derive abundance information from
read counts for all taxa obtained in metabarcoding analyses. Indeed,
similar studies have also found these differences in the factor linking
RRA and individual abundance across spider families (Kennedy et al.,
2020) or RRA and mass across different taxa in other animal groups
(Thomas et al., 2016).
Interestingly, the observations of some of the families in the plots
relating RRA to proportion in mass were consistently above or below the
1:1 line. Upon detailed inspection, the spider families mostly above the
identity line corresponded to families with small juvenile individuals
(between 0.9 and 2.4 mg in mass), while families mostly below the
identity line corresponded to those with large juvenile individuals
(between 5.5 and 18.7 mg). Families with an intermediate juvenile mass
(2.5 to 3 mg) were not clearly above or below the 1:1 line. This
suggests that taxa with small or large juvenile sizes might be
respectively over or underrepresented by their reads counts with respect
to their real weight proportion in the sample in metabarcoding analyses.
Additional studies with spiders and other taxa would help determine if
this is a consistent trend and, if so, if it is applicable to other
groups apart from spiders.
We agree with previous studies stating that, albeit with caution and
with a certain degree of uncertainty, using the RRA with the
corresponding correction factors as a surrogate of the occurrence of a
taxon in the sample still provides more precise information of the
community composition than using presence/absence data (Lamb et al.,
2019; Kennedy et al., 2020). However, these correction factors need to
be developed individually for different taxa, for example using mock
communities included as quantitative controls during metabarcoding (Lamb
et al., 2019).
CONCLUSIONS
Our study suggests that incorporating immature stages of spiders in
bioinventorying initiatives has a relevant effect on diversity
estimates, because a considerable proportion of the species present as
juveniles is not found among adults. This impact goes beyond simply
modifying species richnesses, as it also alters the level of similarity
among communities and how they compare to each other. These findings do
not question the information provided by adult-based inventories, but
add a novel yet relevant layer of knowledge previously overlooked that
may influence some of the interpretations derived from biological
inventories. Adding juvenile information to rapid biodiversity
assessment protocols provides more accurate data regarding comparisons
of community composition. Metabarcoding analysis of all stages present
in a sample enables more effective monitoring strategies, and ultimately
better-informed conservation decisions.
The proportion of reads obtained from metabarcoding for certain spider
families was positively related to their proportion in weight and
abundance in the sample, suggesting that metabarcoding data are to a
certain extent quantitative. The strength of this relation, however, was
not constant across families, as already reported in former studies.
Nonetheless, the use of read counts appropriately transformed with
taxon-specific correction factors as a proxy of the occurrence of a
taxon in the sample could still provide more accurate information about
the community composition than simple presence/absence data.
ACKNOWLEDGEMENTS
Collections were conducted under the corresponding permits kindly
provided by the following individuals and institutions: Miguel M. de la
Hoz (Picos de Europa), Elena Villagrasa (Ordesa), Maria Merced Aniz
Montes (Aigüestortes), Angel Rodriguez Martin (Monfragüe), Angel Gómez
Manzaneque (Cabañeros), and Blanca Ramos Losada (Sierra Nevada). We are
grateful to all the people that contributed to the samplings as well as
to all the park rangers that supported us in the field.
This work was funded by the Organismo Autónomo de Parques Nacionales
(OAPN #485/2012) (to MA). MD was supported by APIF PhD fellowship from
the University of Barcelona. Additional support was provided by
2017SGR73 (to MA) from the Catalan Government.
AUTHOR CONTRIBUTIONS
MA, JMO and MD designed the study. AE and MD performed the laboratory
work. OW, MD and JMO performed the data analyses. MD, JMO and MA drafted
the manuscript with contributions of all authors. All authors have
revised and approved the final manuscript.
DATA ACCESSIBILITY
- Fasta file with sequences of adult specimens: Dryad,
https://doi.org/10.5061/dryad.g79cnp5q0.
- Fasta file with sequences of immature specimens: Dryad,
https://doi.org/10.5061/dryad.z08kprrcv.
REFERENCES
Aitchison, C. W. (1984). The phenology of winter active spiders.Journal of Arachnology , 12 , 249–271.
Antich, A., Palacín, C., Wangensteen, O. S., & Turon, X. (2021) To
denoise or to cluster? That is not the question. Optimizing pipelines
for COI metabarcoding and metaphylogeography. BMC Bioinformatics ,2021 , 22-177.
Bakker, J., Wangensteen, O. S., Baillie, C., Buddo, D., Chapman, D. D.,
Gallagher, A. J., Guttridge, T. L., Hertler, H.,& Mariani, S. (2019).
Biodiversity assessment of tropical shelf eukaryotic communities via
pelagic eDNA metabarcoding. Ecology and evolution , 9 ,
14341–14355.
Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Mac
Nally, R., Thomson, J. R., Ferraz, S. F. D. B., Louzada, J., Oliveira,
V. H. F., Parry. L., Ribeiro De Castro Solar, R., Vieira, I. C. G.,
Aragaõ, L. E. O. C., Begotti, R. A., Braga, R. F., Cardoso, T. M., de
Oliveira Jr, R. C., Souza, C. M., Moura, N. G., Nunes, S. S., Siqueira,
J. V., Pardini, R., Silveira, J. M., Vaz-De-Mello, F. Z., Veiga, R. C.
S., Venturieri, A., & Gardner, T. A. (2016). Anthropogenic disturbance
in tropical forests can double biodiversity loss from deforestation.Nature , 535 , 144–147.
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J.
H., Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A.,
Martinez, N. D., Mooers, A. O., Roopnarine, P. D., Vermeij, G.,
Williams, J. W., Gillespie, R. G., Kitzes, J., Marshall, C., Matzke, N.,
Mindell, D. P., Revilla, E., & Smith, A. B. (2012). Approaching a state
shift in Earth’s biosphere. Nature , 486 , 52–58.
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B.,
Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire,
K. C., Mersey, B., & Ferrer, E. A. (2011). Has the Earth’s sixth mass
extinction already arrived? Nature , 471 , 51–57.
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S.,
Knapp, M., Yu, D. W., & de Bruyn, M. (2014). Environmental DNA for
wildlife biology and biodiversity monitoring. Trends in Ecology
and Evolution , 29 , 358–367.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., &
Coissac, E. (2016). Obitools: A unix-inspired software package for DNA
metabarcoding. Molecular Ecology Resources , 16 , 176–182.
Cardoso, P. (2009). Standardization and optimization of arthropod
inventories-the case of Iberian spiders. Biodiversity and
Conservation , 18 , 3949–3962.
Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A., &
Martín, J. L. (2012). The underrepresentation and misrepresentation of
invertebrates in the IUCN Red List. Biological Conservation ,149 , 147–148.
Cardoso, P., Pekár, S., Jocqué, R., & Coddington, J. A. (2011). Global
patterns of guild composition and functional diversity of spiders.PLoS ONE , 6:e21710.
Cardoso, P., Silva, I., De Oliveira, N. G., & Serrano, A. R. M. (2004).
Indicator taxa of spider (Araneae) diversity and their efficiency in
conservation. Biological Conservation , 120 , 517–524.
Coddington, J. A,, Young, L. H., & Coyle, F. A. (1996). Estimating
Spider Species Richness in a Southern Appalachian Cove Hardwood Forest.Journal of Arachnology , 24 , 111–128.
Concato, J., Peduzzi, P., Holford, T. R., & Feinstein, A. R. (1995).
Importance of events per independent variable in proportional hazards
regression analysis II. Journal of Clinical Epidemiology ,48 , 1503–1510.
Crespo, L. C., Domènech, M., Enguídanos, A., Malumbres-Olarte, J.,
Moya-Laraño, J., Frías-López, C., Macías-Hernández, N., De Mas, E.,
Mazzuca, P., Mora, E., Opatová, V., Planas, E., Ribera, C., Ruiz, D.,
Sousa, P., Tonzo, V., & Arnedo, M. A. (2018). A DNA barcode-assisted
annotated checklist of the spider (Arachnida, Araneae) communities
associated to white oak woodlands in Spanish National Parks.Biodiversity Data Journal , 1–273.
Cribari-Neto, F., & Zeileis, A. (2010). Beta Regression in R.Handbook of Meta-Analysis , 34 , 129–150.
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen,
E. J., Clare, E. L., Kartzinel, T. R., & Eveson, J. P. (2019), Counting
with DNA in metabarcoding studies: How should we convert sequence reads
to dietary data? Molecular Ecology , 28 , 391–406.
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., &
Collen, B. (2014). Defaunation in the Anthropocene. Science ,345 , 401–406.
Dobyns, J. R. (1997). Effects of Sampling Intensity on the Collection of
Spider (Araneae) Species and the Estimation of Species Richness.Environmental Entomology , 26 , 150–162.
Eberhard, W. G. (1985). Sexual Selection and Animal Genitalia .
Harvard University Press, Cambridge, US.
Elbrecht, V., & Leese, F. (2015). Can DNA-based ecosystem assessments
quantify species abundance? Testing primer bias and biomass-sequence
relationships with an innovative metabarcoding protocol. PLoS
ONE , 10 , 1–16.
Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K.,
Pietroni, C., & Hansen, A. J. (2017). Algorithm for post-clustering
curation of DNA amplicon data yields reliable biodiversity estimates.Nature Communications , 8(1188) , 1-11.
Garcés-Pastor, S., Wangensteen, O.S., Pérez-Haase, A., Pèlachs, A.,
Pérez-Obiol, R., Cañellas-Boltà, N., Mariani, S., & Vegas-Vilarrúbia,
T. (2019). DNA metabarcoding reveals modern and past eukaryotic
communities in a high-mountain peat bog system. Journal of
Paleolimnology , 62 , 425–441.
Geller, J., Meyer, C., Parker, M., & Hawk, H. (2013). Redesign of PCR
primers for mitochondrial cytochrome c oxidase subunit I for marine
invertebrates and application in all-taxa biotic surveys.Molecular Ecology Resources , 13 , 851–861.
Hebert, P., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal
life: Cytochrome c oxidase subunit 1 divergences among closely related
species. Proceedings of the Royal Society B: Biological Sciences,270 , 96-99.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L.
S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation.Molecular Biology and Evolution , 35(2) , 518–522.
Hulme, P. E. (2009). Trade, transport and trouble: managing invasive
species pathways in an era of globalization. Journal of Applied
Ecology , 46 , 10–18.
Jakob, C., Poizat, G., Veith, M., Seitz, A., & Crivelli, A. J. (2003).
Breeding phenology and larval distribution of amphibians in a
Mediterranean pond network with unpredictable hydrology.Hydrobiologia , 499 , 51–61.
Kennedy, S., Prost, S., Overcast, I., Rominger, A.J., Gillespie, R. G.
& Krehenwinkel, H. (2020). High-throughput sequencing for community
analysis: the promise of DNA barcoding to uncover diversity,
relatedness, abundances and interactions in spider communities.Development Genes and Evolution , 230 , 185–201.
Krehenwinkel, H., Wolf, M., Lim, J. Y., Rominger, A. J., Simison, W. B.
& Gillespie, R. G. (2017). Estimating and mitigating amplification bias
in qualitative and quantitative arthropod metabarcoding.Scientific Reports , 7 , 1–12.
Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., &
Sanjayan, M. A. (1993). Terrestrial Arthropod Assemblages: Their Use in
Conservation Planning. Conservation Biology , 7 , 796–808.
Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne,
P., van den Broek, A., Cochrane, G., Duggan, K., Eberhardt, R., Faruque,
N., Garcia-Pastor, M., Harte, N., Kanz, C., Leinonen, R., Lin, Q.,
Lombard, V., Lopez, R., Mancuso, R., McHale, M., Nardone, F.,
Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M. A., Tzouvara, K.,
Vaughan, R., Wu, D., Zhu, W., & Apweiler, R. (2004). The EMBL
Nucleotide Sequence Database. Nucleic Acids Research , 32 ,
27–30.
Kuntner, M., & Baxter, I. H. (1997). A preliminary investigation of
spider species richness in an eastern Slovenian broadleaf forest.Proceedings of the 16th European Colloquium of Arachnology ,
173–182.
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., &
Taylor, M. I. (2019). How quantitative is metabarcoding: A
meta-analytical approach. Molecular Ecology , 28 , 420–430.
Lazaridou, M., & Sgardelis, S. (1997). Phenological patterns and life
history tactics of Helicoidea (Gastropoda, Pulmonata) snails from
Northern Greece. Iberus , 15(2) , 25-34.
Leather, S. R. (2018). “Ecological Armageddon” – more evidence for
the drastic decline in insect numbers. Annals of Applied Biology ,172 , 1–3.
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez,
V., Boehm, J. T. & Machida, R. J. (2013). A new versatile primer set
targeting a short fragment of the mitochondrial COI region for
metabarcoding metazoan diversity: Application for characterizing coral
reef fish gut contents. Frontiers in Zoology, 10 , 1–14.
Levi, H.W. (1974). The orb-weaver genera Araniella and Nuctenea.Bulletin of the Museum of Comparative Zoology, 146 ,
291–316.
Macías-Hernández, N., Ramos, C., Domènech, M., Febles, S., Santos, I.,
Arnedo, M. A., Borges, P. A. V., Emerson, B. C., & Cardoso, P. (2020).
A database of functional traits for spiders from native forests of the
Iberian Peninsula and Macaronesia. Biodiversity Data Journal ,8 .
Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2015).
Swarmv2: Highly-scalable and high-resolution amplicon clustering.PeerJ , 1–12.
Malumbres-Olarte, J., Boieiro, M., Cardoso, P., Carvalho, R., Crespo, L.
C., Gabriel, R., Hernández, N. M., Paulo, O. S., Pereira, F., Rego, C.,
Ros-Prieto, A., Silva, I., Vieira, A., Rigal, F., & Borges, P. A. V.
(2020a). Standardised inventories of spiders (Arachnida, Araneae) of
Macaronesia II: The native forests and dry habitats of Madeira
archipelago (Madeira and Porto Santo islands). Biodiversity Data
Journal , 8 .
Malumbres-Olarte, J., Cardoso, P., & Crespo, L. C. (2019). Standardised
inventories of spiders (Arachnida , Araneae) of Macaronesia I: The
native forests of the Azores (Pico and Terceira islands).Biodiversity Data Journal , 7 : e32625.
Malumbres-Olarte, J., Crespo, L. C., Domènech, M., Moya-Laraño, J., &
Arnedo, M. A. (2020b). How Iberian are we? Mediterranean climate
determines structure and endemicity of spider communities in Iberian oak
forests. Biodiversity and Conservation , 29 , 3973–3996.
Meiklejohn, K. A., Wallman, J. F., & Dowton, M. (2012). DNA Barcoding
Identifies all Immature Life Stages of a Forensically Important Flesh
Fly (Diptera: Sarcophagidae). Journal of Forensic Sciences ,58 , 184–187.
Miller, M.A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES
Science Gateway for inference of large phylogenetic trees. In:Proceedings of the Gateway Computing Environments Workshop (GCE) ,
New Orleans, 2010, 1–8.
Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast
approximation for phylogenetic bootstrap. Molecular Biology and
Evolution , 305 , 1188–1195.
Morinière, J., Cancian De Araujo, B., Lam, A. W., Hausmann, A., Balke,
M., Schmidt, S., Hendrich, L., Doczkal, D., Fartmann, B., Arvidsson, S.,
& Haszprunar, G. (2016). Species identification in malaise trap samples
by DNA barcoding based on NGS technologies and a scoring matrix.PLoS ONE , 11 , 1–14.
Nadal, M. F., Achitte-Schmutzler, H. C., Zanone, I., Gonzalez, P. Y., &
Avalos, G. (2018). Diversidad estacional de arañas en una reserva
natural del Espinal en Corrientes, Argentina. Caldasia ,40 , 129–143.
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., & Minh, B.Q. (2015)
IQ-TREE: A fast and effective stochastic algorithm for estimating
maximum likelihood phylogenies. Molecular Biology and Evolution ,32 , 268-274.
Norris, K. C. (1999). Quantifying change through time in spider
assemblages: Sampling methods, indices and sources of error.Journal of Insect Conservation , 3 , 309–325.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B.,
Simpson, G. L., & Wagner H. (2010). Vegan: community ecology package. R
package version.
Oliver, I., & Beattie, A. J. (1996). Designing a cost-effective
invertebrate survey: A test of methods for rapid assessment of
biodiversity. Ecological Applications , 6 , 594–607.
Piñol, J., Mir, G., Gomez-Polo, P., & Agustí, N. (2015). Universal and
blocking primer mismatches limit the use of high-throughput DNA
sequencing for the quantitative metabarcoding of arthropods.Molecular Ecology Resources , 15 , 819–830.
R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Rádai, Z., Kiss, B., & Samu, F. (2017). Effect of weather conditions on
cohort splitting in a Wolf spider species. Journal of
Arachnology , 45 , 444–447.
Ratcliffe, F. C., Uren Webster, T. M., Rodriguez-Barreto, D., O’Rorke,
R., Garcia de Leaniz, C., & Consuegra, S. (2020). Rapid quantitative
assessment of fish larvae community composition using metabarcoding.bioRxiv .
Ratnasingham, S., & Hebert, P. (2007). BOLD: The Barcode of Life Data
System (http://www.boldsystems.org). Molecular Ecology Notes ,7 , 355–364.
Richard, B., Decaëns, T., Rougerie, R., James, S. W., Porco, D., &
Hebert, P. (2010). Re-integrating earthworm juveniles into soil
biodiversity studies: Species identification through DNA barcoding.Molecular Ecology Resources , 10 , 606–614.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016).
VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4,e2584.
Russell-Smith, A., & Stork, N. E. (1995). Composition of spider
communities in the canopies of rainforest trees in Borneo. Journal
of Tropical Ecology , 11 , 223–235.
Sales, N. G., McKenzie, M. B., Drake, J., Harper, L. R., Browett, S. S.,
Coscia, I., Wangensteen, O. S., Baillie, C., Bryce, E., Dawson, D. A.,
Ochu, E., Hänfling, B., Lawson Handley, L., Mariani, S., Lambin, X.,
Sutherland, C., & McDevitt, A. D. (2020). Fishing for mammals:
Landscape-level monitoring of terrestrial and semi-aquatic communities
using eDNA from riverine systems. Journal of Applied Ecology ,57 , 707–716.
Schenk, J., Geisen, S., Kleinbölting, N., & Traunspurger, W. (2019).
Metabarcoding data allow for reliable biomass estimates in the most
abundant animals on earth. Metabarcoding and Metagenomics,3 , 117–126.
Schiebelhut, L. M., Abboud, S. S., Gómez-Daglio, L. E., Swift, H. F., &
Dawson, M. N. (2017). A comparison of DNA extraction methods for
high-throughput DNA analyses. Molecular Ecology Resources ,17 , 721–729.
Scott, J. A., & Epstein, M. E. (1987). Factors Affecting Phenology in a
Temperate Insect Community. American Midland Naturalist ,117 , 103–118.
Silva, D. (1996). Species composition and community structure of
Peruvian rainforest spiders: a case study from a seasonally inundated
forest along the Samiria river. Revue suisse de Zoologie ,2 , 597–610.
Socolar, J. B., Valderrama Sandoval, E. H., & Wilcove, D. S. (2019).
Overlooked biodiversity loss in tropical smallholder agriculture.Conservation Biology , 33 , 1338–1349.
Soininen, E. M., Gauthier, G., Bilodeau, F., Berteaux, D., Gielly, L.,
Taberlet, P., Gussarova, G., Bellemain, E., Hassel, K., Stenøien, H. K.,
Epp, L., Schrøder-Nielsen, A., Brochmann, C., & Yoccoz, N. G. (2015),
Highly overlapping winter diet in two sympatric lemming species revealed
by DNA metabarcoding. PLoS ONE , 10 , 1–18.
Sørensen, L. L., Coddington, J. A., & Scharff, N. (2002). Inventorying
and estimating subcanopy spider diversity using semiquantitative
sampling methods in an afromontane forest. Environmental
Entomology , 31 , 319–330.
Soukainen, A., Pajunen, T., Korhonen, T., Saarinen, J., Chichorro, F.,
Jalonen, S., Kiljunen, N., Koskivirta, N., Kuurne, J., Leinonen, S.,
Salonen, T., Yrjölä, V., Fukushima, C., & Cardoso, P. (2020).
Standardised spider (Arachnida, Araneae) inventory of Lammi, Finland.Biodiversity Data Journal, 8 , 1–15.
Stuart Chapin III, F., Zavaleta, E. S., Eviner, V. T., Naylor, R. L.,
Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O.
E., Hobbie, S. E., Mack, M. C., & Díaz, S. (2000). Consequences of
changing biodiversity. Nature , 405 , 234–242.
Taylor, R. J., & Doran, N. (2001). Use of terrestrial invertebrates as
indicators of the ecological sustainability of forest management under
the Montreal Process. Journal of Insect Conservation , 5 ,
221–231.
Telfer, A. C., Young, M. R., Quinn, J., Perez, K., Sobel, C. N., Sones,
J. E., Levesque-Beaudin, V., Derbyshire, R., Fernandez-Triana, J.,
Rougerie, R., Thevanayagam, A., Boskovic, A., Borisenko, A. V., Cadel,
A., Brown, A., Pages, A., Castillo, A. H., Nicolai, A., Mockford, B. M.
G., Bukowski, B., Wilson, B., Trojahn, B., Lacroix, C. A., Brimblecombe,
C., Hay, C., Ho, C., Steinke, C., Warne, C. P., Cortes, C. G.,
Engelking, D., Wright, D., Lijtmaer, D. A., Gascoigne, D., Martich, D.
H., Morningstar, D., Neumann, D., Steinke, D., DeBruin, D. D. B. M.,
Dobias, D., Sears, E., Richard, E., Damstra, E., Zakharov, E. V.,
Laberge, F., Collins, G. E., Blagoev, G. A., Grainge, G., Ansell, G.,
Meredith, G., Hogg, I., McKeown, J., Topan, J., Bracey, J., Guenther,
J., Sills-Gilligan, J., Addesi, J., Persi, J., Layton, K. K. S.,
D’Souza, K., Dorji, K., Grundy, K., Nghidinwa, K., Ronnenberg, K., Lee,
K. M., Xie, L., Lu, L., Penev, L., Gonzalez, M., Rosati, M. E.,
Kekkonen, M., Kuzmina, M., Iskandar, M., Mutanen, M., Fatahi, M.,
Pentinsaari, M., Bauman, M., Nikolova, N. I., Ivanova, N. V., Jones, N.,
Weerasuriya, N., Monkhouse, N., Lavinia, P. D., Jannetta, P., Hanisch,
P. E., McMullin, R. T., Flores, R. O., Mouttet, R., Vender, R., Labbee,
R. N., Forsyth, R., Lauder, R., Dickson, R., Kroft, R., Miller, S. E.,
MacDonald, S., Panthi, S., Pedersen, S., Sobek-Swant, S., Naik, S.,
Lipinskaya, T., Eagalle, T., Decaëns, T., Kosuth, T., Braukmann, T. W.
A., Woodcock, T., Roslin, T., Zammit, T., Campbell, V., Dincă, V.,
Peneva, V., Hebert, P., & DeWaard, J. R. (2015). Biodiversity
inventories in high gear: DNA barcoding facilitates a rapid biotic
survey of a temperate nature reserve. Biodiversity Data Journal ,3 .
Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H., & Trites,
A. W. (2016). Quantitative DNA metabarcoding: Improved estimates of
species proportional biomass using correction factors derived from
control material. Molecular Ecology Resources , 16 ,
714–726.
Toti, D. S., Coyle, F. A., & Miller, J. A. (2000). A structured
inventory of appalachian grass bald and heath bald spider assemblages
and a test of species richness estimator performance. Journal of
Arachnology , 28 , 239–345.
Wangensteen, O.S., Palacín, C., Guardiola, M., & Turon, X. (2018). DNA
metabarcoding of littoral hard-bottom communities: High diversity and
database gaps revealed by two molecular markers. PeerJ , 6 ,
e4705.
Watts, C., Dopheide, A., Holdaway, R., Davis, C., Wood, J., Thornburrow,
D., & Dickie, I. A. (2019). DNA metabarcoding as a tool for
invertebrate community monitoring: a case study comparison with
conventional techniques. Austral Entomology , 58 , 675–686.
Yellareddygari, S. K., Pasche, J. S., Taylor, R. J., Hua, S., &
Gudmestad, N. C. (2016). Beta Regression Model for Predicting the
Development of Pink Rot in Potato Tubers During Storage. Plant
Disease , 100 , 1118–1124.
Yen, A., & Butcher, R. (1997). An overview of the conservation of
Non-marine Invertebrates in Australia . Canberra, Australia, Environment
Australia.
Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., & Ding
Z. (2012). Biodiversity soup: Metabarcoding of arthropods for rapid
biodiversity assessment and biomonitoring. Methods in Ecology and
Evolution , 3 , 613–623.
SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of
this article:
Table S1 Information on the adult sequenced specimens used in
this study.
Table S2 Final dataset containing all the MOTUs of immature
stages of spiders obtained by metabarcoding.
Figure S1 Rarefaction curves showing the number of MOTUs per
replicate against an increasing number of reads.
FIGURES