References
Blasi, U., Linke, R. P., & Lubitz, W. (1989). Evidence for membrane-bound oligomerization of bacteriophage phi X174 lysis protein-E. Journal of Biological Chemistry, 264 (8), 4552-4558. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2466836
Chen, W., Chen, R., & Cao, J. (2021). Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination. Applied Biochemistry and Biotechnology . doi:10.1007/s12010-021-03576-y
Chen, W., Li, Y., Wu, G., Zhao, L., Lu, L., Wang, P., . . . Li, S. (2019). Simple and efficient genome recombineering using kil counter-selection in Escherichia coli.Journal of Biotechnology, 294 , 58-66.
Chen, Z., Ling, W., & Shang, G. (2016). Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion. FEMS Microbiology Letters, 363 (21). doi:10.1093/femsle/fnw231
DeVito, J. A. (2008). Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Research, 36 (1), e4-e4.
Ellis, H. M., Yu, D., & DiTizio, T. (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides.Proceedings of the National Academy of Sciences, 98 (12), 6742-6746.
Emruzi, Z., Aminzadeh, S., Karkhane, A. A., Alikhajeh, J., Haghbeen, K., & Gholami, D. (2018). Improving the thermostability of Serratia marcescens B4A chitinase via G191V site-directed mutagenesis. International Journal of Biological Macromolecules, 116 , 64-70. doi:10.1016/j.ijbiomac.2018.05.014
Haeusser, D. P., Hoashi, M., Weaver, A., Brown, N., Pan, J., Sawitzke, J. A., . . . Margolin, W. (2014). The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genetics, 10 (3), e1004217.
Hajam, I. A., Dar, P. A., Won, G., & Lee, J. H. (2017). Bacterial ghosts as adjuvants: mechanisms and potential. Veterinary Research, 48 . doi:ARTN 37
10.1186/s13567-017-0442-5
Heap, J. T., Ehsaan, M., Cooksley, C. M., Ng, Y.-K., Cartman, S. T., Winzer, K., & Minton, N. P. J. N. a. r. (2012). Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. 40 (8), e59-e59.
Henrich, B., Lubitz, W., & Plapp, R. (1982). Lysis of Escherichia coli by induction of cloned phi X174 genes.Molecular and General Genetics, 185 (3), 493-497. doi:10.1007/BF00334146
Hutchison, C. A., 3rd, & Sinsheimer, R. L. (1966). The process of infection with bacteriophage phi-X174. X. Mutations in a phi-X Lysis gene. Journal of Molecular Biology, 18 (3), 429-447. doi:10.1016/s0022-2836(66)80035-9
Imam, A. A., Patrinos, G. P., de Krom, M., Bottardi, S., Janssens, R. J., Katsantoni, E., . . . Grosveld, F. G. (2000). Modification of human β-globin locus PAC clones by homologous recombination in Escherichia coli. Nucleic Acids Research, 28 (12), e65-e65.
Khetrapal, V., Mehershahi, K., Rafee, S., Chen, S., Lim, C. L., & Chen, S. L. (2015). A set of powerful negative selection systems for unmodified Enterobacteriaceae.Nucleic Acids Research, 43 (13), e83-e83.
Langemann, T., Koller, V. J., Muhammad, A., Kudela, P., Mayr, U. B., & Lubitz, W. (2010). The Bacterial Ghost platform system: production and applications.Bioeng Bugs, 1 (5), 326-336. doi:10.4161/bbug.1.5.12540
Lee, E.-C., Yu, D., De Velasco, J. M., Tessarollo, L., Swing, D. A., Court, D. L., . . . Copeland, N. G. (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.Genomics, 73 (1), 56-65.
Li, X.-t., Thomason, L. C., Sawitzke, J. A., & Costantino, N. (2013). Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Research, 41 (22), e204-e204.
Ma, W., Wang, X., Mao, Y., Wang, Z., Chen, T., & Zhao, X. (2015). Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnology Letters, 37 (3), 609-617. doi:10.1007/s10529-014-1718-8
Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genetics, 18 (2), 136-141. doi:10.1038/ng0298-136
Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q. A., . . . Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10 (4), 354-360. doi:10.1038/nmeth.2404
Muyrers, J. P., Zhang, Y., Benes, V., Testa, G., Ansorge, W., & Stewart, A. F. (2000). Point mutation of bacterial artificial chromosomes by ET recombination. EMBO reports, 1 (3), 239-243.
Pan, X., Sun, C., Tang, M., You, J., Osire, T., Zhao, Y., . . . Rao, Z. (2019). LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H2O2 Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Applied and Environmental Microbiology, 86 (4). doi:10.1128/AEM.02241-19
Reisch, C. R., & Prather, K. L. (2015). The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Scientific Reports, 5 , 15096. doi:10.1038/srep15096
Van Zyl, W. F., Dicks, L. M., & Deane, S. M. J. B. m. b. (2019). Development of a novel selection/counter-selection system for chromosomal gene integrations and deletions in lactic acid bacteria. 20 (1), 1-16.
Velez-Gomez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepulveda-Arias, J. C. (2019). Corrigendum to ”Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source” [Int. J. Biol. Macromol. 135 (2019) 97-105].International Journal of Biological Macromolecules, 138 , 1142. doi:10.1016/j.ijbiomac.2019.07.142
Wang, H., Bian, X., Xia, L., Ding, X., Müller, R., Zhang, Y., . . . Stewart, A. F. (2014). Improved seamless mutagenesis by recombineering using ccdB for counterselection.Nucleic Acids Research, 42 (5), e37-e37.
Warming, S., Costantino, N., Court, D. L., Jenkins, N. A., & Copeland, N. G. (2005). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 33 (4), e36. doi:10.1093/nar/gni035
Witte, A., & Lubitz, W. (1989). Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli. European Journal of Biochemistry, 180 (2), 393-398. doi:10.1111/j.1432-1033.1989.tb14661.x
Witte, A., Wanner, G., Sulzner, M., & Lubitz, W. (1992). Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Archives of Microbiology, 157 (4), 381-388. doi:10.1007/BF00248685
Won, G., Hajam, I. A., & Lee, J. H. (2017). Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by co-expression of lambda phage holin-endolysin and X174 gene E. Scientific Reports, 7 , 45139. doi:10.1038/srep45139
Wong, Q. N., Ng, V. C., Lin, M. C., Kung, H.-f., Chan, D., & Huang, J.-D. (2005). Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 33 (6), e59-e59.
Yip, C.-H., Yarkoni, O., Ajioka, J., Wan, K.-L., Nathan, S. J. A. m., & biotechnology. (2019). Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. 103 (4), 1667-1680.
Young, K. D., & Young, R. (1982). Lytic action of cloned phi X174 gene E. Journal of Virology, 44 (3), 993-1002. doi:10.1128/JVI.44.3.993-1002.1982
Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America, 97 (11), 5978-5983. doi:10.1073/pnas.100127597
Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics, 20 (2), 123-128.
Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. J. N. g. (1998). A new logic for DNA engineering using recombination in Escherichia coli. 20 (2), 123-128.
Tables