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Abstract

Throughout the last century, climate change has altered the geographic distributions of many

species. Insects, in particular, vary in their ability to track changing climates, and it is likely

that phenology is an important determinant of how well expands can either expand or shift

their geographic distributions in response to climate change. Grasshoppers are an ideal group

to test this hypothesis, given that co-occurring confamilial, and even congeneric, species can

differ in phenology. Here, I tested the hypothesis that early- and late-season species should

possess different range expansion potentials, as estimated by habitat suitability from ecologi-

cal niche models. I used nine different modeling techniques to estimate habitat suitability of

six grasshopper species of varying phenology under two climate scenarios for the year 2050.

My results support the hypothesis that phenology is an important determinant of range expan-

sion potential. Early-season species might shift northward during the spring, while the mod-

eled geographic distributions of late-season species were generally constant under climate

change, likely because they were pre-adapted to hot and dry conditions. Phenology might

therefore be a good predictor of how insect distributions might change in the future, and con-

servation efforts might focus most heavily on early-season species that are most impacted by

climate change.

Key words

species distribution model; ecological niche model; orthoptera; climate change; extrapolation;

phenology; grasshoppers
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Introduction

Throughout the last century, climate change has altered the geographic distributions of many

species. Insects, in particular, are rapidly expanding poleware as warming enables them to

colonize previously inhospitable areas (Chen et al., 2011). Such range shifts are best docu-

mented in lepidopterans, having been recorded in Europe  (Parmesan  et al.,  1999), Korea

(Adhikari et al., 2020), southeast Asia (Au & Bonebrake, 2019), and North America (Wilson et

al., 2021), making butterflies and moths the characteristic example of poleward mobility. How-

ever, poleward shifts of other insect species are relatively sparse, documented for a handful

of dragonflies, lacewings, spiders, and grasshoppers (Hickling et al., 2006; Chen et al., 2011),

or for a few economically important agricultural pests, such as the Colorado potato beetle

(Wang et al., 2017) or mountain pine beetle (de la Giroday et al., 2012). The data that do exist

for suggest that latitudinal shifts are quite variable among species (Chen et al., 2011; Beck-

mann et al., 2015). There is, as yet, no consistent pattern that explains which insect species

exhibit range shifts and which do not. 

Life history strategy is often invoked as a determinant of potential for range shifts (Estrada et

al., 2015), but there are few phylogenetically controlled studies that contrast different life his-

tory strategies within a single clade. Orthopterans (grasshoppers, crickets, and katydids) pro-

vide an opportunity to compare sensitivity to climate change among life history strategies,

given that co-occurring grasshopper species possess a remarkable functional diversity (Derai-

son et al., 2015a,b; McClenaghan et al., 2015). In the United Kingdom, for example, warm-

adapted, generalist grasshoppers with high dispersal ability are the only species to have un-

dergone range expansion  (Beckmann  et al.,  2015).  In the Great Plains of North America,

grasshoppers can be broadly partitioned into two life history groups. Early emerging species,

such as Arphia conspersa, Eritettix simplex, and Xanthippus corallipes, overwinter as nymphs

54

56

58

60

62

64

66

68

70

72

74

76



and emerge as adults in the spring (Capinera & Sechrist, 1982). These three species reach

peak abundance in  April  or  May,  several  months before most  other  grasshopper species

(Buckley et al., 2021). Late emerging species, such as Arphia pseudonietana, Opeia obscura,

and  Phoetaliotes nebrascensis  overwinter as eggs, hatch in early summer, and reach the

adult stage by mid-to-late summer in July or August  (Capinera & Sechrist, 1982; Branson,

2016). Given their different climatological niches,  i.e.  cold wet spring vs. dry hot summer,

these species groups provide a phylogenetically controlled experiment for how life history

might impact how species respond to climate change.

It is possible to compare how species of different life history strategies might respond to cli-

mate change using ecological niche models (ENMs). ENMs correlate occurrence records with

climate and are often used to predict range expansions. For example, ENMs can identify ar-

eas at risk of invasion under future climates  (Kistner-Thomas, 2019; Gong  et al., 2020) or

identify high-priority conservation targets (Garzon et al., 2021), which is critically important as

the ranges of many threatened species might collapse in the near future  (Lemoine, 2015).

One shortcoming is that ENMs rarely account for phenology  (Ingenloff & Peterson, 2021);

many simply use mean annual temperature or precipitation (Booth et al., 2014; Title & Bem-

mels, 2018). In seasonal environments, however, mean temperature and precipitation can dif-

fer markedly from the environment experienced by an organism. The shortgrass steppe of

Colorado, on average, is 8.7 °C and receives 395 mm of rainfall per year. Yet early-season

grasshoppers that emerge in May experience an environment that is 22 °C and receives 61

mm of rain. Late-season grasshoppers, in contrast, emerge into an arid environment of 29 °C

and 40 mm of rainfall. Thus, accurate predictions in ENMs require that climatological data

match life history data as closely as possible (Ingenloff & Peterson, 2021). Using mean an-
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nual temperature or precipitation might over or underestimate the sensitivity of species to cli -

mate change by mis-characterizing their environmental niches. 

Here, I tested the hypothesis that phenological differences among co-occurring species would

lead to different range expansion potentials, as estimated by habitat suitability from ENMs.

Specifically, early-occurring species that emerge as adults in April/May favor cool, wetter tem-

peratures. Thus, both the southern and northern boundaries of suitable habitat  conditions

should move northward (i.e. total range shift) and could also occur earlier in the year, which

would predict an advancing phenology. Late-occurring species that emerge as adults in July

and August should also have suitable habitat expand northward while maintaining the current

southern boundary (i.e.  range expansion), and suitable habitat should extend later into the

year. Contrasting phenological responses, advanced for spring species and delayed for fall

species, have already been observed in flowering plants (Sherry et al., 2007). To test this hy-

pothesis, I constructed ENMs using nine separate machine learning classification techniques

and predicted suitable habitat into the future for two different climate scenarios, with four gen-

eral circulation models for each climate scenario used to produce an ensemble prediction.

Methods

Environmental Data

To construct climatic niches, I downloaded WorldClim2 climate data (Fick & Hijmans, 2017),

which is an interpolated climate dataset covering the years 1970 - 2000. As I was specifically

examining phenological patterns, I used monthly data at a 5 arc-minute resolution. The use of

monthly data restricted the environmental variables to average monthly precipitation, average

monthly temperature, minimum monthly temperature, and maximum monthly temperature, as

other WorldClim2 variables are either seasonal aggregates or unavailable at monthly time
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steps. Given the extremely high correlation among temperature variables (r > 0.90 for all tem-

perature combinations, Table S1), I used only mean monthly precipitation (mPPT) and mean

minimum monthly temperature (mTmin) for all subsequent analyses.

Species Occurrence Records

I constructed ENMs for six grasshopper species: A. conspersa, A. pseudonietana, E. simplex,

O. obscura, P. nebrascensis,  and  X. corallipes. These species are all  common throughout

North American grasslands and cluster into Early (A. conspersa, E. simplex, X. corallipes) and

Late (A. pseudoneitana, O. obscura, P. nebrascensis) phenological life histories (Capinera &

Sechrist,  1982).  Further,  these  six  species  possessed  suitable  numbers  of  occurrence

records; records for most other North American grasshopper species were too limited to accu-

rately construct ENMs. I downloaded species occurrence records from GBIF in April, 2018. In

total, there were 9,091 georeferenced locations (A. conspersa: 2,117; A. pseudonietana: 788;

E. simplex: 2,441; O. obscura: 659; P. nebrascensis: 634; X. corallipes: 2,452). Date ranges

for the six species are: A. conspersa: 1899 – 2013; A. pseudonietana:  1885 – 2013; E. sim-

plex: 1912 – 2017; O. obscura: 1905 – 2012; P. nebrascensis: 1889 – 2013; X. corallipes:

1903 – 2017.  Accession data are available on figshare (10.6084/m9.figshare.14411048), and

distribution maps of the raw data are available in Fig. S1.

Data Cleaning, Filtering, and Pseudoabsences

I cleaned GBIF records following a standard pipeline (Feng et al., 2019; Zurell  et al., 2020).

First, I dropped any records with null values for latitude, longitude, month, or year. Next, I re-

moved records with a ‘0’ for latitude or longitude. I then dropped any observations that had

coordinates identical to those of a US state capital city to within 0.01 decimal degrees, and

also dropped any duplicate geographic coordinates except for those observations in different
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months and years.  Once this  pre-screening was complete,  I  visually  checked distribution

maps and removed any erroneous observations. During visual checks, I removed two obser-

vations of E. simplex in the southeastern US, as well as any observations falling below 20°N,

which were outside the range of environmental layers. These data cleaning steps reduced the

number of records to A. conspersa: 1,255, A. pseudonietana 309, E. simplex: 1,830, O. ob-

scura: 315, P. nebrascensis: 372, and X. corallipes: 1,746. 

I then filtered data to remove pseudoreplicates in environmental space. Although many stud-

ies advocate spatial filtering, I instead filtered observations on the basis of environmental sim-

ilarity. Such environmental filtering has shown to be more robust, less biased, and more accu-

rate than spatial filtering (Varela et al., 2014). For the environmental filter, I created 50 evenly

spaced bins along both mPPT and mTmin, and dropped any duplicate observations within a

grid cell (Fig. S2). By removing environmental pseudoreplicates, filtering further reduced the

number of observations to A. conspersa: 124,  A. pseudonietana: 66,  E. simplex: 85,  O. ob-

scura: 36,  P. nebrascensis: 41, and  X. corallipes: 75. The geographic distributions of these

samples are identical to the raw data, albeit with no duplicates within a given set of coordi -

nates (Fig. S3).

Due to the temporal aspect of the hypotheses tested here, I used a phenological approach to

generating pseudoabsences  (Ingenloff & Peterson, 2021). Briefly, for each species, I calcu-

lated the number of observations falling within each month. I then generated the same num-

ber of pseudoabsences from the mPPT and mTmin for that month. The end product was the

same number of observations and pseudoabsences for each species within each month. I

chose to use equal numbers of pseudoabsences because a 1:1 ratio of observations:pseu-

doabsences performs the best for many classification models (Barbet-Massin et al., 2012). I
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used a simple random pattern, rather than a gridded or weighted approach, because multiple

studies  demonstrated  that  simple  random  pseudoabsences  perform  at  least  as  well  as

weighted or stratified pseudoabsences, especially for some of the classification methods used

here (Barbet-Massin et al., 2012; Hanberry et al., 2012). 

Ecological Niche Models

ENMs use correlative approaches to summarize the climatic niche of a species. There is a

large degree of uncertainty in ENMs, including uncertainty in niches due to presence-only

sampling, spatial biases, and in climate models. Perhaps the largest source of uncertainty,

however, is among modeling techniques (Araújo et al., 2005). Different methods make differ-

ent assumptions, and these assumptions often result in variable ENM projections  (Aguirre-

Gutiérrez et al., 2013). Here, I account for methodological uncertainty by using nine different

machine learning approaches to construct ENMs:

1. Logistic regression (GLM): Logistic regression is a standard technique in many ENM stud-

ies. GLM proceeds by regressing the binary response variable (presence/pseudoabsence)

against the environmental predictions mPPT and mTmin. Here, I used an additive model struc-

ture:

y ~ logit-1(z)

z = β0 + β1mPPT + β2mTmin

 that did not include an interaction between mPPT and mTmin.

2.  K-Neighbors Classifier (KNC): A KNC uses a simple “vote-counting” method to assign a

point to a class. Essentially, an unknown point (test data) is mapped into environmental space

with training data. The algorithm counts the n nearest neighbors and assigns the test point to
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the class with the majority or plurality of neighbors. The output can be converted into a proba-

bility by counting the fraction of  n  points belonging to a given class. For the model here, I

used n=5 equally-weighted neighboring points, and the distances between training points and

the test points in environmental space were determined via Euclidean distance. 

3. Gaussian Process Classifier (GPC): Gaussian process models treat data as arriving from a

multivariate distribution, generated by an unknown function:

f(x) ~ GP(m(x), K(x,x’))

where f(x) is the function describing the variability of  x in space,  m(x) is the mean function,

and K(x,x’) is the kernal/covariance function. Because the kernels allow for covariance among

observations  that  varies  with  the  distance  of  observations,  continuous  Gaussian  process

models are popular for time series and spatial modeling, where they are known as ‘kriging’

(Brahim-Belhouari & Bermak, 2004; Roberts  et al., 2013). GPCs extend Gaussian process

models to a binomial response using latent variables, much like logistic regression:

f(x) = logit-1(z(x))

z(x) ~ GP(m(x), K(x,x’))

where z(x) is a latent variable achieved by the logistic transformation of  pseudoabsence (0)

and presence (1) data. In practice, we often assume a constant mean:

z(x) ~ GP(0, K(x,x’))

such that the kernel choice dictates the shape of the function. Researchers have advocated

GPCs for ENMs because they are often more accurate than other classification methods,

such as boosted regression trees, generalized additive models, and generalized linear mod-

els  (Golding & Purse, 2016). Here, I  constructed ENMs from GPCs using the radial basis

function:

K(x,x’) = α2exp(-0.5 l-2 (x-x’)2)
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where α is a scaling parameter determining the magnitude of process noise and l is a length

parameter that determines the smoothness of the function.

4.  Decision Tree Classifier  (DTC):  DTCs are nonparametric,  supervised machine learning

techniques that construct decision trees using if/then rules from training data in order to infer

the class of the test points. Essentially, decision trees split the data into groups then conduct

logistic regressions to classify the training data. The split with the highest predictive ability is

taken as the first decision criteria to generate two new groupings within the next level of the

tree. The procedure proceeds iteratively within each grouping until a maximum tree depth is

achieved. These models are simple, fast, and nonlinear, but can be prone to overfitting, par -

ticularly if a tree is too deep. For the model here, I used the Gini criteria to evaluate the quality

of a given split, with a maximum tree depth of 5 levels. I required each group to have a mini -

mum of two samples.

5. Random Forest Classifier (RFC): An RFC is a “meta”-classifier that constructs a number of

DTCs from random subsamples of the training data and averages the outputs. For the RFC

here, I generated 100 random DTCs using the same criteria as above.

6. Artificial Neural Network (ANN): ANNs with multilevel perceptrons approximate the way hu-

man brains process information by allowing computing nodes, called neurons, to process and

share information to inform an output. Basically, ANNs consist of three layers of nodes: input

nodes, hidden process nodes, and output nodes. The input layer contains nodes for each fea-

ture (i.e. explanatory variable), hidden process nodes combine features with a weighted linear

function, and an output function uses a nonlinear function to transform the process nodes into

a binary or continuous response. Several  authors have advocated using ANNs for ENMs
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(Maravelias et al., 2003), in particular because they outperform many other methods for con-

structing ENMs, such as classification trees, generalized linear models, generalized additive

models, and spatial interpolators (Segurado & Araújo, 2004). I trained the linear weights using

a stochastic gradient optimizer, and the nodes were translated into a real output using the rec-

tified linear unit function max(0,x). The ANN here had one hidden layer with 100 nodes, and a

regularization parameter α = 1.

7. Ada Boost Classifier (ABC): The ABC is similar to RFC, in that it relies on multiple DTCs.

However, whereas RFCs generate 100 random DTCs and then average the outputs, ABCs

proceed iteratively, repeatedly fitting the same DTC on the training data but with the weights

of  incorrect  cases  adjusted  so  the  classifier  focuses  on  more  difficult  cases.  I  used  the

SAMME.R algorithm, stopping at a maximum of 50 iterations.

8. Naïve Bayesian Classifier (NBC): NBCs are simple classifiers based on Bayes’ rule. Bayes’

rule can calculate the probability  that  a given map pixel  should belong to  a class  k (i.e.

present/absent) as:

p(k | x) = p(x | k) p(k) / p(x) 

where x is the environmental variable, p(k | x) is the probability that a pixel of a given environ-

ment x belongs to class k, p(k) is the prior probability of belonging to class k, and p(x) is the

probability of the environmental variable. For example, imagine classifying whether a pixel

should be suitable habitat for a bird (k = present), depending on whether it is forested or not.

In this case, p(x | k) is the probability that a pixel is forest given that a bird is present, or the

proportion of times a bird was observed in forests, p(k) is the proportion of sightings of the

bird throughout the entire dataset, and p(x) is the proportion of pixels that are forested. This

example has a discrete predictor, but Gaussian NBCs extend classification to continuous pre-
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dictors, such as temperature, by using the Gaussian density distribution to calculate the likeli -

hood of a given temperature given an observation of present or absent:

p(x | k) = (1/sqrt(2 pi σk
2)) e[ -0.5(x - μk)2/σk

2]

In this case, the probability of a bird being present at a given temperature is 

p(k | x)  p(∝ x | k) p(k)

This method can be extended to multiple predictors by:

 p(k | x1, x2, …, xn)  p(∝ x1 | k) p(x2 | k) … p(xn | k) p(k)

Gaussian NBCs, along with the other methods here, can be used as a classification algorithm

to model species niches (Guo & Liu, 2010). A drawback of this method is that it assumes in-

dependence of the features, but it has been shown to be an accurate method for constructing

ENMs (Guo & Liu, 2010).

9. Quadratic Discriminant Analysis (QDA): QDA is an generalization of linear disciminant anal-

ysis, and also of NBCs. As with NBCs, QDA uses Bayes’ rule to maximize the posterior proba-

bility p(k | x):

p(k | x) = p(x | k) p(k) / p(x)

There are two big differences between NBCs and QDAs. The first difference is that NBCs as-

sume the predictors are conditionally independent, while QDA allows for the predictors to be

correlated:

p(x | k) = {1 / [(2 pi)d/2  Σ0.5] } e[ -0.5(x – μ)’ Σ-1 (x – μ)]

where d is the number of features and Σ is the covariance matrix of the features. When the

classes are assumed to have the same Σ, and also that Σ is diagonal ( i.e. features are inde-

pendent), this formula reduces to an NBC. If the k classes have the same Σ, but Σ is not diag-

onal,  this  formula  reduces  to  linear  discriminant  analysis,  as  the  above  equation.  If  the

classes are allowed to have separate covariances Σk:
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p(x | k) = {1 / [(2 pi)d/2  Σk
0.5] } e[ -0.5(x – μ)’ Σ-1 (x – μ)]

then the formula is QDA.  QDA is attractive because discriminant analyses typically perform

well and require no hyperparameters to tune. Parameters are fit to training data, and then the

resulting model is used to estimate the test data. 

Prior to analyses, both mPPT and mTmin were standardized to N(0,1) distributions to improve

model fitting. Data were then split into training and test groups containing 66% and 33% of the

data, respectively. Data were split in a stratified manner to ensure equal proportions of pres-

ences/pseudoabsences in both the training and test data. Models were fit to the training data,

and then tested for goodness-of-fit on the test data using the area under ROC curves (AUC-

ROC). AUC-ROC scores for each of the nine models were then averaged to produce an ‘en -

semble AUC-ROC’  (Araújo et al., 2005). 

For every species, I  projected the current distribution throughout every month of the year

based on WorldClim2 monthly data for mPPT and mTmin at 5 arc-minute resolution (Fick & Hij-

mans, 2017). Model outputs were clipped to North American grasslands based on the US

EPA Ecoregions Level 1 (Ecoregion 9.0 – Great Plains). After clipping, predictions from each

of the nine modeling techniques were averaged to generate a single ensemble prediction for

each species/month combination (i.e. model stacking, stacked generalization) (Araújo et al.,

2005). 

Climate Change Projections

I accounted for uncertainty in climate projections in two ways. First, I projected ecological

niches into 2050 for intermediate and unconstrained representative concentration pathways
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(RCPs). The intermediate scenario was RCP 4.5, which assumes that CO2 emissions peak in

2040 and then decline,  CH4 emissions stop  increasing  by 2050,  and SO2 concentrations

steadily decline from the present day. As a result, average global temperatures increase by

2.5 °C by 2100. The severe pathway was RCP 8.5, which assumes continuous increases in

emissions throughout the 21st century, resulting in a 5 °C increase in global average tempera-

tures by 2100. The RCP 8.5 scenario is generally considered unrealistic, as it does not ac -

count for either biological or political feedbacks to mitigate emissions (Peters & Hausfather,

2020). However, the RCP 8.5 scenario is still useful as a ‘worst-case’ baseline. 

The final source of uncertainty is in general circulation model (GCM) projections themselves;

each GCM uses different forcings and parameters, leading to considerable variability among

model outputs. To account for model uncertainty, I projected ENMs into future climates using

four  different  GCMs:  BCC-CCSM-1-1,  CCSM4,  IPSL-CM5A-LR,  and  MIROC5.  For  each

GCM, I estimated habitat suitability of each species, in every month, for each of the nine mod-

eling techniques. I averaged the outputs from each of the nine modeling techniques to pro-

duce a single, ensemble estimate for each species/month/GCM combination. I then averaged

the four GCM ensemble projections (i.e. four stacked models) into a single ensemble predic-

tion of future habitat suitability in each month for each species. As above, RCP projections

were trimmed to North American Grasslands using EPA EcoRegions Level 1 – 9.0 – Great

Plains. GCMs are available for download from the Livermore National Lab.

Results

Co-occurring grasshopper species possessed different climatological niches, depending on

phenology. Early-season species (A. conspersa,  E. simplex, and  X. corallipes) occurred in
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wetter,  cooler  conditions  common  in  March  through  May,  while  late-season  species  (A.

pseudonietana,  O.  obscura,  and  P.  nebrascensis)  occupied  warmer,  drier  climate  niches

prevalent in July, August, and September (Fig. 1). When reconstructing these climate niches,

modeling algorithms varied in their performance, although models performed similarly within a

species (Table 1). That is, models within a species produced similar AUC-ROC scores (SD <

0.05), with the exception of O. obscura, where GPCs, NBCs, and QDAs performed exception-

ally well (Table 1). These models only performed well for O. obscura, however, and no model-

ing technique consistently outperformed or underperformed all others across every species.

For example, despite the excellent fit of NBCs and QDAs for O. obscura, these two methods

provided among the poorest  fits  for  P. nebrascensis (Table 1).  Model  stacking eliminated

much of this variability and resulted in ensemble model fits that were consistent (AUC-ROC

scores between 0.7 – 0.8) across all species, thereby eliminating the vagaries of any single

classifier.

The ensemble ENMs successfully replicated the expected patterns of species’ phenologies in

current climate conditions. Early-season grasshoppers were prevalent throughout the south-

ern and eastern Great Plains in March (Figs. 2 – 4), although  X. corallipes  appeared more

constrained to New Mexico, western Texas, and southeastern Colorado than either  A. con-

spersa or E. simplex (Fig. 4). By April, all three species were predicted to occur throughout

the Great Plains, except for Canada and the eastern portion encompassing Iowa and eastern

Kansas (Figs. 2 – 4). By May, grasslands south of Montana and North Dakota became unsuit -

able, except for a north-south band along the Rocky Mountains (Figs. 2 – 4). Likewise, pheno-

logical ENMs of late-species grasshoppers also generally followed my hypotheses, but with

more interspecific  variability  than demonstrated  by  early-season species.  The red-winged

grasshopper, A. pseudonietana, was confined to Montana, Alberta, and Wyoming in July (Fig.
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5), whereas suitable habitat for O. obscura extended throughout the Great Plains, except for

Kansas, most of Oklahoma, and Iowa (Fig. 6). ENMs predicted that  P. nebrascensis  should

be found throughout the entire Great Plains in July and August (Fig. 7). By September,  A.

conspersa had extended the southern range limit to New Mexico and the Texas panhandle

(Fig. 5), the range of O. obscura was generally the same as in July and August (Fig. 6), and

the geographic distribution of P. nebrascensis excluded Iowa, eastern Nebraska and South

Dakota, most of North Dakota, and the northern edge of the Great Plains in Alberta (Fig. 7).  

I expected that climate change would cause suitable habit to expand it’s northern range in

March, April, and May for early-season grasshoppers. This is equivalent to both a northern

range expansion in those months, but also to advanced phenology in those northern locations

that become suitable earlier in the year. As predicted, early-season grasshoppers generally

showed northern range expansions in the summer months. For  A. conspersa, the northern

range limit in March moved from Iowa and Nebraska to North Dakota and Montana under

both RCP 4.5 and RCP 8.5 (Fig. 2). By April and May, however, the range of A. conspersa

was generally unaffected by climate change, as this species already extends to the northern

edge of North American grasslands (Fig. 2). A similar trend was predicted for  X. corallipes

(Fig. 4), while the range of E. simplex was unchanged for either RCP 4.5 or RCP 8.5 (Fig. 3).

Contrary to my predictions, ENMS did not predict a southern range contraction for any of the

early-season species, meaning that these species might see an expansion of suitable habitat

area, rather than a range shift, under climate change. 

In contrast to early-season grasshoppers, the geographic distributions of late-season species

were relatively stable under both RCP 4.5 and RCP 8.5 climate scenarios, refuting my hypoth-

esis that these species should demonstrate range expansions. For example, the geographic
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distribution of A. pseudonietana, across all months, in both RCP 4.5 and RCP 8.5 was almost

identical to the distribution of current climates (Fig. 5). Similarly, climate change had little ef -

fect on the modeled distribution of O. obscura, except for a slight northward and eastward ex-

pansion of suitable habitat in July and August (Fig. 6). Only P. nebrascensis conformed to my

hypothesis with northward range expansions in all  months under climate change (Fig.  7).

However, as  P. nebrascensis  covers most of the Great Plains under current conditions, the

northward expansion was relatively minor and extended into small regions in central Alberta

(Fig. 7). Otherwise, suitable habitat for P. nebrascensis expanded into the eastern portions of

the Great Plains (Fig. 7).

Examining range expansions as an increase in suitable habitat area highlighted the difference

between early- and late-season grasshopper species. Early-season species, A. conspersa, E.

simplex, and X. corallipes, generally showed a 20-80% increase in suitable habitat area dur-

ing their phenological time period (Fig. 8), much of which was driven by northern range ex-

pansions (Figs. 2 – 4). Late-season species demonstrated a lesser degree of range expan-

sion;  suitable  habitat  for  O.  obscura  and  P.  nebrascensis  increased  by  <  20% for  most

months, while A. pseudonietana actually showed evidence for range collapse under RCP 4.5

(Fig. 8). As described above, much of the increase in suitable habitat for P. nebrascensis was

a logintudinal expansion, rather than a latitudinal shift (Fig. 7).

Discussion

As climate change alters the fundamental abiotic template of most ecosystems, many species

are tracking favorable climates northward or at higher elevations. Yet species vary in their

ability to follow suitable climates (Chen et al., 2011; Beckmann et al., 2015). While life history
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characteristics like dispersal undoubtedly play a role in species range expansion (Beckmann

et al., 2015), I hypothesized that life history phenology might predict which species are most

likely to shift poleward, as modeled by habitat suitability in future climates. Habitat suitability

for early season species should advance earlier in the year, as well as shifting the entire geo-

graphic distribution northward. Habitat suitability for late season species should be delayed

longer into the fall, and should expand only the northern borders. In testing these hypotheses,

I was able to partially confirm my hypotheses. Early-season species exhibited range expan-

sions via a poleward shift of the northern range limit while maintaining southern range limits,

while late-season species appeared largely unaffected by climate change. Thus, it does ap-

pear that co-occurring species might exhibit different responses to climate change based on

phenology, and my work highlights the need to account for phenology in species distribution

modeling.

Phenological shifts are common responses to climate change for both plants and insects. In

plants,  warming  often  advances  emergence  and  flowering  dates  (Price  &  Waser,  1998;

Wolkovich et al., 2012). However, not all plant species advance their phenology with warming;

the phenological response to warming appears to largely depend on plant life history. Spring

species that flower early often advance their phenology, sometimes by several weeks, while

species that flower in fall can delay their phenology (Sherry et al., 2007). Like plants, insects

also advance their emergence dates (Ellwood et al., 2012), yet no study has tested whether

life history strategies might affect how insects alter their geographic distributions in response

to climate change. Grasshoppers are an ideal system to test for such possibilities because

co-occurring species, indeed even co-occurring congeners as in the case of Arphia, possess

early and late phenologies (Capinera & Sechrist, 1982), providing the opportunity for phyloge-

netically controlled tests of range expansion. 
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My study supports the hypothesis that, as with plants, phenology might be an important pre-

dictor of how species respond to climate change. In this study, early season species did not

advance their phenology across the board, but only in the northern-most regions of the Great

Plains (Figs. 2-4). Viewed spatially, this pattern amounts to a northern range expansion in

early spring, and viewed temporally, it amounts to an advance phenology in those northern ar-

eas. However, late-season species that share the same geographic distribution as early-sea-

son species might be less sensitive to climate change. This is likely because climate change

will make much of North America both warmer and drier (Sheffield & Wood, 2008; Greve et

al., 2014), an environment to which late-season grasshoppers are already adapted. Impor-

tantly, no species here showed a range collapse; all grasshopper species examined here are

predicted to maintain,  if  not expand, their  current range size. This matches predictions of

many other insects (de la Giroday et al., 2012; Au & Bonebrake, 2019; Wilson et al., 2021),

and suggests that climate change might not directly precipitate the decline of insect abun-

dances.

An important caveat is that the ENMs reported here account for only climate and do not in -

clude biotic interactions. Though ENMs here predicted range expansions, grasshoppers could

experience a large decline in range size in the future with continued disappearance of grass-

lands, caused by either climate or land-use change. A recent study from Germany found that

land-use change and habitat loss were major factors responsible for a decades-long collapse

of insect populations (Hallmann et al., 2017). In ENMs, habitat availability can be the strong-

est determinant of insect distributions in both current and future climates  (Lemoine, 2015).

Thus, although the ENMs presented here suggest that grasshopper ranges should remain

stable, if  not increase, in the future, grasshoppers might become geographically restricted

452

454

456

458

460

462

464

466

468

470

472

474

476



with the continued loss of grasslands. Some grasses, like A. gerardii, are predicted to decline

in abundance and extent in the future (Smith et al., 2017), and grasslands are under constant

threat of development or agricultural use. Though the abiotic environment might remain favor-

able to grasshoppers  per se in the future, there are a number of other factors that will ulti-

mately determine the geographic distribution of North American grasslands in the future.

Projecting species distributions in future climates remains an important avenue of research.

Doing so can inform us of habitat potentially at risk from species invasions (Kistner-Thomas,

2019; Gong et al., 2020), identify species at risk of collapse (Lemoine, 2015), and pinpoint re-

gions of high priority for conservation  (Garzon  et al., 2021). In doing so, researchers must

carefully account for source of uncertainty. In this study, I accounted for model uncertainty by

using nine different ENM estimation techniques, for projection uncertainty by using four sepa-

rate GCMs, and for scenario uncertainty by using RCP 4.5 and 8.5 My results illustrate that

phenology can be a good predictor of how insect distributions might change in the future. For

North American grasshoppers, early-season species from cool environments are likely to ex-

pand the northern range extent, while late-season species that are already adapted to hot and

dry conditions will likely see only modest changes in geographic distribution. Thus, conserva-

tion efforts might focus most heavily on early-season species that are most impacted by cli -

mate change.
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Table 1. AUC-ROC estimates for each model type for each of the six species. GLM: logistic

regression, KNC: K-nearest neighbors, GPC: Gaussian process classifier, DTC: Decision tree

classifier, RFC: Random forest classifier, ANN: Artificial neural network, ABC: Ada boost clas-

sifier,  NBC:  Naive  Bayesian  classifier,  QDA:  Quadratic  discriminant  analysis.  Ensemble

shows the average +/- 1 SD of the nine models.

Early species Late species
Arphia

conspersa
Eritettix
simplex

Xanthippus
corallipes

Arphia
pseudonietana

Opeia
obscura

Phoetaliotes
nebrascensis

GLM 0.76 0.68 0.62 0.78 0.79 0.74
KNC 0.80 0.81 0.75 0.66 0.86 0.74
GPC 0.83 0.71 0.68 0.81 0.92 0.60
DTC 0.77 0.70 0.62 0.77 0.64 0.74
RFC 0.83 0.77 0.71 0.79 0.81 0.78
ANN 0.85 0.74 0.68 0.84 0.82 0.65
ABC 0.76 0.72 0.66 0.71 0.72 0.65
NBC 0.82 0.71 0.69 0.85 0.97 0.64
QDA 0.82 0.75 0.68 0.85 0.99 0.66
Ensemble 0.81 +/- 0.03 0.73 +/- 0.04 0.68 +/- 0.04 0.78 +/- 0.07 0.84 +/- 0.11 0.69 +/- 0.06
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List of Figures

1. Early-season grasshopper species were characterized by wetter, cooler conditions than

late-season species. This graph shows mPPT and mTmin for each observation of the cleaned,

environmentally filtered data. Each point is a unique observation.

2. Predicted, current distribution of the early season species Arphia conspersa in March, April,

and May throughout the Great Plains of North America under current conditions, RCP 4.5,

and RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classi-

fiers. The color palette was chosen so that regions where absence is more likely than pres-

ence (probability of occurrence < 0.5) are shaded in blue, while regions where presence is

more likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where

presence and  absence  are  equiprobable  (probability  of  occurrence  ~  0.5)  are  shaded in

whites/greys.

3. Predicted, current distribution of the early season species Erittetix simplex in March, April,

and May throughout the Great Plains of North America under current conditions, RCP 4.5,

and RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classi-

fiers. The color palette was chosen so that regions where absence is more likely than pres-

ence (probability of occurrence < 0.5) are shaded in blue, while regions where presence is

more likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where

presence and  absence  are  equiprobable  (probability  of  occurrence  ~  0.5)  are  shaded in

whites/greys.

4. Predicted, current distribution of the early season species X. corallipes in March, April, and

May throughout the Great Plains of North America under current conditions, RCP 4.5, and

RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classifiers.

The color palette was chosen so that regions where absence is more likely than presence

(probability of occurrence < 0.5) are shaded in blue, while regions where presence is more
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likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where pres-

ence and absence are equiprobable (probability of occurrence ~ 0.5) are shaded in whites/

greys.

5. Predicted, current distribution of the late season species A. pseudonietana in March, April,

and May throughout the Great Plains of North America under current conditions, RCP 4.5,

and RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classi-

fiers. The color palette was chosen so that regions where absence is more likely than pres-

ence (probability of occurrence < 0.5) are shaded in blue, while regions where presence is

more likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where

presence and  absence  are  equiprobable  (probability  of  occurrence  ~  0.5)  are  shaded in

whites/greys.

6. Predicted, current distribution of the late season species  O. obscura in March, April, and

May throughout the Great Plains of North America under current conditions, RCP 4.5, and

RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classifiers.

The color palette was chosen so that regions where absence is more likely than presence

(probability of occurrence < 0.5) are shaded in blue, while regions where presence is more

likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where pres-

ence and absence are equiprobable (probability of occurrence ~ 0.5) are shaded in whites/

greys.

7. Predicted, current distribution of the late season species P. nebrascensis  in March, April,

and May throughout the Great Plains of North America under current conditions, RCP 4.5,

and RCP 8.5. Predictions are the ensemble/stacked averages from the nine different classi-

fiers. The color palette was chosen so that regions where absence is more likely than pres-

ence (probability of occurrence < 0.5) are shaded in blue, while regions where presence is

more likely than absence (probability of occurrence > 0.5) are shaded in reds. Regions where
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presence and  absence  are  equiprobable  (probability  of  occurrence  ~  0.5)  are  shaded in

whites/greys.

8. Percent change in suitable habitat area for each species under two climate scenarios. Suit-

able habitat area was calculated as the number of grid cells where the probability of occur-

rence was greater than 50%.
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