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The performance of optimization- and learning-based con-
trollers critically depends on the selection of several tuning
parameters that can affect the closed-loop control perfor-
mance and constraint satisfaction in highly nonlinear and
nonconvex ways. Due to the black-box nature of the closed-
loop performance measures, there has been a significant in-
terest in automatic calibration (i.e., auto-tuning) of complex
control structures using derivative-free optimization meth-
ods, including Bayesian optimization (BO) that can handle
expensive unknown cost functions. However, an open chal-
lenge when applying BO to auto-tuning is how to effec-
tively deal with uncertainties in the closed-loop system that
cannot be attributed to a lumped, small-scale noise term.
This paper addresses this challenge by developing an adver-
sarially robust BO (ARBO) method that is particularly suited
to auto-tuning problems with significant time-invariant un-
certainties in an expensive “high fidelity” system model used
for closed-loop simulations. ARBO relies on a Gaussian
process model that jointly describes the effect of the tun-
ing parameters and uncertainties on the closed-loop per-
formance. From this joint Gaussian process model, ARBO

uses an alternating confidence-bound procedure to simul-
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taneously select the next candidate tuning and uncertainty
realizations, implying only one expensive closed-loop simu-
lation is needed at each iteration. The advantages of ARBO
are demonstrated on two case studies, including an illustra-
tive problem and auto-tuning of a nonlinear model predic-

tive controller for an uncertain bioreactor.
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1 | INTRODUCTION

Recent years have witnessed significant progress in the design and application of optimization- and learning-based
controllers that can deal with multivariable dynamics, constraints, and uncertainties that appear in the system and/or
the environment. However, the design of such advanced controllers hinges on the selection of several tuning param-
eters that may strongly affect closed-loop performance and constraint satisfaction. Additionally, these tuning param-
eters can come in a variety of different forms including continuous (e.g., weight parameters), discrete (e.g., logical
switching conditions such as adaptive tuning), and categorical (e.g., type of numerical discretization scheme) represen-
tations, which implies their impact on performance can be highly nonlinear and non-convex. Therefore, in practice,
these tuning parameters are usually selected via trial-and-error experimentation or heuristic-based strategies that
rely on expensive closed-loop simulations or experiments, which can become prohibitive when the effects of system
uncertainties are accounted for [1].

To mitigate the expensive nature of tuning of advanced controllers, there has been an increasing interest in auto-
matic calibration (aka auto-tuning [2, 3, 4, 5, 6]) of complex control structures to achieve desired closed-loop perfor-
mance. To this end, data-driven optimization methods have been found to be particularly promising since auto-tuning
can be interpreted as a black-box problem in which the objective function is expensive to evaluate, potentially non-
convex and multi-modal, and whose derivatives either do not exist or cannot be determined. Bayesian optimization
(BO) [7, 8] has emerged as a powerful approach for handling these types of black-box problems, even when the
measured objective value is corrupted by noise. Several recent works have successfully demonstrated BO for model
learning and auto-tuning of model predictive control (MPC) [5, 9, 10, 11] and other complex control structures [12, 13].

Standard BO approaches for auto-tuning rely on non-parametric Gaussian process (GP) models [14], constructed
from closed-loop simulation or experimental data, to describe the impact of controller tuning parameters on the
closed-loop performance measures; these GP models can be interpreted as probabilistic “surrogate models” for the
performance measures of interest. Although GP models are able to account for the effect of system uncertainties (e.g.,
exogenous disturbances, measurement noise, and/or time-invariant uncertainties in process models used for closed-
loop simulations) by optimizing an “effective noise” hyperparameter, this representation can lead to poor predictions
when uncertainties are relatively large. That is, the GP model yields such a large variance in predictions that the
mean prediction is dominated by noise, suggesting the GP model is uninformative. In such cases, the BO procedure
will become quite fragile and thus will lead to poor overall results. We addressed this challenge in our recent work

by introducing an auto-tuning approach, referred to as probabilistically robust Bayesian optimization (PRBO), that
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provides a probabilistic robustness certificate at every iteration (i.e., every time a new set of tuning parameters is
tested) [15]. The key idea in PRBO is to use sample-based estimates of the worst-case performance measures at
each iteration. We show how many samples are required — independent of the number and probability distribution of
the uncertainties — to ensure these worst-case estimates are not violated by other randomly sampled uncertainties
within a prespecified probability level. However, since PRBO provides this certification at every iteration, it generally
requires a fairly large number of closed-loop simulations/experiments to be performed in order to establish accurate
estimates of the worst-case performance measures. This can limit the applicability of PRBO especially when expensive
“high-fidelity” process models (or experiments) are utilized for generating closed-loop data.

In this paper, we present an alternative robust BO approach to PRBO that is well-suited for auto-tuning problems
that rely on expensive closed-loop simulations with significant time-invariant uncertainties. This type of problem
setting appears in a wide variety of applications that use complex process models and model predictive controllers
(MPCQ), including advanced manufacturing and energy systems [16], among many other applications. As opposed to
measuring an estimate of the worst-case performance directly (as done in PRBO), the proposed approach, referred
to as adversarially robust BO (ARBO), looks to construct a GP model that simultaneously describes the effect of the
controller tuning parameters and system uncertainties on the closed-loop performance. In this way, we can directly
use the joint GP model to predict the location of a minimax solution to the robust auto-tuning problem. We show,
however, that using a naive mean-based GP approximation of the performance measure will yield overall poor tuning
results, as it lacks the ability to tradeoff between exploration of unknown parts of the design-uncertainty space and
exploitation of the current estimate of the best tuning parameters. Instead, the proposed ARBO method uses a GP
confidence bound-based procedure suggested in [17] to realize a tradeoff between the exploration and exploitation
of the design-uncertainty space. In this approach, we alternate between an optimistic prediction of the performance
measure to select the next best set of tuning parameters and a pessimistic prediction of the performance measure
to select the most likely worst-case uncertainty for the suggested best tuning parameters. By applying this two-step
procedure, we only require one (expensive) closed-loop simulation at each iteration of ARBO, which is significantly less
than alternatives such as PRBO. Building upon the theory in [17], we also discuss the rate of convergence of the ARBO
method, and provide an explicit upper bound on the distance from the best suggested tuning parameters and the true
minimax optimal solution, which decays to zero as the number of iterations increases. We demonstrate the value of
the proposed ARBO method on two case studies; an illustrative problem to highlight the key steps and advantages of
ARBO and a challenging auto-tuning problem in which a highly nonlinear bioreactor with several unknown parameters

is controlled using nonlinear MPC with multiple constraint backoffs that must be tuned.

2 | PROBLEM STATEMENT

We are interested in the auto-tuning problem for a general class of controllers, i.e., we want to select the unknown
tuning parameters such that we achieve the best possible closed-loop performance, while protecting against poten-
tially adversarial effects of some “external” source of uncertainty. Let & € R1 denote the vector of controller tuning
parameters and § € RP2 denote the uncertainty vector. Given some scalar measure of the closed-loop performance
f : RP1 x RP2 — R whose structure is unknown, we formulate the auto-tuning problem as the following robust

black-box optimization problem

i (6,6 1
TS 6.5). W
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where © c RP1 and A c RP2 are the compact sets of possible tuning parameters and uncertainty realizations, respec-
tively. The controller tuning parameters 6 can represent any manipulable value including discrete structural choices
(e.g., turning on/off a component) that are modeled with binary variables, as well as parametric choices that are mod-
eled by continuous variables (e.g., increasing a weight value between lower and upper bounds). To account for the
effects of uncertainty on controller tuning, we must quantify the impact of different realizations of § on the perfor-
mance measure f. Thus, throughout this work, we assume that a high-fidelity simulator of the process is available for
simulating the effect of specific controller configurations and uncertainty realizations on the closed-loop performance
measure f.1 This allows f to be flexibly specified by the user in terms of any finite-time metric; some common exam-
ples include total operating cost or setpoint tracking error, average or maximum constraint violation, and end-of-batch
product quality.

We aim to find the (approximate) global solution to the controller auto-tuning problem (1). The specific algorithm
chosen to solve (1) will depend on its underlying characteristics. Thus, we assume that the following characteristics

hold, which is generally the case in simulation-based tuning of advanced controllers under uncertainty [1].

Assumption 1 (1) The worst-case uncertainty 5* (8) € argmaxsea f (6, 8) cannot be determined from prior knowledge.

(2) The feasible sets © and A are known and compact.

(3) The closed-loop performance measure f (8, 8) is fully black-box in nature such that no closed-form expression exists for
f and it does not have any known special structure such as convexity or linearity.

(4) The total dimension of the inputs p = py + p3 is typically not too large; p < 20 is a good rule-of-thumb.

(5) When the closed-loop performance performance is evaluated, we only observe f (8, §), meaning that first- or second-
order derivatives cannot be evaluated.

(6) The observations of f (6, 8) are corrupted by noise. That is, y = £ (6, 8) + €, where e € N(0,52).

Characteristics (1)-(3) in Assumption 1 imply minimal restrictions on the structure of the to-be-designed controller
such that the proposed method for controller auto-tuning can be applied even when the control law is defined
implicitly—for example, as is the case in model predictive control (MPC). Characteristic (5) prevents application of
derivative-based optimization methods for solving (1). For simplicity, characteristic (6) assumes the effective noise
€ leading to noisy observations y of the closed-loop performance measure is normally distributed with zero mean.
The variance of noise can be treated as a hyperparmaeter, as discussed in Section 4. Notice that the closed-loop
performance measure 7 (8, §) is quantified through possibly expensive simulations of the closed-loop system using a
process simulator. As such, the performance measure can be queried a limited number of times; often on the order
of a few hundred of closed-loop simulations.

Remark Although & can in principle represent any source of uncertainty, this may lead to a high-dimensional rep-
resentation of & due to the time-varying nature of control problems. As such, this may not satisfy characteristic (4)
in Assumption 1. Instead, & should represent the key time-invariant uncertainties (e.g., sensitive model parameters
and/or initial conditions) that have the most dominant influence on the performance measure f. If prior knowledge
about the dominant time-invariant uncertainties is not available, it can be obtained via global sensitivity analysis
[18, 19], which can be facilitated via surrogate modeling [20]. Notice that, although not included in &, the effect of
time-varying process and measurement noise is accounted for through noisy observations of f; see characteristic (6)

in Assumption 1.

1We refer to the process simulator as “high-fidelity” to denote the fact that it can be a computationally-expensive model, such as a multiscale

model, built from a collection of software codes/packages.
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The most direct way to solve Problem (1) would be via a nested optimization approach wherein an inner maxi-
mization is performed for each iteration of an outer minimization algorithm [21]. This approach, however, will expend
excessive effort computing the worst-case closed-loop performance for every selected design variables 8, which is not
appropriate when dealing with expensive evaluations of f using a high-fidelity process simulator. This also precludes
the use of evolutionary algorithms [22], which are popular techniques when the objective function can be evaluated
a large number of times. Alternatively, we look to reformulate (1) as a bandit feedback problem [23]. The main idea
is to sequentially select (6, 5;) € © x A at every iteration ¢t = 1,2, ... (here, “iteration” refers to a single closed-loop
simulation), and receive the corresponding noisy observations of the cost y; = f (8, &;) +¢€;. Our regret in this decision
can be quantified in terms of the instantaneous robust-regret rt‘s, which is defined as

ré = max f (6, 6) — max f(6*,6), (2)

where 6* € argminge.g Mmaxsea f (6, 8) is any global solution to (1). Ideally, we could derive an algorithm that minimizes
the cumulative robust-regret after T iterations R? = ZL rf; however, these quantities cannot be revealed to the
algorithm since they require perfect knowledge of the global solution. A viable alternative is to select an algorithm
that has no robust-regret, i.e., limr_,q %R? = 0 [17]. The only way that the average robust-regret can approach zero
is for the instantaneous robust-regret to approach zero, since rf > 0 must be non-negative. This implies that there
exists a t > 0 such that maxsca (6, 8) is arbitrarily close to maxscp £ (6%, 8) and the algorithm converges as long
as R? grows sublinearliy with 7. In the absence of uncertainty (i.e., the nominal setting of A = {&}), we can easily
find the point {6, ...,87} that minimizes the (non-robust) regret by selecting the point that produces the smallest
value of f(6;,8). This is no longer true in the robust case, however, due to the inclusion of the max operator in (2).
Therefore, we require a new recommendation procedure in addition to the selection policy for (8;, 6;). In the next
section, we present a variant of the sequential learning algorithm in [17], referred to as adversarially robust Bayesian
optimization, that can achieve the desired no robust-regret property using a combined Gaussian process (GP) model
for £ (6, &), which simultaneously models the effect of the design variables and uncertainty realizations on the closed-

loop performance measure.

3 | ADVERSARIALLY ROBUST BAYESIAN OPTIMIZATION

In this section, we first review Gaussian process (GP) regression for data-driven modeling of the closed-loop perfor-
mance measure. We will then present the adversarially robust Bayesian optimization (ARBO) algorithm, followed by
an overview of established theoretical results [17] related to the robust-regret when solving (1) under the conditions
specified in Assumption 1.

3.1 | Gaussian Process Regression

Letx = [87,87]T € X denote the concatenated vector of design variables and uncertainties, where X = ©@ x A ¢ RP
and p = p1 + po. We interchangeably denote 7 (8, §) as f (x) (and vice versa) throughout the paper. Since the structure
of f is not known, we cannot make rigid parametric assumptions for f. However, without further assumptions, it
would be impossible to achieve sublinear robust-regret for (1); for example, f could be discontinuous at every input
X € X in the worst-case. Therefore, we assume that a certain degree of smoothness holds in practice, such that we

can leverage GP models that enforce smoothness implicitly without making any parametric assumptions. The basic
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idea underpinning GPs is that the function values 7 (x), associated with different values of x, are random variables
and any finite collection of these random variables have a joint Gaussian distribution [14]. A GP distribution, denoted
by f(x) ~ GP(u(x), k(x,x’)), is parametrized by a prior mean function u(x) and a covariance (or kernel) function
k(x,X'). Without loss of generality, we assume that the prior is zero mean, i.e., u(x) = 0 for all x € X.2 The chosen
class of covariance functions determines the properties of the fitted functions. In this work, we will focus on stationary
covariance functions from the Matern class, defined as

1-v
k(X,X;v,¥) = (2%(@4& x'))B, (@r(x, x’)), (3)

where r(x,x’) = \/m is the scaled Euclidean distance, L = diag(/, ..., /p) is a diagonal scaling matrix
composed of length-scale parameters /1, ..., /, > 0, v is a parameter that dictates smoothness (i.e., the corresponding
function is [v/2 — 1] times differentiable), ¢2 is a scaling factor for the output variance, I and B, are the Gamma
and modified Bessel functions, respectively, and ¥ = {/,...,/,,{} are the hyperparameters of the kernel for fixed
v. Training a GP model corresponds to calibrating {¥, o} to the available data. For now, we assume the kernel
hyperparameters are known and discuss the training procedure further in Section 4.

A key advantage of GPs, in addition to their non-parametric nature, is the availability of simple analytic expressions
for the posterior distribution of 7(x) for any input x € X. Let us assume that we have t previous observations of
the objective y; = [yj,...,y:]" atinputs X; = {Xj,...,X;}. The GP model can account for the fact that these
measurements are noisy, i.e., y; = £ (X¢) + €; where e; ~ N (0, %2)' Given that the noise e; obeys a normal distribution,
the posterior f|X¢, y; remains a GP GP (u: (X), k¢ (%,x’)) with the following expressions for the mean y;, covariance

ke, and variance o2 [14]

100 =k 00 (K + 021) v (@a)
ke (x.X') = k(x.X) — K] (x) (Kt + aflt)q ke (X)), (4b)
o2 (X) = k¢ (%, X), (4c)

where k;(x) = [k;(X1,X),...k;(X;,X)]T contains the covariances between the input x and observed data points X;,
the covariance matrix K; has entries [K;];; = k(x;,x;) foralli,j € {1,...,t}, and I, is the ¢ x ¢t identify matrix. The
main advantage of the posterior GP expressions in (4) is that they can be used to generate confidence bounds on the
prediction of £ (8, 8) for any choice of input. Both the upper and lower confidence bounds will be leveraged in the
development of the ARBO algorithm, as described next.

3.2 | ARBO Algorithm
Given a so-called exploration parameter B;, we can define the following upper and lower confidence bounds on 7

uche (8, 6) = ¢ (6,6) + B;'*0¢(6,6), (5a)
Icb (6, 8) = (6, 8) - B;'%:(6,6), (5b)

2This can easily be achieved by normalizing the data before training, as discussed in, e.g., [24].
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which are readily determined from the posterior GP in (4). For sufficiently large choices of B;, these confidence
bounds will be large enough to ensure the no robust-regret property with high probability (see Theorem 1). The
ARBO algorithm [17], which relies on the lower and upper confidence bounds (5), is presented in Algorithm 1. The
suggested 6, at each iteration is the one that has the minimum “robust” lower confidence bound, as given in (8). For
this choice of 6;, we must select a feasible uncertainty sample. According to (9), we select the uncertainty value &, that
maximizes the upper confidence bound. We can interpret these opposite choices as: (i) optimistic selections under
uncertainty for 8; and (ii) pessimistic selections under uncertainty for the anticipated worst-case point §;. While the
choice (i) is common to traditional BO algorithms that utilize confidence bounds, the choice (ii) is unique to ARBO
to mitigate any possible negative effects caused by the uncertainty. Once the main loop in Algorithm 1 has been
completed, a final “recommended” point must be selected from the sequence {6,..., 07 }. Although there are many
potential choices, we choose the one that minimizes a pessimistic bound on the robust-regret in (10). To this end, let
us assume (6, 6) < ucb,_1(8,6) forall (6,85) € © x A; this condition will be more formally stated later. Then, we can

define the following pessimistic estimate of rf
78 = maxucb;_; (6, 6) — *, (6)
SeA

where f* = maxgsea f(6*,8) = mingeg Maxsea f (6, 8), which must satisfy rf < Ff forall t > 1 under the above-stated
assumption. The main difference between (2) and (6) is that the algorithm has enough information to identify the index
t* that minimizes Ff since the global solution does not depend on t. Yet, Ff is related to another important quantity

in bandit optimization termed the simple robust-regret after T iterations, which is denoted by S? and defined as

S? = min rf = min_ maxf(6;8)—f*. (7)
te{1,...,T} te{1,...,T} €A

Itis evident that S? < Ff* forall T > 1. This in turn implies that bounds established on 7¢_immediately transfer to the

t*
simple robust-regret S8, as discussed in the next section. Notice that Algorithm 1 relies on only a single expensive
closed-loop simulation run to be performed at every iteration, which is significantly fewer than the vast majority of

available alternatives, such as [21, 25].

3.3 | Upper Bound on Simple Robust-Regret

The ARBO Algorithm 1 requires selection of the exploration parameters {8; }:>1 that specify the width of the confi-
dence intervals on f. To this end, we rely on a simple result from [23] to select this sequence. We will focus on the

case of a finite set X = © x A for simplicity, and discuss the extension to a compact and convex set later.

Lemma 1 (Confidence bounds [23]) Let f(x) ~ GP (0, k(x,X')) be a sample of a GP for which noisy observations y; =
f(X¢) + ; with e; ~ N(0,52) are available. Let B; = 2log(|X |t?x?/(6a)) for a specified failure probability a € (0, 1) and

finite discrete set | X | < oo. Then, the following bounds on the objective function f (x)
f(X) € [lcbs_1(x),ucb;_1(x)], Vxe X,Vt >1, (11)

hold with probability (over the GP posterior at every iteration) at least 1 — a.

Next, we define the maximum information gain (MIG), which provides a measure of the informativeness of any

finite set of sampling points A c X [26].
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Algorithm 1 The robust sequential learning algorithm for ARBO.
Input: The set of the design variables © and the uncertainty A; kernel k corresponding to GP prior; exploration

parameters {B; }+>1; and total number of iterations T.

1: Initialize the mean and standard deviation (uo, op) « (0, k'/2).
2: fort =1to T do

3: Solve the following min-max optimization problem for 6;
6; = argminmaxlIcb;_1 (8, 5). (8)
6co® be€A

4: Solve the following maximization problem for &§;

&¢ = argmaxucb;_1 (6;,6). (9)
SeA
5: Run a closed-loop simulation at x; = [8], 6:]T to compute performance measure y; = f(6;, &¢) + €;.
6: Perform Bayesian posterior update to estimate y¢, oy, Icb; and ucb; using (4) and (5) by including the latest

query of the closed-loop performance measure {x;, y; }.
7: end for

8: Return the point 6, with the smallest upper confidence bound (our best guess of the optimal design variables)

t* = argmin maxucb;_1(6;,5). (10)
te{1,....,T} 6€A

Definition 1 Let A c X denote any subset of sampling points from X and let f be a sample of a GP model with the same
sampling conditions stated in Lemma 1. The maximum information gain for f under t measurements is defined as

_ 1 -2
ve=max 5 log det(l¢ + 0, °Ka), (12)

where Kz = [k(X,X')Ixxea is the kernel matrix. Note that the term inside of the max in (12) is the Shannon mutual
information between f and the observations at points x € A. <

We can now state the main theorem that bounds the performance of the ARBO Algorithm 1. We give a brief

sketch of the proof of this result, which is a slightly different version of that provided in [17, Supplementary Material].

Theorem 1 (Upper ARBO Performance Bound [17]) Fix a € (0,1), 8; = 2log(|X|t?22/(6a)), and T > 1. Running the
ARBO algorithm for a sample f of a GP with zero mean and kernel k (x,x’), the simple robust-regret must satisfy

Pr{si_Fﬁ,s,/QﬁTTﬁ}z1—a, (13)

A

where C; = 8/log(1 + 0;2).

Proof From Lemma 1, we know that Icb,_1 (x) < f(x) < ucb,_;(x) holds for all x € X, t > 1 with probability greater
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than or equal to 1 — a. Given this, from the definitions in (2) and (6), we have

5 . _5 .
=maxf(6¢ 8) —minmaxf(6,8) < = maxucb;_1 (8¢, 8) — minmaxf(6,6),
£ = ek (6:.6) 60 Seh (6.8) <7 seA t-1(6:,6) 6€0 Seh ©6.5)

= uch;_1 (6, 6;) — mi £(6,9),

ucb¢_1(6¢, 6¢) 'Jl'é”?fﬁ(( )

< ucb,_q (6, 8;) — mi Icb,_1 (6,8

< ucb¢_1 (6, 6t) rg]glgfpggtu(, )s

= ucb;_1 (8¢, 6¢) — maxlcb;_1 (6, 6),
SeA

< ucby_1 (6, 8¢) —Ich;_1 (6:. 6¢).

= 28201 (61, 50),

where the first line follows from the upper bound on £, the second line follows from the definition of &; in (9), the third
line follows from the lower bound on £, the fourth line follows from the definition of ; in (8), the fifth line follows from
the fact that maxsca Icb;_1 (6, §) > Icb;_1 (6, &¢) for any feasible choice of §; € A, and the sixth line follows from the
difference between the confidence bounds in (5). Given this bound, we can also see that the following sequence of

inequalities must hold with probability > 1 — o
(RO2 < T X (r§)? <4Br 2], 02 ,(6:.60).

where the first step follows from the Cauchy-Schwarz inequality and the second step follows from the monotonicity
of the sequence {B: }+>1. Next, we use a special case of [23, Lemma 5.4] to establish a bound on the sum of variances
in terms of the MIG (12)

437, 02 (6:,6:) < Ciyr,

for Cy = 8/log(1+0.2). From these results, it follows that Pr{R? <O TBryr} = 1-a. The assertion in (13) follows
by noting that the minimum of a sequence must be less than or equal to the average, i.e., S? < %R?, in addition to
the fact that the same inequalities hold for 7 in place of r?. n

As the total number of iterations T increases in (13), we observe that the simple robust-regret gets closer to the
desired value of zero, implying the global minimax solution has been found in the limit as T — oo, as long as the
numerator C1Bryr € o(T), where o is little-o notation that implies C; Bryr decays faster than 7. The choice of 87 in
Theorem 1 clearly shows logarithmic growth with respect to 7. However, we also require bounds on the MIG yr to
establish convergence. It was shown in [23] that y7 has sublinear dependence with respect to T for many commonly
used kernels, including the Matefn class, such that the ARBO algorithm converges to function evaluations near 6*
with high probability for sufficiently small choices of a. This is a key advantage of the confidence bound-based ARBO

algorithm compared to available alternatives whose theoretical properties have yet to be understood.

4 | PRACTICAL IMPLEMENTATION OF ARBO

In this section, we discuss some of the main aspects in practical implementation of the ARBO Algorithm 1, as also

considered in the case studies presented in Section 5.
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4.1 | Choice of Exploration Constant 3,

Lemma 1 and Theorem 1 only hold for discrete spaces X. However, using the discretization technique introduced in
[23], these results can be extended to continuous spaces that are compact and convex. The main added assumption
is that the kernel function & (x,x’) must be chosen such that it ensures the following high probability bounds on the

derivatives of f for some constants a, b > 0

af (X)

Xi

Pr{sup
xeX

>L} <ae WO vi=1... pVL>o0. (14)
Whenever this condition holds, the results in Lemma 1 and Theorem 1 can be generalized to any compact and convex
set X c [0, r]? by enlarging the exploration constant

21242

Be = 2log ( ) +2plog (tzpbr Iog% (4pa/a)). (15)
To the best of our knowledge, these results have not yet been extended to arbitrary non-convex sets. However, this
may not pose a challenge in practice since the choices of B; are generally known to be conservative [27]. In the case
studies in Section 5, we select 8; = Bop log(2t) to capture the dominant dependence of the exploration constant on
t and p. A tyical value for By is 0.1. An interesting direction for future work includes establishing a more robust way

to select {B; }+>1 for specific applications.

4.2 | Estimation of GP Hyperparameters

The results in Lemma 1 and Theorem 1 assume that the hyperparameters {V¥, o } of the GP prior for  are known
exactly. Since this is often not true in practice, we rely on the maximum likelihood estimation (MLE) framework to

determine the optimal hyperparameters {¥}, o } that, at every iteration ¢, maximize the log-likelihood L (¥, o¢) [14]

(¥, 00} e argmax L (¥, 0c) = log(p(y:[Xe, ¥, 0¢)). (16)
s0¢

Based on the GP prior, the measured data vector y; must be distributed according to a multivariate Gaussian distribu-
tion of the following form

Ve~ N(O,Z:(¥,00)),  [Ze(¥,00)]yj = k(% % |¥) + 028y, Virj € {1,....t}. (17)
Using this representation, an analytical expression for the log-likelihood function can be derived as
_ 1
Le(¥.00) = ~y{ 37'y: - 5 log(det(Z.)) - £ log(2x). (18)

The optimization problem (16) is a nonlinear program that can be solved using gradient-based methods (e.g., IPOPT
[28]) since (18) is a smooth, differentiable function. To ensure the optimizer does not get stuck in a local solution, it is
useful to “warm-start” the local solver with the best solution found from a heuristic global optimization method such
as the DIRECT solver [29]. Notice that the “warm-start” approach will introduce an additional step into Algorithm 1
that could be somewhat computationally expensive depending on the size of the optimization (16). A simple way to

reduce the computational cost associated with hyperparameter estimation is to update the hyperparameters of the
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GP model only periodically, instead of at every iteration. In this work, we exclusively use the Python package GPy [30]
to train and make predictions with GP models.

4.3 | Minimax Optimization for Icb;_;

Our analysis in Section 3 assumed that we could exactly optimize the acquisition functions defined in terms of the
lower and upper confidence bounds in (8) and (9). The maximization problem (9) resembles the sub-problem that arises
in the standard BO, suggesting that the same basic principles can be leveraged to develop a practical solution method
for the ARBO Algorithm 1. Here, we propose to use a combination of derivative-free search with a local gradient-
based solver for the min-max optimization (8) at each itertation. Note that since Icb;_; (8, §) may be non-convex
with respect to 8 and non-concave with respect to §, we cannot use traditional alternating gradient descent-ascent
methods, as they may not even locally converge [31].

The proposed approach partially exploits the differentiability of Icb;_; (8, §). Let us denote the optimal objective
value for the inner maximization problem as g;_1 (8) = maxsea Icb;_1 (8, §). We can then equivalently formulate (8) as

min g:-1(6), (19)

where g;_1 is a black-box function that can only be evaluated by calling an internal algorithm to approximate g;_1 ()
for any choice of 8 € ©. Since, for any fixed 0, Icb,_; (6, §) is a smooth function whose derivatives can be efficiently
computed, we can rely on gradient-based solvers (e.g., the well-known L-BFGS-B algorithm) to quickly converge to a
local optimum. Since we need a good estimate of the global solution for the inner maximization, we need some type
of globalization strategy. One approach is to apply a random multi-start approach wherein a large number of random
samples of & (10° in our numerical experiments) are used to initially evaluate Icb;_; (6, &) with 6 fixed. The & points
that lead to the 10 highest Icb;_1 (8, §) values are used to warm start the local solver, with the largest converged
objective value being returned as our best approximation to g;_1 (8). We then treat (19) as a black-box optimization
problem that can be solved with any number of available derivative-free optimization methods. In this work, we rely
on BOBYQA [32, 33], which is a local trust region-based approach. We again rely on a random multi-start procedure to
protect against local solutions for this outer minimization problem; however, since g;_; is fairly expensive to evaluate,

we must carefully select the number of repeats to ensure a solution can be found in a reasonable amount of time.

5 | CASE STUDIES

In this section, we demonstrate the performance of the ARBO algorithm on two problems. The first case study is an
illustrative example that is meant to showcase several implementation details of Algorithm 1. Since the exact knowl-
edge of the function and its min-max solution is available, we can directly compute the key performance assessment
measures, such as the simple robust-regret, in the illustrative example. The second case study, on the other hand,
focuses on a challenging nonlinear MPC (NMPC) auto-tuning problem. Since this auto-tuning problem involves a non-
linear plant simulator, we do not have exact knowledge of the true solution and thus cannot use simple robust-regret
as our performance measure. Instead, we evaluate the solution quality directly in terms of the closed-loop perfor-
mance and constraint satisfaction profiles. The main goal of this section is to show that ARBO can more reliably find

high-performance tuning parameters with significantly fewer closed-loop simulations than alternative methods.
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5.1 | lllustrative Example

Consider a system in the form of (1), with the following analytic expression for f
£(6,8) =sin(85) + V662 - 0.56, (20)

where © = [-1,2] is the feasible set of decision variable and A = [2, 4] is the feasible set of the uncertainty. Through-
out this section, (20) is unknown to any of the black-box algorithms, and is only used for assessing our the regret-based
performance measures. Figure 1 shows a plot of £(6,5()) versus 6 for a large number of random samples () € A,
with the worst-case function g(6) = maxseca (8, 8) shown with a dotted black line. From this plot, we can see that
6* = —0.45, which corresponds to an optimal minimax objective value of £* = 0.

8
= — = mazseaf(6,9) /
/
6 /
/
Q4
: /

s /

2

0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

6

FIGURE 1 Objective function plots for various values of the uncertain parameter 6. The star symbol denotes the
true minimax solution, while the blue line represents the best recommended discovered by ARBO.

We use the simple robust-regret S;S. as our metric since we aim to identify this robust solution in as few iterations
as possible. Theorem 1 highlights the importance of the B; sequence within Algorithm 1, as this is the main tool used
to navigate the exploitation-exploration tradeoff in the joint {6, §} space. To better illustrate this point, we compare
ARBO to the a purely exploitative approach, namely a Gaussian process-based robust optimization (GP-RO) approach.
In GP-RO, we completely ignore the variance information provided by the GP model for (8, §) and, instead, sample
6 = argmingeo Maxsea He—1(6,8) and &; = argmaxsea He—1(6:, 6). Similarly, for the recommendation process, we also

rely only on the mean function, i.e., 8,« is returned with t* = argmin;eqq 7y MaXsea He-1(6t, 6).

It is well-known that determining the hyperparameters of GP models, as discussed in Section 4, is often unreliable
for very small datasets. Thus, as opposed to starting Algorithm 1 from iteration 1, it is usually preferred to select the
first N;,;¢ points uniformly at random in any BO procedure to ensure a high-degree of exploration initially [34]. In this
illustrative problem, we selected N;,;; = p2 — 1 random points before running Algorithm 1. Since the simple robust-
regret is a function of these randomly selected initial points, S? itself is a random quantity, so that showing results
for a single initialization is not very informative. Instead, we repeated both the ARBO and GP-RO methods 10 times
(under the same random seeds) to construct a sample average estimate for the expected simple robust-regret, i.e.,

Nrepeat

8.(7)
>osp, (21)

N
repeat

1

E{SS} ~
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where S?’(") denotes the simple robust-regret for the ith run of the algorithm starting from the ith set of N;,;; random
initial points and N epear = 10. Since this estimate is constructed from a finite number of samples, we also report
estimated confidence intervals computed as 1.96 times the standard deviation divided by the square root of the
number of repeats (also known as the standard error formula).

The simple robust-regret plots for both ARBO and GP-RO are shown in Figure 2, with the estimated sample
average and corresponding confidence-bound error bars on the left and the individual sample paths 5?(!‘) for all
i€ {1,..., Nrepear } shown on the right. We clearly see that ARBO consistently converges to within a tolerance of
1076 of the true 7* for all considered initial points, which leads to [E{S?} ~ 0 using only 15 function evaluations. GP-
RO, on the other hand, shows considerably worse performance for the individual sample paths as well as the sample
average. The right plot in Figure 2 is particularly informative, as we see that multiple runs of GP-RO get “stuck” and do
not make progress for the entire 30 allotted function evaluations. This behavior is not unexpected, as it is well-known
to occur in algorithms that lack any degree of exploration - in this context, there is no clear incentive for GP-RO to
sample in unexplored regions of the © x A space.

EEN GP-RO
I ARBO

"
°

Sample-averaged simple
robust-regret, |E{s$}
Simple robust-regret, S¢

)

w
S
o]

é lb 15 20 25 1b 1'5 20 25 30
Total Iterations, T Total Iterations, T

FIGURE 2 The simple robust-regret for ARBO and GP-RO. The runs are repeated for 10 times and the average
simple robust regret is shown along with the 95% confidence intervals (left). Individual simple robust-regret sample
paths for different uncertainty realizations (right).

To provide additional insights into the improved performance of ARBO over GP-RO, we plot the lower confidence
bound contour plots for various iterations of a single run of ARBO in Figure 3. We see in the early iterations (top left)
that the lower confidence bound gives low predictions in most of the © x A space since most of it is unexplored. As
more of the samples suggested by ARBO have been incorporated, we see that the lower confidence bound is able
to filter out regions of the space that are not likely to be near the global minimax solution (e.g., ARBO no longer
samples near 8 = 2 after it sees large values there). In the later iterations (bottom middle), we see that the lower
confidence bound provides a good approximation of the unknown true function (bottom right) in the region around
the global minimax solution denoted with a star; however, it provides an optimistic prediction of 7 (8, §) elsewhere.
Since this optimistic prediction is still worse than our known, tested evaluation, we can adaptively exclude regions of
our search space without wasting the computationally expensive samples. This highlights a fundamentally important
point about the BO perspective: it is easier (i.e., fewer samples are needed) to find a globally optimal solution than
building a globally accurate surrogate model. Additionally, this is the key missing component in GP-RO (which can be
interpreted as ARBO with B; = 0), as the mean predictions alone do not posses enough information about the quality

of the predictions. This can lead to repeated evaluations at the same uninformative points.
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FIGURE 3 Contour plots showing the convergence of ARBO. The contour plots show the lower confidence
bound and the sequence of optimal points to be queried {0;, 5;}. Lower plots show the current recommended point.

5.2 | Auto-tuning of NMPC for a Bioreactor

Having verified the practical implementation and important theoretical results of ARBO on an illustrative example, we
now look to apply ARBO to the auto-tuning problem of an NMPC strategy for an uncertain bioreactor.

5.2.1 | High-fidelity process model

We consider a benchmark continuous bioreactor problem originally presented in [35]. The dynamics of the bioreactor
can be modeled by a set of three nonlinear ordinary differential equations given by

X(0) = -D(OX(0) +#(DX (1), X0 = X, (222)

$(0) = D(O(SF () = S(0) = - —H(OX (1), S(0) = So, (220)
X/S

P(1) = ~D(0P(6) + (ap(t) + PX (D), PO = Ry (229

where X (t), S(t), and P(t) denote the biomass, substrate, and product concentration (units of g/L), respectively,
with initial conditions Xo = 0.3 g/L, So = 0.2 g/L, and Py = 0 g/L; D(t) is the dilution rate (units of hr'); S¢(¢t)
is concentration of substrate in the feed (units of g/L); Yx/s is the cell-mass yield (units of g/g); u(t) is the specific
growth rate (units of hr™'); and a and B are parameters related to the product yield. The specific growth rate is
assumed to follow a modified Monod kinetic law that takes into account both substrate and product inhibition

(23)
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We consider pmax and P, to be the dominant time-invariant uncertainties in the plant simulator, as explored in several
previous case studies [36, 37]. Here, we assume that § = (gmax, Pm) € A = [0.9,1.4] hr™! x [1.3,1.6] g/L. The other
model parameters are assumed to be constant and are listed in Table 1.

TABLE 1 Known model parameters for the bioreactor case study.

Fixed Parameters  Values  Units

Yx/s 0.2 g/g
a 2.5 g/g
B 0.7 hr!

Km 1.2 g/L
K; 20 g/L

The states of the bioreactor model (22) are given by z(t) = (X (t), S(t), P(t)), while u(t) = (D(t), S¢(t)) denote
the two manipulated inputs. As such, we can write (22) in the following state-space representation

z(t) = F(z(t),u(t),8), z(0) = zo, (24)

where F : R? x R?2 x RZ — R3 is a function that represents the dynamics of the bioreactor in (22) and (23). The
control objective is to maximize the amount of product extracted from the bioreactor over a finite processing time of
t¢ = 5 hr, while satisfying minimum and maximum constraints on the biomass concentration. We can generally denote

such state (or path) constraints as G(z(t),u(t)) < 0, which reduce to the following in this case study
G(z(t),u(t)) = [XLs — X(t), Xug — X(8)] <0, (25)

where X, g = 0.265 g/L and Xyg = 0.385 g/L are the lower and upper bounds on the biomass concentration, respec-
tively. The manipulated inputs must also satisfy hard input constraints u(¢) € U = [0.05,1] hr™! x [10,20] g/L. We
assume that the manipulated inputs can be updated every §¢ = 0.1 hr in the simulation, such that there are a total of

Nsim = 50 simulation steps to compute the behavior for each uncertainty realization.

5.2.2 | Control-relevant model and NMPC formulation

Although a dynamic model of the bioreactor is available here (i.e., we have access to ¥), this is not always the case
in practice. Furthermore, even when plant simulators are available, they may be excessively complex to use for MPC
design and implementation. Thus, a more practical approach is often to construct a control-relevant model using system
identification methods based on either plant simulation data or real plant data. Here, we used a residual neural network
approach [38] that learns the “flow-map” function for time-invariant dynamic systems. In particular, this approach

learns a transition function %(z,, uy) that can be applied recursively to predict the forward evolution of the states

Zg1 = Flzk, ug) (26)
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from some initial condition zg given a future input sequence. The weights and bias parameters of the neural network
representing # are trained such that the successor state at the next discrete time can be predicted given the current
states and control inputs that have been determined from the plant simulator described in Section 5.2.1. We only
collected simulation data for the nominal parameter values pymax = 1.0 hr™" and P, = 1.2 g/L, though one could treat
the unknown parameters as additional inputs to the model during training. A deep neural network with 4 layers, 15
nodes per layer, and ReLU activation functions was used to represent ¥ in (26). The training was efficiently carried out
using Tensorflow via the Keras API [39]. Standard best practices regarding the selection of batch size, weight/bias
initialization, and stochastic gradient descent optimizer settings were utilized. As such, not only this case study con-
siders time-invariant parametric uncertainty in the plant simulator, but also plant-model mismatch with respect to the
control-relevant model used for the NMPC design at hand.

Given this control-relevant model and the control objective described in Section 5.2.1, we formulate the following
NMPC problem

min SNV L(zZie uie) +pllEi s (27)
Zjlk-Yi|k-Eilk
st zia = F(Zie vie)» Vi=0,...,N-1,
G(Zjjk» uije) +6 < gk, Vi=0,...,N-1,
ek 20, Vi=0,....N-1,
Ui €U, Vi=0,...,N—-1,
Zoi6 = z(t),

where N is the prediction horizon; z;, and ;¢ are the predicted state and control inputs / steps ahead of current time
k; z(tx) is the measured state at time t, (from the plant simulator); £(z(t),u(t)) = =V D(t)P(t)5t is the stage cost
with reactor volume V = 10 L; g« are slack variables for the state constraints; p is a large penalty weight for state
constraint violations; and 6 € © = [0,0.125]2 are the tunable backoff parameters that can be selected to improve
the inherent robustness guarantees in NMPC [40]. Note the stage cost is defined as the negative of the amount of
product extracted from the bioreactor over each 6t period - the negative arises since we want to maximize product,
but formulated our problem in terms of a minimization. Let ug‘k(z(tk), 6) denote the first element of the solution to
(27). We can then define the closed-loop system as the combination of (24) and the NMPC law

u(te) = ugy (2(te), ), (28)

where the control inputs are constant during each time interval [#, t¢11), Yk € {0, ..., Ngjm — 1}.

5.2.3 | Formulation of auto-tuning problem

Given the closed-loop simulation described in Section 5.2.2, we can now formulate the auto-tuning problem as se-
lecting backoffs 8 € © such that the worst-case mass of product (with respect to uncertainties § € A) is maximized
while the biomass constraints (25) are not (significantly) violated. To formulate the auto-tuning problem as in (1), we

must select (6, ) to be a weighted combination of productivity and constraint violations. Thus, we mathematically
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represent the overall control objective in terms of the closed-loop simulation outputs as follows

Nsim

(6.6) = Z L(z(te), u(te) +wlllG(z(te), u(te)]" Il (29)
k=1

where [a]* = max{a, 0} denotes the element-wise positive part operator and w = 20 is a weight parameter chosen

to have a significant penalty associated with constraint violations.

5.24 | Results and performance comparison

Now, we look to compare the performance of ARBO and GP-RO to the previously described NMPC auto-tuning under
uncertainty problem. We first examine the evolution of the recommended tuning 6,« over 60 iterations of the ARBO
and GP-RO algorithms, as shown in Figure 4. Similarly to the illustrative example, we use Latin Hypercube Sampling
[41] to generate the first 15 samples in © x A to ensure sufficient initial coverage of the search space. ARBO appears
to make more informed transitions among recommended tuning, which can be attributed to systematically trading off
exploration and exploitation of the © x A space. On the other hand, GP-RO does not take into account the uncertainty
in the GP predictions and, as a result, visits many possible optima as it attempts to learn a better surrogate for the

closed-loop performance measure (29).

0.121 ==mm GP-RO
== ARBO

0.08

o~
D 0.06 1
0.04 A

0.02

0.00 A

0.07 0.08 0.09 0.10 0.11 0.12

61

FIGURE 4 Recommended backoffs for the auto-tuning problem. The circles represent the points that the GP-RO
(blue) and ARBO (red) algorithm suggested as “optimal” throughout the iterations. The stars denote the final point at
iteration 60.

Next, we analyze the closed-loop performance (referred to as Total Cost below) for the final recommended point
of the ARBO and GP-RO algorithms by evaluating {f (6«, 6("))},’.151"””” at Ngamp = 100 uniformly randomly sampled
uncertainty values §() € A. The resulting histograms are shown in Figure 5 - an additional comparison to the nominal
setting in which the backoffs are set to zero (labeled No-Backoff) is provided to better highlight the advantages of
auto-tuning. As seen from Figure 5, the estimated worst-case Total Cost for ARBO is significantly lower than that
for the No-Backoff case and GP-RO. We also see that the characteristics of the Total Cost distribution are more
favorable for ARBO, as it is clearly skewed toward lower values (resulting in a better mean performance as well).
Figure 6 shows the closed-loop state profiles for the three cases considered in Figure 5. From Figure 6, we see that
ARBO leads to significantly less violation of the upper biomass bound X5, while not sacrificing on the amount of

product obtained throughout the processing time of interest. It is important to note that achieving this behavior
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FIGURE 5 Histograms of the Total Cost given in (29) established under 100 realizations of the parametric
uncertainties in the plant simulator for the cases of NMPC with No-Backoff, NMPC auto-tuned with ARBO, and
NMPC auto-tuned with GP-RO.

required careful simultaneous tuning of 8; and 6,, as we need to allow for some level of X, g violation to obtain a

large enough amount of product. It would be difficult for a practitioner to infer this careful balance without running

an impractically large number of closed-loop simulations. In fact, ARBO was able to uncover this desired balance

in an automated fashion using 60 total simulations; this is fewer than the 100 simulations we used to estimate the

worst-case performance for the final recommended point.
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FIGURE 6 Closed-loop state profiles for 100 realizations of parametric uncertainties in the plant simulator for
the cases of NMPC with No-Backoff, NMPC auto-tuned with ARBO, and NMPC auto-tuned with GP-RO.
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6 | CONCLUSIONS AND FUTURE WORK

We have presented a robust BO method for auto-tuning of arbitrary complex control structures using a “high-fidelity”
plant simulator with significant time-invariant uncertainties. The proposed ARBO method uses a probabilistic Gaus-
sian process surrogate model to jointly describe the effect of the tuning parameters and plant model uncertainties on
the closed-loop performance. The Gaussian process model allows for using an alternating confidence-bound proce-
dure to simultaneously select the next candidate tuning and uncertainty realizations. As such, ARBO requires only
one (expensive) closed-loop simulation in each iteration, as compared to alternative robust BO approaches to auto-
tuning that rely on vastly more closed-loop simulations in each iteration. Our results on two simulation case studies
demonstrate the advantages of the confidence bound-based procedure of ARBO in systematically realizing a tradeoff
between the exploration and exploitation of the design-uncertainty space relative to Gaussian process surrogate-
based robust optimization that lacks an exploration mechanism. Our future work will mainly focus on using more
complex non-Gaussian noise models for robust BO, as well as extending the proposed auto-tuning approach to han-

dle multi-objective performance measures.

references

[1] Paulson JA, Mesbah A. Shaping the closed-loop behavior of nonlinear systems under probabilistic uncertainty using
arbitrary polynomial chaos. In: Proceedings of the IEEE Conference on Decision and Control; 2018. p. 6307-6313.

[2] Garriga JL, Soroush M. Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research
2010;49(8):3505-3515.

[3] Tran QN, Scholten J, Ozkan L, Backx A. A model-free approach for auto-tuning of model predictive control. IFAC
Proceedings Volumes 2014;47(3):2189-2194.

[4] Neumann-Brosig M, Marco A, Schwarzmann D, Trimpe S. Data-efficient autotuning with Bayesian optimization: An
industrial control study. IEEE Transactions on Control Systems Technology 2019;28(3):730-740.

[5] Paulson JA, Mesbah A. Data-Driven scenario optimization for automated controller tuning with probabilistic perfor-
mance guarantees. |EEE Control Systems Letters 2020;5(4):1477-1482.

[6] Zhu M, Bemporad A, Piga D. Preference-based MPC calibration. arXiv preprint arXiv:200311294 2020;.

[7] Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Advances in Neural
Information Processing Systems 2012;25.

[8] Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N. Taking the human out of the loop: A review of Bayesian
optimization. Proceedings of the IEEE 2015;104(1):148-175.

[9] Piga D, Forgione M, Formentin S, Bemporad A. Performance-oriented model learning for data-driven MPC design. IEEE
Control Systems Letters 2019;3(3):577-582.

[10] Lu Q, Kumar R, Zavala VM. MPC controller tuning using Bayesian optimization techniques. arXiv preprint
arXiv:200914175 2020;.

[11] Sorourifar F, Makrygiorgos G, Mesbah A, Paulson JA. A data-driven automatic tuning method for MPC under uncertainty
using constrained Bayesian optimization. Venice; 2021. p. 1-6.

[12] Fiducioso M, Curi S, Schumacher B, Gwerder M, Krause A. Safe contextual Bayesian optimization for sustainable room
temperature PID control tuning. arXiv preprint arXiv:190612086 2019;.



20

Paulson et al.

[13]

[16]

[17]

(18]

[29]

(30]

(31]

(32]

Khosravi M, Behrunani V, Myszkorowski P, Smith RS, Rupenyan A, Lygeros J. Performance-driven cascade controller
tuning with Bayesian optimization. IEEE Transactions on Industrial Electronics 2021;.

Rasmussen CE, Williams CKI. Gaussian processes for machine learning. Cambridge, MA: MIT Press; 2006.

Paulson JA, Shao K, Mesbah A. Probabilistically Robust Bayesian Optimization for Data-Driven Design of Arbitrary
Controllers with Gaussian Process Emulators. In: Proceedings of the IEEE Conference on Decision and Control; 2021.
p. Accepted.

Edgar TF, Pistikopoulos EN. Smart manufacturing and energy systems. Computers & Chemical Engineering
2018;114:130-144.

Bogunovic I, Scarlett J, Jegelka S, Cevher V. Adversarially robust optimization with Gaussian processes. In: Proceedings
of the 32nd International Conference on Neural Information Processing Systems; 2018. p. 5765-5775.

Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety
2008;93(7):964-979.

Paulson JA, Martin-Casas M, Mesbah A. Fast uncertainty quantification for dynamic flux balance analysis using non-
smooth polynomial chaos expansions. PLoS Computational Biology 2019;15(8):e1007308.

Makrygiorgos G, Maggioni GM, Mesbah A. Surrogate modeling for fast uncertainty quantification: Application to 2D
population balance models. Computers & Chemical Engineering 2020;138:106814.

Marzat J, Walter E, Piet-Lahanier H. A new expected-improvement algorithm for continuous minimax optimization.
Journal of Global Optimization 2016;64(4):785-802.

Mukhopadhyay DM, Balitanas MO, Farkhod A, Jeon SH, Bhattacharyya D. Genetic algorithm: A tutorial review. Inter-
national Journal of Grid and Distributed Computing 2009;2(3):25-32.

Srinivas N, Krause A, Kakade SM, Seeger M. Gaussian process optimization in the bandit setting: No regret and experi-
mental design. In: Proceedings of the International Conference on Machine Learning; 2015. p. 2171-2180.

Bradford E, Schweidtmann AM, Lapkin A. Efficient multiobjective optimization employing Gaussian processes, spectral
sampling and a genetic algorithm. Journal of Global Optimization 2018;71(2):407-438.

Wabersich KP, Toussaint M. Automatic testing and minimax optimization of system parameters for best worst-case
performance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems IEEE; 2015. p. 5533-5539.

Dani V, Hayes TP, Kakade SM. Stochastic linear optimization under bandit feedback 2008;.

Kandasamy K, Schneider J, Péczos B. High dimensional Bayesian optimisation and bandits via additive models. In:
Proceedings of the International Conference on Machine Learning; 2015. p. 295-304.

Waéchter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming 2006;106(1):25-57.

Finkel D. DIRECT optimization algorithm user guide. North Carolina State University. Center for Research in Scientific
Computation; 2003.

A Gaussian processes framework in python;. https://sheffieldml.github.io/GPy/.

Jin C, Netrapalli P, Jordan M. What is local optimality in nonconvex-nonconcave minimax optimization? In: Proceedings
of the International Conference on Machine Learning; 2020. p. 4880-4889.

Cartis C, Fiala J, Marteau B, Roberts L. Improving the flexibility and robustness of model-based derivative-free optimiza-
tion solvers. ACM Transactions on Mathematical Software (TOMS) 2019;45(3):1-41.



Paulson et al. 21

[33]

[36]

(37]

(38]

(39]

[40]

[41]

Powell MJ. The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report
NA2009/06, University of Cambridge, Cambridge 2009;p. 26-46.

Bull AD. Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research
2011;12(10).

Agrawal P, Koshy G, Ramseier M. An algorithm for operating a fed-batch fermentor at optimum specific-growth rate.
Biotechnology and Bioengineering 1989;33(1):115-125.

Henson MA, Seborg DE. Nonlinear control strategies for continuous fermenters. Chemical Engineering Science
1992;47(4):821-835.

Paulson JA, Martin-Casas M, Mesbah A. Input design for online fault diagnosis of nonlinear systems with stochastic
uncertainty. Industrial & Engineering Chemistry Research 2017;56(34):9593-9605.

Qin T, Wu K, Xiu D. Data driven governing equations approximation using deep neural networks. Journal of Computa-
tional Physics 2019;395:620-635.

Chollet F, et al., Keras. GitHub; 2015. https://github.com/fchollet/keras.

Paulson JA, Mesbah A. Nonlinear model predictive control with explicit backoffs for stochastic systems under arbitrary
uncertainty. IFAC-PapersOnLine 2018;51(20):523-534.

Loh WL. On Latin hypercube sampling. The annals of statistics 1996;24(5):2058-2080.



