References:
Adams, R. I. and Hadly, E. A. (2013) ‘Genetic diversity within
vertebrate species is greater at lower latitudes’, Evolutionary
Ecology , 27, pp. 133–143. doi: 10.1007/s10682-012-9587-x.
Aldenhoven, J. T. et al. (2010) ‘Phylogeography of ninespine
sticklebacks (Pungitius pungitius) in North America : glacial refugia
and the origins of adaptive traits’, Molecular Biology Evolution ,
19, pp. 4061–4076. doi: 10.1111/j.1365-294X.2010.04801.x.
Altenhoff, A. M. et al. (2018) ‘The OMA orthology database in
2018: retrieving evolutionary relationships among all domains of life
through richer web and programmatic interfaces’, Nucleic Acids
Research , 46(November 2017), pp. D477–D485. doi: 10.1093/nar/gkx1019.
Alves, J. M. et al. (2019) ‘Parallel adaptation of rabbit
populations to myxoma virus’, Science , 363(6433), pp. 1319–1326.
Andersen, Ø. et al. (2009) ‘Haemoglobin polymorphisms affect the
oxygen- binding properties in Atlantic cod populations’,Proceedings of the Royal Society B: Biological Sciences , 276, pp.
833–841. doi: 10.1098/rspb.2008.1529.
Bell, M. A. and Foster, S. A. (1994) The evolutionary biology of
the threespine stickleback . Oxford: Oxford University Press.
Betancur, -R. R. et al. (2013) ‘The Tree of Life and a New
Classification of Bony Fishes’, PLOS Currents Tree of Life , 1.
doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.Revisions.
Blanck, A. and Lamouroux, N. (2007) ‘Large-scale intraspecific variation
in life-history traits of european freshwater fish’, Journal of
Biogeography , 34(5), pp. 862–875. doi: 10.1111/j.
Burri, R. et al. (2015) ‘Linked selection and recombination rate
variation drive the evolution of the genomic landscape of
differentiation across the speciation continuum of Ficedula
flycatchers’, Genome Research , 25(11), pp. 1656–1665. doi:
10.1101/gr.196485.115.
Conte, G. L. et al. (2012) ‘The probability of genetic
parallelism and convergence in natural populations’, Proceedings
of the Royal Society B: Biological Sciences , 279(1749), pp. 5039–47.
doi: 10.1098/rspb.2012.2146.
Deagle, B. E. et al. (2013) ‘Phylogeography and adaptation
genetics of stickleback from the Haida Gwaii archipelago revealed using
genome-wide single nucleotide polymorphism genotyping’, Molecular
Ecology , 22, pp. 1917–1932. doi: 10.1111/mec.12215.
Dennenmoser, S. et al. (2017) ‘Adaptive genomic divergence under
high gene flow between freshwater and brackish-water ecotypes of prickly
sculpin (Cottus asper) revealed by Pool-Seq’, Molecular Ecology ,
26, pp. 25–42. doi: 10.1111/mec.13805.
Drevecky, C. J., Falco, R. and Aguirre, W. E. (2013) ‘Genetic divergence
of a sympatric lake-resident-anadromous three-spined stickleback
Gasterosteus aculeatus species pair’, Journal of Fish Biology ,
83(1), pp. 111–132. doi: 10.1111/jfb.12154.
Faria, R. et al. (2019) ‘Evolving inversions’, Trends in
Ecology and Evolution . Elsevier Ltd, 34(3), pp. 239–248. doi:
10.1016/j.tree.2018.12.005.
Fischer, M. C. et al. (2013) ‘Population genomic footprints of
selection and associations with climate in natural populations of
Arabidopsis halleri from the Alps’, Molecular Ecology , 22, pp.
5594–5607. doi: 10.1111/mec.12521.
Fraser, B. A. and Whiting, J. R. (2019) ‘What can be learned by scanning
the genome for molecular convergence in wild populations ?’,Annals of the New York Academy of Sciences , pp. 1–20. doi:
10.1111/nyas.14177.
Glover, N. M., Altenhoff, A. and Dessimoz, C. (2019) ‘Assigning
confidence scores to homoeologs using fuzzy logic’, PeerJ , 6, p.
e6231. doi: 10.7717/peerj.6231.
Haenel, Q. et al. (2019) ‘Predictable genome-wide sorting of
standing genetic variation during parallel adaptation to basic versus
acidic environments in stickleback fish’, Evolution Letters ,
3(1), pp. 28–42. doi: 10.1002/evl3.99.
Henderson, E. C. and Brelsford, A. (2020) ‘Genomic differentiation
across the speciation continuum in three hummingbird species pairs’,BMC Evolutionary Biology . BMC Evolutionary Biology, 20(1), pp.
1–11. doi: 10.1186/s12862-020-01674-9.
Hivert, V. et al. (2018) ‘Measuring genetic differentiation from
pool-seq data’, Genetics , 210, pp. 315–330.
Hohenlohe, P. A. et al. (2010) ‘Population genomics of parallel
adaptation in threespine stickleback using sequenced RAD tags’,PLoS Genetics , 6(2), p. e1000862. doi:
10.1371/journal.pgen.1000862.
Johns, G. C. and Avise, J. C. (1998) ‘A comparative summary of genetic
distances in the vertebrates from the mitochondrial cytochrome b gene’,Molecular Biology Evolution , 15(11), pp. 1481–1490.
Jones, F. C. et al. (2012) ‘The genomic basis of adaptive
evolution in threespine sticklebacks’, Nature , 484(7392), pp.
55–61. doi: 10.1038/nature10944.
Koboldt, D. C. et al. (2012) ‘VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing’,Genome Research , 22, pp. 568–576. doi:
10.1101/gr.129684.111.568.
Lawniczak, M. K. N. et al. (2010) ‘Widespread divergence between
incipient Anopheles gambiae species revealed by whole genome sequences’,Science , 330, pp. 512–515.
Li, H. et al. (2009) ‘The Sequence Alignment/Map format and
SAMtools’, Bioinformatics , 25(16), pp. 2078–2079. doi:
10.1093/bioinformatics/btp352.
Li, H. (2011) ‘A statistical framework for SNP calling, mutation
discovery, association mapping and population genetical parameter
estimation from sequencing data’, Bioinformatics , 27(21), pp.
2987–2993. doi: 10.1093/bioinformatics/btr509.
Lindtke, D., Li, Q. and Yeaman, S. (no date) Co-evolution of local
adaptation and genome architecture in threespine stickleback .
Lotterhos, K. E. and Whitlock, M. C. (2015) ‘The relative power of
genome scans to detect local adaptation depends on sampling design and
statistical method’, Molecular Ecology , 24, pp. 1031–1046. doi:
10.1111/mec.13100.
McKenna, A. et al. (2010) ‘The genome analysis toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data’,Genome Research , 20, pp. 1297–1303. doi:
10.1101/gr.107524.110.20.
Le Moan, A. et al. (no date) ‘Beyond parallel evolution: when
several species colonize the same environmental gradient’. doi:
http://dx.doi.org/10.1101/662569.
Le Moan, A., Gagnaire, P.-A. and Bonhomme, F. (2016) ‘Parallel genetic
divergence among coastal–marine ecotype pairs of European anchovy
explained by differential introgression after secondary contact’,Molecular Ecology , 25, pp. 3187–3202. doi: 10.1111/mec.13627.
Morris, M. R. J. et al. (2018) ‘Contemporary ancestor? Adaptive
divergence from standing genetic variation in Pacific marine threespine
stickleback’, BMC Evolutionary Biology . BMC Evolutionary Biology,
18, p. 113.
Nelson, T. C. and Cresko, W. A. (2018) ‘Ancient genomic variation
underlies repeated ecological adaptation in young stickleback
populations’, Evolution Letters , 2(1), pp. 9–21. doi:
10.1002/evl3.37.
Raeymaekers, J. A. M. et al. (2017) ‘Adaptive and non-adaptive
divergence in a common landscape’, Nature Communications .
Springer US, 8, p. 267. doi: 10.1038/s41467-017-00256-6.
Ravi, V. and Venkatesh, B. (2008) ‘Rapidly evolving fish genomes and
teleost diversity’, Current Opinion in Genetics and Development ,
18, pp. 544–550. doi: 10.1016/j.gde.2008.11.001.
Ravinet, M. et al. (2016) ‘Shared and nonshared genomic
divergence in parallel ecotypes of Littorina saxatilis at a local
scale’, Molecular Ecology , 25, pp. 287–305. doi:
10.1111/mec.13332.
Reeve, J. (2019) The genetic basis of convergent evolution among
three species of fishes . University of Calgary.
Reid, N. M. et al. (2016) ‘The genomic landscape of rapid
repeated evolutionary adaptation to toxic pollution in wild fish’,Science , 354(6317), pp. 1305–1309.
Renaut, S. et al. (2013) ‘Genomic islands of divergence are not
affected by geography of speciation in sunflowers’, Nature
Communications , 4, p. 1827. doi: 10.1038/ncomms2833.
Samuk, K. et al. (2017) ‘Gene flow and selection interact to
promote adaptive divergence in regions of low recombination’,Molecular Ecology , 26(17), pp. 4378–4390. doi:
10.1111/mec.14226.
Shapiro, M. D. et al. (2009) ‘The genetic architecture of
skeletal convergence and sex determination in ninespine sticklebacks’,Current Biology . Elsevier Ltd, 19, pp. 1140–1145. doi:
10.1016/j.cub.2009.05.029.
Shikano, T. et al. (2010) ‘History vs. habitat type: explaining
the genetic structure of European nine-spined stickleback (Pungitius
pungitius) populations’, Molecular Ecology , 19, pp. 1147–1161.
doi: 10.1111/j.1365-294X.2010.04553.x.
Shikano, T. et al. (2013) ‘Genetic architecture of parallel
pelvic reduction in ninespine sticklebacks’, G3 , 3, pp.
1833–1842. doi: 10.1534/g3.113.007237.
Soria-Carrasco, V. et al. (2014) ‘Stick insect genomes reveal
natural selection’s role in parallel speciation’, Science , 344,
pp. 738–743.
Storey, J. D. et al. (2015) ‘qvalue: Q-value estimation for false
discovery rate control.’ R package version 2.8.0. Available at:
http://github.com/jdstorey/qvalue.
Storey, J. D. and Tibshirani, R. (2003) ‘Statistical significance for
genomewide studies’, Proceedings of the National Academy of
Sciences , 100(16), pp. 9440–9445.
Terekhanova, N. V. et al. (2014) ‘Fast evolution from precast
bricks: genomics of young freshwater populations of threespine
stickleback Gasterosteus aculeatus’, PLoS Genetics , 10(10), p.
e1004696. doi: 10.1371/journal.pgen.1004696.
Tigano, A. and Friesen, V. L. (2016) ‘Genomics of local adaptation with
gene flow’, Molecular Ecology , 25(10), pp. 2144–2164. doi:
10.1111/mec.13606.
Tufts, T. (2018) Assessing temperature tolerance in ninespine
Stickleback (Pungitus pungitus) in response to climate change .
University of Calgary.
Turner, T. L., Hahn, M. W. and Nuzhdin, S. V. (2005) ‘Genomic islands of
speciation in Anopheles gambiae’, PLoS Biology , 3(9), p. e285.
doi: 10.1371/journal.pbio.0030285.
Varadharajan, S. et al. (no date) Genome sequencing of the
nine-spined stickleback (Pungitius pungitius) provides insights into
chromosome evolution .
Vijay, N. et al. (2016) ‘Evolution of heterogeneous genome
differentiation across multiple contact zones in a crow species
complex’, Nature Communications . Nature Publishing Group, 7, p.
13195. doi: 10.1038/ncomms13195.
Vijay, N. et al. (2017) ‘Genomewide patterns of variation in
genetic diversity are shared among populations, species and higher-order
taxa’, Molecular Ecology , 26, pp. 4284–4295. doi:
10.1111/mec.14195.
Westram, A. M. et al. (2014) ‘Do the same genes underlie parallel
phenotypic divergence in different Littorina saxatilis populations?’,Molecular Ecology , 23, pp. 4603–4616. doi: 10.1111/mec.12883.
Whitlock, M. C. and Schluter, D. (2009) The analysis of biological
data . 1st edn. Greenwood Village, Colorado: Roberts and Company.
Wilcoxon, F. (1945) ‘Individual comparisons by ranking methods’,Biometrics Bulletin , 1(6), pp. 80–83.
Wu, T. D. and Watanabe, C. K. (2005) ‘Sequence analysis GMAP: a genomic
mapping and alignment program for mRNA and EST sequences’,Bioinformatics , 21(9), pp. 1859–1875. doi:
10.1093/bioinformatics/bti310.
Yeaman, S. et al. (2016) ‘Convergent local adaptation to climate
in distantly related conifers’, Science , 353(6306), pp. 23–26.