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SFGAN: Unsupervised Generative Adversarial
Learning of 3D Scene Flow from the 3D Scene Self

Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang

Abstract—3D scene flow presents the 3D motion of each point
in the real physical world. Although the RGBD camera or
LiDAR capture discrete 3D points in space, the objects and
motions usually are continuous in the macro world. The objects
in the physical world keep themselves consistent as they flow
from the current frame to the next frame., the constraint for
the learning of 3D scene flow can be built just from the raw
consecutive 3D point clouds. Based on the insight, we utilize the
Generative Adversarial Networks (GAN) to self-learn 3D scene
flow with no need for ground truth. The fake point cloud of
the second frame is synthesized from the predicted scene flow
and the point cloud of the first frame. The adversarial training
of the discriminator and generator through discriminating the
real point cloud of the second frame and the generated point
cloud of the second frame, which makes the generated point
cloud more and more similar to the real one and thus makes the
scene flow estimation more accurate. We try various possible
discriminator network structures and do the ablation studies
to analyze the designed discriminator structure. Finally, the
experiments demonstrated the best structure for the learning
of 3D scene flow. The experiments also show that our method
realizes promising results although the 3D scene flow estimation
network just learns from the point clouds of two consecutive
frames without ground truth. Just like a human observing a
real-world scene, Our approach is capable of determining the
consistency of the scene at different momentsin spite of the exact
flow value of each point is unknown in advance.

Index Terms—scene flow estimation, 3D point clouds, Genera-
tive Adversarial Network (GAN), soft correspondence, unsuper-
vised learning

I. INTRODUCTION

JUST like estimating 2D optical flow from a pair of images,
estimating 3D scene flow from two frames of 3D point

clouds is an essential task in computer vision. 3D scene flow
can be applied to object detection and tracking [1]–[3], LIDAR
odometry [4], action recognition [5], etc. Recently, some
works [6]–[10] has been done to realize supervised estimation
of 3D scene flow from point clouds of two consecutive frames.
However, just as it is difficult to obtain the true value of
optical flow [11], [12], the true value of 3D scene flow is
also difficult to obtain. Therefore, it is very important to
perform unsupervised learning of 3D scene flow. The dynamic
environment changes over time, which will cause some edge
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points of the 3D point cloud scene to be lost. For example,
some points at the edges of the point cloud in the first frame
are used to characterize a person, and as the scene is shifted,
the point describing the person may disappear in the second
frame. Existing unsupervised learning methods for 3D scene
flow always have some assumptions, which do not completely
conform to the real situation. For example, some works [13],
[14] introduce Chamfer loss to self-supervised learning of
scene flow. Chamfer loss assumes that the coordinates of
each sampled point in the predicted point cloud of the second
frame and the coordinates of each sampled point in the real
point cloud of the second frame are exactly the same in
geometric space. Chamfer loss aims to minimize the distance
between the nearest points in both the predicted point cloud
and the real point cloud. Due to the discrete sampling of
adjacent frames, the points that characterize the same object
do not correspond point by point. Chamfer loss violates the
discreteness of adjacent frames in the scene and the sampling
fact. Mittal et al. [15] proposed Cycle Consistency Loss that
predicts the reverse flow in order to transform the predicted
point cloud of the second frame into the position of the first
frame. Which minimizes the distance between the nearest point
in the predicted point cloud of the first frame and the true
point cloud of the first frame. In order to make the point cloud
structure of the estimated reverse flow obvious, recent work
[15] has modified the starting point of the reverse flow. This
artificial manipulation of the original data violates the true
data distribution. The curvature loss proposed by PointPWC-
Net [13] assumes that the predicted point clouds have the same
Laplace coordinates at the same locations in space as the real
point clouds, which is also inconsistent with the fact of discrete
sampling of adjacent frame point clouds. How to perform
unsupervised learning from raw data without assumptions is a
challenge.

In this paper, we use the scene flow estimation network as
a generator and design a robust discriminator to discriminate
the generated point clouds and the real point clouds. The real
labels are not utilized in the optimization of the scene flow
generator. Just like human perception, the discriminator dis-
criminates the consistency between the 3D scene represented
by the generated point cloud and the 3D scene represented by
the real point cloud to optimize the accuracy of the scene flow
estimation.

Our main contributions in this work are shown as follows:
• A novel self-supervised learning framework for 3D scene

flow is proposed, in which generative adversarial ideas
are introduced to learn 3D scene flow. The adversarial
learning between the scene flow generator and the point
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cloud discriminator makes the point clouds generated by
the generator closer and closer to the real point clouds,
thus making the scene flow estimation more accurate.

• Four different types of point cloud discriminators are
designed, which can be used to discriminate whether the
point clouds are from training data or generated data.
The best discriminator structure is finally verification by
ablation experiments.

• The experimental results in KITTI dataset [16] demon-
strate that the introduction of adversarial learning ideas
in scene flow estimation is effective to improve the
performance of scene flow estimation.

Our paper is divided into five sections in total. Section II
shows the related work. Section III introduces our approach,
describing the overall framework, the detailed structure of
the scene flow generator and the point cloud discriminator
and their adversarial learning process, respectively. The ex-
perimental part including training details, dataset description,
evaluation metrics, result analysis, and ablation experiments
are presented in Section IV. Section V shows the conclusion.

II. RELATED WORK

Scene flow is a 3D motion field formed by the movement
of scenes in 3D space, which has an important role in the
autonomous driving field. Motion information is essential for
the understanding of dynamic environments, but most sensors
cannot directly collect motion information.

Some previous works [17]–[20] popularly use RGB data
to estimate scene flow. Huguet et al. [17] predict scene flow
through synthesizing optical flow between continuous frame
images and depth map from dense stereo matching. Cech
et al. [20] proposed the simple seed growing algorithm, the
basic principle of which is to find correspondences in small
neighborhoods around the initial seed correspondence set.
Based on this principle, the disparity of the stereo image and
the optical flow between consecutive images are calculated.
Many researchers have also worked on scene flow estimation
tasks based on RGB-D camera, which provide a depth channel
for images. Some works [21], [22] extends the 2D approach to
3D to predict scene flow based on RGBD data. RGB-D flow
[21] extends the two-frame variational 2D flow algorithm to
3D, and the predicted dense 3D flow applies to rigid motion
segmentation. RAFT-3D [23] estimates pixelwise 3D motion
on RGBD data or stereo images. RAFT-3D [23] introduces
rigid-motion embeddings of pixelwise SE3, which is based on
the optical flow estimation framework, RAFT [24].

The introduction of PointNet [25] has caused a wave of
point cloud deep learning, which is the first deep model that
processes 3D point clouds directly. PointNet [25] learns the
corresponding spatial encoding for each point in the input
point clouds, then uses the features of all points to obtain
a global point cloud feature. PointNet [25] mainly focuses
on the extraction of global point cloud features but lacks
the extraction and processing of local features. The feature
extraction layer of PointNet++ [26] contains sampling layer,
grouping layer and pointnet layer, which provides the network
with focus on extracting local features. Many recent works

[6], [7], [13] are devoted to recovering 3D scene flow directly
from 3D point cloud data. FlowNet3D [6] learns point cloud
features based on PointNet++ [26] and introduces a new
flow embedding to learn point motion. FlowNet3D [6] is a
classic supervised model that estimates the scene flow directly
from the raw point cloud. HPLFlowNet [27] uses bilateral
convolutional layers as the base module and then recovers
the 3D scene flow using a similar structure to FlowNet3D
(downsampling-flow embedding-upsampling). Inspired by the
optical flow estimation framework PWC-Net [28], PointPWC-
Net [13] introduces a new cost volume layer based on Point-
Conv [29] and computes the flow in a coarse-to-fine style.
Wang et al. [7] introduced a hierarchical attention network in
the task of the scene flow estimation, and propose a new flow
embedding of dual attention to learn 3D scene flow.

The ground truth values of scene flow in real world scenes
are difficult to obtain, which leads to the scarcity of scene
flow label data. So self-supervised learning scene flow has
important research values for scene perception. Some recent
works [15], [30]–[33] has been done on unsupervised learning
of scene flow. Mittal et al. [15] proposes nearest neighbor
loss and cycle consistency loss for self-supervised learning of
3D scene flow, and achieves outstanding performance. Pontes
et al. [30] introduces a geometrically interpretable objective
function to recover the scene flow from a pair of point
clouds without ground truth. PointPWC-Net [13] introduced
three self-supervised losses including Chamfer distance loss,
Smoothness constraint loss, and Laplacian regularization loss
in their framework for scene flow estimation. Based on the
HPLFlowNet [27], Tishchenko et al. [31] conducted end-to-
end joint learning of ego-motion and non-rigid flow by feature
learning of 3D point clouds, and used the loss functions of
Mittal et al. [15] for self-supervised learning of 3D scene flow.

Goodfellow et al. [34] first proposed GAN (Generative
Adversarial Nets). GAN is great at unsupervised learning
and generating data, and it also has powerful representation
capabilities. Many works have migrated the training ideas of
GAN to different research fields. GANVO [35] introduced
joint unsupervised learning of pose and depth maps based on
GAN and proposed a novel adversarial technique to generate
depth images without ground truth. PoseGAN [36] applied the
idea of GAN to the camera localization framework. PoseGAN
[36] designs the image generator by pose-to-image, based
on a conditional discriminator to discriminate whether the
image comes from generated or trained data. MFGAN [37]
transfers beneficial features from bright scenes to images
of scenes with poor lighting conditions based on generative
adversarial networks, and this style transfer approach improves
performance in the visual odometry task.

III. SFGAN FOR UNSUPERVISED LEARNING METHOD OF
3D SCENE FLOW

In this section, a new unsupervised learning structure of
3D scene flow is proposed. As shown in Figure 1, we
introduce the game idea of GAN (Generative Adversarial
Network) into unsupervised 3D scene flow estimation. The
new structure includes a scene flow generator Gsf and a point
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cloud discriminator Dpc. The generator Gsf learns the 3D
scene flow SF from a pair of point clouds PC1 and PC2.
The predicted point cloud PC∗2 of the second frame can be
synthesized based on the learned scene flow SF and the point
cloud PC1 of the first frame. The designed discriminator can
discriminate the probability of the point cloud being real data.
The discriminator considers synthesized cloud point of the
second frame as a fake point cloud. The probability value
of the discriminator output reflects the degree of truth or
fake of the input point cloud data. A higher probability value
represents the greater the possibility that the input point cloud
is from real data. The range of probability values is 0 to 1. The
discriminator plays the adversarial role against the generator.
The estimated accuracy of the 3D scene flow is continuously
improved in the process of adversarial learning. Details of the
model structure are presented in the following subsections.

A. Scene Flow Generator

The first part of the proposed model is to directly estimate
the 3D scene flow from the raw point cloud pair by the
scene flow generator Gsf , which is based on the FlowNet3D
[6]. The detailed structure of the generator is shown in the
upper part of Figure 2. The set conv layer processes a point
cloud PC = {ci, pfi|i = 1, 2, ..., n} and returns a new point
cloud PC ′ = {c′j , pf ′j |j = 1, 2, ...,m}. ci ∈ R3 means
the XYZ coordinate of a point. pfi ∈ Rl represents the
features of the point. l means the feature dimension of the
point cloud. c′j is the updated coordinate after the set conv
layer. pfi ∈ Rl′ is the updated point cloud feature, where l′

is the updated feature dimension. The flow embedding layer
learns a flow embedding di for each point in the point cloud
of the first frame. The output of the flow embedding layer
is represented as {ck, dk|k = 1, 2, ..., n}, where dk ∈ Rl1 .
l1 means the dimension of flow embedding feature. And
then the flow embedding associated with the intermediate
points is upsampled to the raw point cloud. This upsampling
process is implemented through the learnable set upconv layer.
The learnable upconv layer propagates flow embedding by
aggregating features of neighboring points. The upconv layer
learns how to weight the features of nearby points during
network training. The scene flow

−→
sf of the raw point cloud

is predicted in the last layer, which is realized by the full
connection layer FC (fully connected layer).

B. Scene Flow Warping

As shown in Figure 1, we can generate the predicted point
cloud PC∗2 of the second frame according to the predicted
scene flow SF . The predicted scene flow from the generator
Gsf is represented as SF = {

−→
sfi ∈ R3}N1

i=1. The point
cloud PC∗2 of the predicted second frame is fed into the
discriminator. Predicted point cloud PC∗2 is synthesized from
the point cloud PC1 = {pc1,i ∈ R3}N1

i=1 of the first frame and
the predicted scene flow SF . The formula for the synthesis
process is as follows:

PC∗2 = {pc∗2,i = pc1,i+
−→
sfi|pc1,i ∈ PC1,

−→
sfi ∈ SF}N1

i=1. (1)

C. 3D Structure Consistency

As shown in Figure 1, The scene flow generator Gsf is
the main object of optimization in the whole network. We
adopt a total of 5 loss functions to optimize the scene flow
generator Gsf . They are Chamfer Loss LC , Curvature Loss
ΦC , Smooth Loss LS , Cycle Consistency Loss LCC , and
GAN Loss LG. So that the scene flow generator Gsf can
produce more accurate scene flow

−→
sf . The first four loss

functions are originated from existing unsupervised learning
work [13], [15].

The PC∗2 and the PC2 represent the point cloud from the
scene flow warping and the actual point cloud of the second
frame. The average distance between the points in the first
frame point cloud and the points in the second frame point
cloud is used to represent the distance between the two frames.
The purpose of Chamfer loss is to minimize the distance
between point cloud PC∗2 and point cloud PC2. The Chamfer
loss LC is defined as the following:

LC(PC∗2 , PC2) =
∑

pc∗2εPC
∗
2

min
pc2∈PC2

‖pc∗2 − pc2‖
2
2+

∑
pc2εPC2

min
pc∗2∈PC∗2

‖pc∗2 − pc2‖
2
2.

(2)

To prevent large differences in the scene flow within a
local space and to keep local smoothing. Smooth loss function
LS(D) assumes that the scene flow SF (pci) at a point pci
should be similar to the scene flow SF (pcj) at a point pcj
in the local space N(pci) at pci. N(pci) represents the point
cloud within a local space in the point cloud PC1. ‖N(pci)‖
represents the number of points in the local space N(pci). The
detailed calculation process of LS is as follows:

LS(D) =
∑

pci∈PC1

1

‖N(pci)‖
∑

pcj∈N(pci)

‖SF (pcj)− SF (pci)‖22. (3)

The points in the 3D point cloud exists only on the surface
of the object. The Curvature Loss function aims that the
surface features of the predicted point cloud should be similar
to the surface features of the actual point cloud. Based on
the assumption of consistency of objects in front and back
frames, the predicted points pc∗2 and interpolated point pcin
should have the same Laplace coordinates δ(pc), where pcin
comes from a point cloud PC2 interpolated into the predicted
point cloud PC∗2 . The curvature loss are defined as follows:

δ(pci) =
1

N(pci)

∑
pcj∈N(pci)

(pcj − pci). (4)

ΦC(δ(pc∗2), δ(pcin)) =
∑

pc∗2∈PC∗2

‖δ(pc∗2)− δ(pcin)‖22. (5)

According to the predicted scene flow
−→
sf , the coordinates

ci of the current point can be transformed to the coordinates c′i
of the next frame point. On the contrary the reverse 3D scene
flow sf ′i can be estimated based on the point cloud of the next
frame and the point cloud of the current frame. Based on the
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Figure 1. Unsupervised learning model of 3D scene flow based on GAN. The point clouds of consecutive frames (purple point cloud PC1 and green
point cloud PC2) are fed to the scene flow generator Gsf , and the output is the 3D scene flow for each point in point cloud PC1, with θ being the learnable
parameter of Gsf . The predicted point cloud PC∗

2 of the second frame is generated by scene flow warping ( PC1 + SF ). We design generator loss LG

and discriminator loss LD according to the probability values generated by comparing the difference between PC2 and PC∗
2 , which are used to optimize

the scene flow generator and point cloud discriminator, respectively.

predicted second frame point cloud and the reverse flow, the
predicted point cloud of the first frame can be synthesized.
the aim of the Cycle consistency loss function LCC is to
minimize the distance between the predicted point cloud of the
first frame and the real point cloud of the first frame. In order
to make the reverse 3D scene flow sf ′i estimation more stable
and reliable, a new second frame point cloud is reconstructed
from sampling the predicted point cloud of the second frame
and the actual second frame point cloud separately. Finally
the coordinates {c′′i }Ni of the predicted point cloud of the first
frame are obtained. The goal of the cycle consistency loss
LCC is to minimize the distance between coordinate ci and
coordinate c′′i , which is defined as follows:

LCC =

N∑
i

‖c′′i − ci‖
2
. (6)

As shown in the bottom half of Figure 2, the discriminator
Dpc discriminates the predicted point cloud PC∗2 of the second
frame and the real point cloud PC2 of the second frame at
the same time and outputs two probability values. More details
of the discriminator will be described in the next subsection.
The purpose of the scene flow generator Gsf is to produce a
more accurate 3D scene flow that can fool the discriminator.
In the training process of the network, information loss is
produced when the distribution Pg of the generated data is
fitted to approximate the distribution P of the real data, and
the information loss is back-propagated to the generator Gsf .

The original GAN randomly samples from noise prior z
and feeds into the generator network to generate new data
G(z). The scene flow generator Gsf inputs point cloud data
of consecutive frames. and returns the predicted 3D scene flow
SF . The predicted point cloud data PC∗2 of the second frame
is synthesized from the real point cloud data PC1 of the
first frame and the prediction flow

−→
sf . Sampling n samples

{pc∗(1)
2 , ..., pc

∗(n)
2 } from the predicted point cloud PC∗2 of

the second frame. The discriminator Dpc discriminates the
generated data of the point cloud and generates a probability
value of the point cloud coming from the real data by the
sigmoid function, where the probability value reflects the
difference between the generated data and the real data. The
goal of Gsf is to minimize the difference. the GAN loss
function LG is defined as follows:

LG =
1

n

n∑
i

log(1−Dpc(pc
∗(i)
2 )). (7)

Five loss functions work together to optimize the scene flow
generator Gsf . Each loss function has its own loss weight
factor. The total loss function of the generator Gsf is shown
as follows:

Ltotal = λcLC + λsLS + λΦΦC + λccLCC + λgLG. (8)

Where λc, λs, λΦ, λcc, and λg represent the weight of each
loss.

D. Structural Similarity Discriminator

In pursuit of better discrimination, we designed four differ-
ent discriminator structures, which can be divided into (a)(b)
and (c)(d) in Figure 3 according to the feature extraction
layer of the point cloud whether weight sharing. According
to the predicted point cloud PC∗2 with PC1 or PC2 for flow
embedding, we can classify the four discriminators into two
kinds, (a)(c) and (b)(d). In the (a)(c) structure, PC∗2 performs
feature embedding with PC1. In the (b)(d) structure, PC∗2
performs feature embedding with PC2. In the IV section,
we will discuss the advantages and disadvantages of the four
discriminators with the experimental data. We determine the
best discriminator structure of the point cloud by ablation
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experiments. As shown in the bottom half of Figure 2, point
cloud PC1 of the first frame, point cloud PC2 of the second
frame, and the predicted point cloud PC∗2 of the second frame
are fed into the discriminator. First, the input point cloud is
downsampled, and then the soft corresponding point of each
point in the first frame point cloud is found in the second frame
point cloud by the flow embedding layer. After learning the
flow embedding for each point in the point cloud of the first
frame, we continue to downsample using the Set Conv layer. In
this process, the dimension of the point cloud becomes smaller
and the dimension of the point cloud features becomes larger.
However reducing the dimension of the point cloud is not the
main purpose, the main purpose is to make the spatial distance
of the values more meaningful. Therefore, the discriminator
does not need to upsample the points to the original number
of points and still can discriminate between the predicted
point cloud PC∗2 and the real point cloud PC2. This designed
approach achieves both the aim of discriminating point clouds
and saving computational resources. Lastly, the probability
of the point cloud is calculated directly by the Multi-Layer
Perceptron (MLP) and the Sigmoid function.

Generators and discriminators are trained by optimizing the
loss function. In fact, they separately have their own loss
functions. The real data {pc(1)

2 , ..., pc
(n)
2 } and the new data

{pc∗(1)
2 , ..., pc

∗(n)
2 } generated by Gsf are fed into the Dpc

network together for true-false discrimination. The aim of
training the discriminator Dpc is to maximize the probability
log(Dpc(PC2)) of discriminating the real point cloud PC2

and maximize the difference log(1 − Dpc(PC
∗
2 )) between

the data distribution Pg(pc
∗) of the generated point cloud

and the data distribution P (pc) of the real point cloud. As
the discriminative capability of Dpc becomes more and more
powerful, an balance is eventually reached, which ensures that
the point cloud data distribution generated by Gsf belongs to
the same class as the real data distribution of the point cloud.
Therefore, Better performance of the point cloud discriminator
Dpc results in superior performance of the scene flow gener-
ator Gsf . The discriminator LD loss is defined as follows:

LD =
1

n

n∑
i

[log(Dpc(pc
(i)
2 )) + log(1−Dpc(pc

∗(i)
2 ))]. (9)

E. The Adversarial Training

In the unsupervised framework of scene flow estimation
proposed in this paper, the scene flow generator and the point
cloud discriminator are trained alternately. In the adversarial
learning process, the scene flow generator and the point cloud
discriminator both play a minimax game. Poor discriminator
performance at the beginning of training can cause the gener-
ator to develop in a bad trend. So discriminator Dpc should
learn earlier than generator Gsf . This ensures that Dpc is
adequately trained. At the beginning of training, although the
predicted point cloud data are in the same feature space as the
real point cloud data, the differences in their distributions are
obvious, so the discriminator can easily distinguish the two.
In the training phase of the generator Gsf , the information

loss generated from the discriminator is used to optimize the
generator, which makes the distribution of the predicted fake
point cloud gradually coincide with the distribution of the
real point cloud, and the degree of difference between both is
represented by V (Gsf , Dpc) . In adversarial learning process
of the two models, the goal of Dpc is to make V (Gsf , Dpc) as
large as possible and the goal of Gsf is to make V (Gsf , Dpc)
as small as possible. The process of the two player game for
Gsf and Dpc is as follows:

min
Gsf

max
Dpc

V (Gsf , Dpc) = Epc∼P (pc)[log(Dpc(pc))]+

Epc∗∼Pg(pc∗)[log(1−Dpc(pc
∗))].

(10)

Where V (Gsf , Dpc) denotes the degree of difference be-
tween the data distributions of the generated data and the
training data.

IV. EXPERIMENTS

We implemented experiments with different training meth-
ods and ran self-supervised training on different datasets.
The initial model is trained on a large virtual dataset at
first, then unsupervised fine-tuning is run on a miniature real
dataset containing scene flow annotations. Next, we explore
the influence of each loss function on the model by ablation
experiments, and also discussed the influence of different GAN
loss weights. We designed four different discriminators of the
point cloud and the effects of the different discriminators on
the results were also compared in the ablation experiments.

A. Implementation Details

Our model is pre-trained in the FlyingThing3D dataset
[38] by means of self-supervised learning, and the network
framework is mainly based on FlowNet3D [6]. The pre-trained
model was fine-tuned in the KITTI dataset [16]. The scene
flow generator and the point cloud discriminator are inputted
with a point cloud containing 2048 points for each frame. The
feature input of the raw point cloud is given as 0. The generator
and the discriminator are trained, separately. The best results
have been demonstrated in experiments with alternating train-
ing methods such as training an epoch generator followed by
an epoch discriminator. Rather than interval of several epochs
between generator and discriminator training cycles.

The whole network framework in this paper is built on the
deep learning framework Tensorflow. Our model is trained on
an NVIDIA Quadro RTX 6000 GPU, with the Adam optimizer
[39] used to optimize the network weights. The settings for
each parameter of the Adam optimizer are a learning rate of
0.01, β1 = 0.9, β2 = 0.999, and a batch size of 4. The generator
and the discriminator have the same optimizer configuration.

B. Datasets and Data Preprocessing

1) FlyingThings3D [38]: The dataset contains about 32k
stereo images, where each pair of stereo images has its
corresponding ground-truth optical flow map and ground-
truth disparity map. These images are randomly extracted
by ShapeNet [40] from multiple moving objects to form a
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Figure 2. Adversarial learning network framework for 3D scene flow estimation. The FlowNet3D architecture is used as a generator to predict the scene
flow at each point of the first frame PC1 and to obtain PC∗

2 . The discriminator generates the probability that PC2 is true and the probability that PC∗
2 is

true, from which the loss function is designed to train the generator and the discriminator respectively. FC represents fully connected layer.

large 3D object dataset, from which 200000 are randomly
selected to form the training set for our model. Our model
predicts the scene flow directly from the 3D point cloud
instead of RGB images. We use the same data preprocessing
approach as FlowNet3D [6]. 3D point clouds are generated
from ground truth disparity maps, and scene flow are recovered
from ground truth optical flow maps and 3D point cloud
pairs. The generated paired 3D point clouds are used for self-
supervised learning of the scene flow.

2) KITTI Scene Flow Evaluation 2015 [16]: Since the eval-
uation of the results of the image-based scene flow estimation
is realized in the image space. In the scene flow evaluation
2015, the scene flow vector stored by two frames of the
disparity map and an optical flow map. The real 3D scene
flow vector can be obtained by accessing the calibration file.
In the training and result evaluation experiments of the point
cloud-based model for 3D scene flow estimation, The ground
truth data of 3D scene flow is stored by a pair of 3D point
clouds at different times and a 3D scene flow vector for each
point. Scene flow data was collected from 150 LIDAR data
scenes in KITTI with multiple scans using 64 beam LIDAR
and annotated using scene flow ground truth [41]. We select
100 scenes for training, and the remaining 50 scene are used
for the evaluation of the predicted scene flow results. The
same data pre-processing as FlowNet3D [6] is conducted that

removes the ground points for each scene.

C. Results and Analysis
The results of the 3D scene flow estimated by SFGAN

were evaluated by using the data with scene flow annotations
in KITTI. We quantitatively evaluate the results of the pre-
dicted scene flow using four metrics. EPE3D represents the
average error of the predicted scene flow in meters, which

is expressed by the following equation: 1
N1

N1∑
i=1

∥∥∥ŝfi − sfi∥∥∥,

where N1 represents the total number of scene flow. The
predicted scene flow ŝfi at a point pci is subtracted with the
scene flow ground truth sfi, which directly reflects the mean
effects of the scene flow estimation. Accuracy of scene flow
estimation is measured with ACC3D and Outliers3D. ACC3D
includes the absolute and relative errors of the scene flow,
and sets two thresholds for the errors. ACC3D Strict specif-

ically is expressed as:
∥∥∥ŝfi − sfi∥∥∥<0.05 or ‖ŝfi−sfi‖sfi

<5%;

ACC3D Relax specifically is expressed as:
∥∥∥ŝfi − sfi∥∥∥<0.1

or ‖ŝfi−sfi‖sfi
<10%. Outliers3D represents the percentage of

large errors in the predicted scene flow to the overall scene
flow. Outliers3D specifically is expressed as:

∥∥∥ŝfi − sfi∥∥∥>0.3

or ‖ŝfi−sfi‖sfi
>10%.
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Figure 3. Different discriminator designs. Design base discriminator (a) no weight sharing for feature extraction of PC1 and PC∗
2 , then feature embedding

of PC1 and PC∗
2 , and finally, the probability of fake PC2 is obtained. (The probability of calculating the true PC2 replaces the input with PC1 and PC2.)

Discriminator (c) sets weight sharing during feature extraction. Discriminator (b)(d) performs feature embedding using PC2 and PC∗
2

FlowNet3D on KITTI dataset

Our on KITTI dataset

EPE3D = 0.2718 EPE3D = 0.1769

EPE3D = 0.0937EPE3D = 0.1093

EPE3D = 0.15062

EPE3D = 0.0817

EPE3D = 0.2003

EPE3D = 0.0794

Figure 4. Visualization of the accuracy of 3D scene flow evaluation in the KITTI dataset. The top half shows the evaluation results of the predicted scene
flow from FlowNet3D [6], and the bottom half shows the evaluation results of the predicted scene flow from our model. The point cloud of the first frame
is represented by the blue points. the predicted point cloud synthesized from the predicted flow ŝf and the point cloud of the first frame. We categorized
the predicted points into incorrect points and correct points by utilizing the Acc3D Relax metric. Correct points are shown in green and incorrect points are
shown in red. We evaluated all points of the whole scene.

As shown in Table I, first SFGAN obtains a pretrained
model by utilizing for FlyingThings3D dataset, and then we
did supervised fine-tuning. The supervised model fine-tuning
in the KITTI dataset has achieved remarkable results. The
effect of our supervised fine-tuning is obviously better than
the existing supervised fine-tuning methods [15]. In no access
to the ground truth of the scene flow in the KITTI dataset, the
pre-trained model is fine-tuned using our method with a self-
supervised manner. SFGAN has a significant improvement on
the metric EPE3D, surpassing the existing self-supervised fine-
tuning methods [15]. The metric EPE3D reflects the global
mean error of the predicted scene flow. In fact, when compared
with other methods of unsupervised learning of scene flow,
SFGAN has its own special characteristic. Existing unsuper-

vised learning methods for scene flow perceived estimation
errors from the scene flow prediction results themselves, and
constructed the self-supervised loss more from the estimation
results for each point or localized points. However, there is
no global grasp of the predicted scene flow results. SFGAN
focuses more on the overall structure of the decision process
and improves the whole data distribution of the prediction.
Thus, the performance of self-supervised scene flow estimation
can be improved. This advantage is well demonstrated by the
metric EPE3D. The metric EPE3D is less than 0.1 without
accessing the ground truth of scene flow. In addition, SFGAN
outperforms Mittal et al. [15] on the metric ACC3D Strict.

Our model only learns the 3D scene flow from point
cloud pairs. Figure 4 and Figure 5 show the visualization
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FlowNet3D on KITTI dataset

EPE3D = 0.2718 EPE3D = 0.1769 EPE3D = 0.15062 EPE3D = 0.2003

Our on KITTI dataset

EPE3D = 0.0937EPE3D = 0.1093 EPE3D = 0.0817 EPE3D = 0.0794

Figure 5. Detailed visualization of scene flow estimation in KITTI dataset The top half shows the prediction results of the scene flow of FlowNet3D [6].
The bottom half shows the prediction results of scene flow of our method.The point cloud of the first frame is blue points. The predicted point cloud and the
point cloud of the second frame are red points and green points , respectively.

Table I
EVALUATION RESULTS OF THE SCENE FLOW ESTIMATES IN THE KITTI DATASET. ↑ REPRESENTS LARGER VALUES AS BETTER AND ↓ REPRESENTS

SMALLER VALUES AS BETTER. Wgan REPRESENTS THE WEIGHT COEFFICIENT OF THE GAN LOSS FUNCTION FOR ALL MODELS, THEY WERE FIRST
TRAINED IN THE FLYINGTHINGS3D DATASET AND THEN FINE-TUNED IN KITTI DATASET, AND THE GROUND POINTS OF THE SCENES WERE REMOVED

DURING ALL TRAINING.

Method EPE3D↓ Acc3D Strict↑ Acc3D Relax↑

FlowNet3D [6] 0.122 0.2537 0.5785
Mittal et al. (Supervised ft) [15] 0.100 0.3142 0.6612

Our (Supervised ft) 0.075 0.4980 0.8117

PointPWC-Net (Self-Supervised ft) [13] 0.163 0.2117 0.5409
Mittal et al. (Self-Supervised ft) [15] 0.126 0.3200 0.7364
Our (Self-Supervised ft) (Wgan=2) 0.098 0.3022 0.6823
Our (Self-Supervised ft) (Wgan=3) 0.102 0.3205 0.6854

of the results of the scene estimation for our method and
FlowNet3D [6]. The impressive results were achieved after
the baseline was fine-tuned by SFGAN. The red points in
Figure 4 represent the points where the scene flow is estimated
incorrectly, and the green points represent the points where it
is estimated correctly. Our self-supervised method has better
estimation results compared to FlowNet3D [6]. As shown in
Figure 5, The point cloud (red) predicted by our method is
highly similar in geometric shape to the point cloud (green)
of the second frame.

D. Ablation Studies

The main focus of this section is to perform a series of
ablation experiments on the loss function and point cloud
discriminator of our network framework. Ablation Studies
includes the contribution of each loss function to the self-
supervised learning of scene flow and the effect of the weights
of different GAN loss functions on the prediction accuracy
of scene flow. In the ablation experiments, we also explored
the effect of four different discriminators on the scene flow
estimation.

In this paper, five self-supervised losses including Chamfer
Loss LC , Curvature Loss ΦC , Smooth Loss LS , Cycle Con-
sistency Loss LCC , and GAN Loss LGAN are used to apply

to the scene flow generator. When removing the GAN losses
and experimenting with only the four existing self-supervised
losses, the evaluation results show a significant degradation
in scene flow prediction performance. This demonstrates that
introducing adversarial learning into scene flow estimation
effectively improves scene flow prediction performance. In the
process of adversarial learning, the stability of the distribution
of predicted point cloud data can be maintained. The stability
of the data distribution of the predicted point cloud was main-
tained during the adversarial learning process. The average
scene flow endpoint error EPE3D was kept stable at about
0.1m in the absence of scene flow annotation. The performance
of scene flow estimation is also degraded by removing the
curvature loss function and smoothing loss function at the
training process, respectively. The SFGAN framework still
needs to be teamed with some existing losses to make the
results optimal.

In order to make the point cloud discriminator in adversarial
learning correctly discriminate whether the input point cloud
comes from the generated data or the training data. As shown
in Figure 3, we propose four kinds of discriminators. Figure
3 shows only the feature embedding part that PC1 or PC2

individually with the predicted point cloud PC∗2 of second
frame (used to calculate the probability that the input point
cloud is from the generated data), ignoring the feature embed-
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Table II
ABLATION EXPERIMENTS ON LOSS FUNCTIONS. ALTHOUGH THESE EXISTING SELF-SUPERVISED LOSS FUNCTIONS HAVE SOME DRAWBACKS, THEIR

ADVANTAGES CAN STILL IMPROVE THE PERFORMANCE OF SCENE FLOW ESTIMATION. OUR METHOD TAKES A DIFFERENT PERSPECTIVE AND
COMPLEMENTS THE ADVANTAGES OF OTHER LOSS FUNCTIONS. THE EFFECT OF DIFFERENT SELF-SUPERVISED LOSSES ON THE EVALUATION RESULTS
WAS STUDIED. SINCE THE REMOVAL OF CHAMFER LOSS AND CYCLE CONSISTENCY LOSS HAS GREAT FLUCTUATIONS IN THE PREDICTION RESULTS,

THESE TWO LOSSES ARE ALWAYS RETAINED IN THE EXPERIMENT.

LC LCC LS ΦC LGAN EPE3D↓ Acc3D Strict↑ Acc3D Relax↑ Outliers↓

- X X X X 0.4061 0.0072 0.0775 0.9979
X - X X X 0.4269 0.0029 0.0166 0.9839
X X - X X 0.1314 0.1576 0.5463 0.6805
X X X - X 0.1218 0.1822 0.5470 0.6929
X X X X - 0.1194 0.1851 0.5812 0.6571
X X X X X 0.0987 0.3022 0.6823 0.5584

Table III
THE EFFECT OF THE CHANGE IN WEIGHT VALUE WGAN OF GAN LOSS ON SCENE FLOW PREDICTION. BOTH THE SCENE FLOW GENERATOR AND THE

POINT CLOUD DISCRIMINATOR SHARE THE GAN LOSS WEIGHT VALUES WGAN IN THE RESPECTIVE BACK PROPAGATION. MODELS ARE
SELF-SUPERVISED TRAINED IN FLYINGTHINGS3D AND KITTI.

WGAN EPE3D↓ Acc3D Strict↑ Acc3D Relax↑ Outliers↓

1.0 0.1077 0.2520 0.6403 0.6555
2.0 0.0987 0.3022 0.6823 0.5584
3.0 0.1021 0.3205 0.6854 0.5532
4.0 0.1078 0.3167 0.6799 0.5604

Table IV
ABLATION EXPERIMENTS OF DESIGNING POINT CLOUD DISCRIMINATORS. THE ARROW DIRECTION MEANS THE DIRECTION OF FEATURE EMBEDDING.
THE TWO ENDS OF THE ARROW INDICATE THE OBJECT WHICH IS TO PERFORM FEATURE EMBEDDING. SHARED INDICATES WHETHER THE SET CONV

LAYER SHARES THE WEIGHTS, WHERE THE SET CONV LAYER IS THE FEATURE EXTRACTION LAYER OF THE POINT CLOUD.

Embading method shared EPE3D↓ Acc3D Strict↑ Acc3D Relax↑ Outliers↓

PC1 ⇒ PC∗
2 PC1 ⇒ PC2 X 0.0987 0.3022 0.6823 0.5584

PC1 ⇒ PC∗
2 PC1 ⇒ PC2 - 0.1021 0.2934 0.6768 0.5688

PC2 ⇒ PC∗
2 PC∗

2 ⇒ PC2 X 0.1048 0.2608 0.6673 0.5941
PC2 ⇒ PC∗

2 PC∗
2 ⇒ PC2 - 0.1155 0.1996 0.5928 0.6845

ding part that PC1 or PC∗2 individually with the true point
cloud PC2 of second frame (used to calculate the probability
that the input point cloud is from the training data). Since both
have the same internal structure and only the input is different.
As shown in Table IV, we perform ablation experiments for
different point cloud discriminators. The most performance
improvement in scene flow prediction is achieved when PC1

and PC∗2 perform feature embedding and PC1 and PC2

perform feature embedding. When determining the objects for
feature embedding, setting the Set Conv layer shared weights
is more beneficial to improve the performance of scene flow
prediction.

V. CONCLUSION

In the paper, we propose a novel framework for self-
supervised learning of scene flow, introducing generative ad-
versarial learning methods in scene flow learning. We use the
scene flow estimator as the scene flow generator Gsf , and
design a new point cloud discriminator Dpc and GAN loss
function. Experimental results demonstrate the effectiveness
of Gsf and Dpc adversarial learning for the task of scene
flow estimation. No scene flow ground truth was used in the
training process of the scene flow estimation network. The

proposed method outperforms the baseline and some existing
unsupervised learning methods in scene flow estimation and
achieves more accurate prediction results of the scene flow
on the KITTI, a widespread real-world autonomous driving
dataset.
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