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Abstract 

The relativistic properties of Hydrogen-like atoms (HLAs) are here investigated in the 

Heisenberg picture for the first time. The relativistic vibrational Hamiltonian (RVH) 
rel

vibH  is 

first defined as a power series of harmonic oscillator Hamiltonian 0H  by using the relativistic 

energy eigenvalue 
rel

vibE . By applying the first-order RVH (proportional to 0H ) to the 

Heisenberg equation, a pair of coupled equations is turned out for the relativistic motion of the 

electron’s position and linear momentum. A simple comparison of the first-order relativistic 

and nonrelativistic equations reveals this reality that the natural (fundamental) frequency of 

HLA (like entropy) is slowly raised by increasing the atomic number from 20z . The second-

order RVH (proportional to 
2

0H ) has then been implemented to determine an exact expression 

for the electron relativistic frequency in the different atomic energy levels. In general, the 

physical role of RVH 
rel

vibH  is fundamental because it not only specifies the temporal relativistic 

variations of position, velocity, and linear momentum of the oscillating electron, but also 

identifies the corresponding relativistic potential, kinetic, and mechanical energies. The results 

will finally be testified by demonstrating energy conservation. 
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1 Introduction 

So far, much literature has been published about the special relativistic principles of Einstein[1-

3] and their impacts on the physical and chemical quantities of Hydrogen-like atoms (HLAs) 

such as energy eigenvalue, Hamiltonian, angular frequency, and radius of the single bound 

electron, Enthalpy, and entropy.[4-9] We here demonstrate that the key relativistic parameter of 

Lorentz factor   21222 /1


 nz  , in which z ,  , and n  are the respective atomic 

number, fine constant, and energy level, is responsible for all relativistic changes of physical 

and chemical quantities. For example, the relativistic angular frequency rel

n  is directly 

increased by the Lorentz factor  , while the relativistic radius rel

nr  is reversely reduced by the 

Lorentz factor 
1  so that the rotational speed of the electron remains unchanged over circular 

orbits of Bohr.[4, 7] The energy eigenvalue and Hamiltonian are simultaneously modified by the 

different relativistic perturbation terms which have been discussed by many authors in different 

ways.[10-12] 

 The initial aim of the present paper is to introduce a new method for calculating the 

relativistic vibrational Hamiltonian (RHV) 
rel

vibH  of HLAs. This method has recently been 

exploited to derive the nonrelativistic vibrational Hamiltonian (NRVH) vibĤ  as a power series 

of harmonic oscillator Hamiltonian 0H .[13] The well-known Langevin equation[14, 15] was 

formed by applying vibĤ  into the Heisenberg equation. In the end, it is demonstrated that the 

fluctuations in the position and linear momentum of the oscillating electron are responsible for 

the noise flux of spontaneous emission radiated from atoms with a Lorentzian profile.[13, 16] 

The next aim is to extend the vibrational motion equations of HLAs from nonrelativistic 

to relativistic states. Accordingly, the relativistic energy eigenvalue 
rel

vibE  has been rendered by 

applying the special relativity principles to the kinetic and potential energies of the electron. 

The RVH 
rel

vibH  is then constructed by substituting the number operator N̂  for the energy level 

number n  in the relativistic energy eigenvalue 
rel

vibE  similar to the energy eigenvalue of a simple 

harmonic oscillator 0)2/1(  nEn  which is directly converted to its Hamiltonian 

00 )2/1ˆ(ˆ  NH .[13, 17] 0  is the natural frequency of harmonic oscillator whose definition 

for the nonrelativistic oscillation of electron has been introduced by the relation (10) 0f Ref 

[13] as 
221

0
)1(

)(  Zcvib
   ( em ). 
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 The last aim is to find the relativistic natural frequency 
ref

0  associated with the lowest 

energy level 1n  for the vibrational motion of the electron. This is achieved by placing the 

first-order RVH 
)1(ˆ

relH  into the Heisenberg equation so that it is automatically turned out as 

)2/1( 22

00  zrel  . One thus expects that the relativistic vibrational frequency 
rel

n  

always is larger than the nonrelativistic frequency n  in all higher circular orbits ( 1n ) due 

to the larger relativistic natural frequency 00  rel
. Finally, the results are confirmed by 

demonstrating energy conservation so that the sum of relativistic kinetic and potential energies 

of electron (mechanical energy) remains unchanged at all times. 

 

2 The relativistic kinetic, potential, and vibrational energies 

There are two different kinds of oscillation that simultaneously happen for the single electron 

of HLAs. The first one is concerned with the intrinsic spinal motion of the electron around its 

axis with an unknown driving force which is not tractable by the present theory. The second 

one is the relativistic motion of the electron over the stable orbits of Bohr which acts as a 

harmonic oscillator. The kinetic energy of electron thus obeys the special relativistic relation 

in the usual form[18, 19] 

...
82

1
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2

2 














cm

p
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p
cm

cm

p
cmT

e

rel

e

rel

e

e

rel

erel ,                                                          (1) 

in which em  is the rest mass of the electron and nerel vmp   is the electron relativistic linear 

momentum over Bohr’s circular orbits with the constant speed ncznzevn  2  (

141 0  ) and the Lorentz factor   21222 /1


 nz  .[4, 7, 12] As a result, the relativistic 

kinetic energy (1) can be approximated up to the fourth power 44)( nz  after substituting the 

corresponding expansions 2  and 4  as  

4

4
2

2

2
2 )(

8

3)(

2

1

n

z
cm

n

z
cmT eerel


 .                                                                                         (2) 

 On the other side, the relativistic potential energy is assigned by the Coulomb potential 

as 

rel

n

rel
r

ze
V

2
 ,                                                                                                                             (3) 
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in which rel

nr  is the relativistic radius of Bohr’s nth-orbit. The wave-particle nature of the 

electron is now used to determine the relativistic radius rel

nr . We begin with the de Broglie 

relation in the relativistic form 

n

nerel

rel

n
vm

h

p

h



 1 .                                                                                                  (4) 

rel

n  is the relativistic wavelength of rotating electron which satisfies the standing-wave 

condition in the relativistic form 

n

ne

rel

nrel

n r
vm

nn
r 1

2

 


 
.                                                                                                 (5) 

Therefore, the relativistic radius rel

nr  and wavelength rel

n  have commonly been contracted 

concerning their nonrelativistic values )(2 czmnr en   and )( czmnh en    by the 

reverse of the Lorentz factor   212221 /1 nz  
. It is noteworthy to know that the 

relation (5) is in complete agreement with the relations (7) and (5) of Refs [4, 7], respectively, 

but disagrees with the corresponding relation (13) of Ref [20] in which the contraction factor 

is introduced as 
1)1(2   rather 

1 . Finally, the relativistic angular frequency rel

n  is 

turned out as 

nrel

n

nrel

n
r

v
  ,                                                                                                                   (6) 

in which the nonrelativistic angular frequency 3

0 nn    was already defined by the relation 

(18) of Ref [13] and its present relativistic value is raised by the Lorentz factor  .  

 Now by substituting the reduced radius rel

nr  from (5) into (3), a relativistic relation is 

derived for the relativistic potential energy correct to 44)( nz  as 

4

4
2

2

2
2

2 )(

2

1)(

n

z
cm

n

z
cm

r

ze
V ee

n

rel


 


 ,                                                                         (7) 

where the expansion ...2/)(1 22  nz  has been used. It is also evident from (7) that 

the potential energy is increased by the Lorentz factor   from the relativistic point of view. 

One can now render the relativistic energy eigenvalue (relativistic vibrational energy) by 

adding the relativistic kinetic energy (2) to the relativistic potential energy (7) as 

2

24

4
2

2

2
2

2

1)(

8

1)(

2

1
vib

e

vibee

rel

vib E
cm

E
n

z
cm

n

z
cmE 


,                                                   (8) 
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which is in complete agreement with the corresponding relations (9) and (6) of Refs [4, 7], 

respectively. The first term vibE  is the nonrelativistic energy eigenvalue of HLAs and the 

second quadratic term (proportional to 
2

vibE ) is concerned with the perturbation that happens 

for HLAs due to the relativistic motion of the electron. 

 

3 The relativistic vibrational Hamiltonian (RVH) 
rel

vibĤ  

We have recently constructed the nonrelativistic vibrational Hamiltonian (NRVH) of HLAS in 

terms of that of a simple harmonic oscillator 0Ĥ  by expanding the corresponding energy 

eigenvalue 
222 /)(5.0 nZcmE evib   around 1n  in the form[13] 

   
k

k

k

vib

H
kH














 







0

0

0

1

0

ˆ
115.0ˆ





 ,                                                                               (9) 

in which 221

0 )(  Zc   ( em ) is the nonrelativistic natural frequency associated with 

the lowest energy level 1n , as it is evident in the relativistic frequency relation (6) with the 

corresponding value 1 .  

 The RVH 
rel

vibĤ  is now derived by substituting the NRVH vibĤ  for the corresponding 

energy eigenvalue vibE  in the relativistic vibrational energy eigenvalue (8) as 

2

2
ˆ

2

1ˆˆ
vib

e

vib

rel

vib H
cm

HH  .                                                                                                      (10) 

Therefore, the NRVH vibĤ  is modified by the perturbation Hamiltonian 
2

2
ˆ

2

1ˆ
vib

e

npertubatio H
cm

H


  

due to the relativistic vibrational motion of the electron. 

The most advantage of RVH 
rel

vibĤ  is to hand over the relativistic motion equation of 

the electron in the direction of an arbitrary axis such as x by using the well-known Heisenberg 

equation in the form[21] 


  ])(ˆ,ˆ[

)(ˆ 1 txHi
dt

txd rel

vib
rel  ,                                                                                   (11) 

in which reltx  )(ˆ  is the expectation (mean) value of electron vibrational position at the 

moment of t. Although the equation (11) is a first-order time-dependent differential equation, 

its general solution is rather difficult due to 
rel

vibĤ  which consists of the two infinite power series 
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vibĤ  and 
2ˆ
vibH  in terms of 0Ĥ  according to the relations (9) and (10). However, this problem 

can be sorted out by solving the equation (11) step by step by implementing the first and 

second-order RVH 
)1(ˆ

relH  and 
)2(ˆ

relH  proportional to 0Ĥ  and 
2

0Ĥ  in sections 4 and 5, respectively. 

 

4 The first-order RVH 
)1(ˆ

relH  and natural (fundamental) frequency 
ref

0  

The first-order RVH 
)1(ˆ

relH  is obtained by applying the power series vibĤ  from (9) to (10) and 

choosing terms proportional to 0Ĥ  as 






























0

0
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e

rel .                                                              (12) 

The motion equations for the mean value of the relativistic position and linear momentum 

operators reltx  )(ˆ  and reltp  )(ˆ  are now derived by substituting the first-order RVH (12) 

into the Heisenberg equation in the forms 

rel

ee

rel

rel tp
cmm

txHi
dt

txd
















  )(ˆ
2

1
1

])(ˆ,ˆ[
)(ˆ

2

0)1(1 
                                        (13) 

and 

rel

e

evib

rel tx
cm

mtpHi
dt

tpd
















  )(ˆ
2

1])(ˆ,ˆ[
)(ˆ

2

02

0

)1(1 



 ,                               (14) 

where the commutation relations pmixH e
ˆ]ˆ,ˆ[ 1

0

   and xmipH e
ˆ]ˆ,ˆ[ 2

00   have been 

used.[22] The relativistic equation of motion for the variable 
reltx  )(ˆ  will ultimately be 

extracted after substituting (14) into the derivative of equation (13) as 

0)(ˆ
)(ˆ 2)1(

2

2




relvib

rel tx
dt

txd
 ,                                                                                    (15) 

in which the first-order relativistic vibrational frequency )1(

vib  is the same as the relativistic 

natural frequency 
ref

0  in the form 











2
1

22

00

)1( 


zref

vib .                                                                                                 (16) 

On the other hand, if one expands the Lorentz factor   in the general relativistic 

frequency relation (6) as 
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  ...
8

3

2

1
1/1

4

44

2

22
21222 



n

z

n

z
nz


 ,                                                   (17) 

then the relativistic natural frequency (16) will expectedly be revisited by applying the lowest 

vibrational level 1n  to the relativistic general relation (6) and ignoring the negligible terms 

of powers higher than 22z  ( 2244  zz  ). The variations ratio of relativistic to nonrelativistic 

natural frequencies 00 / ref
 versus the atomic number z  is demonstrated in Fig. 1. 

 

 

Fig. 1. The gradual increment of the normalized relativistic natural frequency 00 / ref
with respect to the 

atomic number z is shown in the range 1001  z  (Fermium). 

 

According to the relation (16), the slope ( z2 ) of the ratio 00 / ref
 is slowly raised by 

increasing the atomic number z  due to the negligible value of coefficient 2  ( 12  ). This 

gradual increment is evident in Fig. 1 so that the normalized relativistic natural frequency 

00 / ref
 is raised from 1 to 1.01 for the lighter elements with the atomic numbers in the range 

201  z  and suddenly raised from 1.01 to 1.27 for the heavier elements with the atomic 

numbers in the range 10020  z . Interestingly, similar behavior has been observed for the 

linear entropy of HLAS in Fig. 4 of Refs [9] and [22] where the ratio of relativistic to 

nonrelativistic estimates of the linear entropy 
NRR

rS  (red curve) is negligibly increased from 1 

in the range 201  z , but considerably raised from almost 1 to 3.5 in the range 10020  z
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. As a result, the physical quantities of HLAs have been sensibly affected by increasing the 

atomic number z , starting from  z= 20 , due to the relativistic motion of a single electron. 

Finally, one may ask why the atomic number 20z  is a critical point for the 

simultaneous relativistic changes of both physical and chemical quantities. The answer should 

be related to the Lorentz factor   as a key parameter of special relativity. Firstly, it should be 

noticed that the role of the Lorentz factor     212222122 /1/1


 nzcv   will be 

disappeared in all relativistic relations (1) to (17) by tending the light speed c  to infinity (

c ) because the relativistic terms nzcv /  ( ce 2 ) tends to zero, and consequently 

  approaches to unity ( 1 ). Secondly, it is evident from (17) that the numerical value of 

  ( cv / ) is directly depending on the atomic number z  as a chemical characteristic that 

distinguishes the elements of the single-electron group (HLAs) from each other. The variations 

of the Lorentz factor   versus the atomic number z  are illustrated in Fig. 2 for the different 

energy levels 1n , 2, and 3. 

 

 

Fig. 2. The variations of the Lorentz factor   versus the atomic number z are shown in the range 1001  z  

(Fermium). The early point of gradual increment is associated with the atomic number z=20 and n=1 in agreement 

with Fig. 2, Fig. 1 of Ref [9], and Figs. 1 and 4 of Ref [22]. 
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As it is evident, the lowest value of atomic number z  at which the Lorentz factor   begins to 

raise is corresponding to the lowest value of energy level n=1. In addition to the normalized 

angular frequency 00 / ref
 and linear entropy 

NRR

rS , there are many more quantities that their 

relativistic behavior begins from 20z  including the relativistic to the nonrelativistic ratio of 

position and linear momentum of the oscillating electron, as illustrated in Fig. 1 of Ref [22].  

 

5 The second-order RVH 
)2(ˆ

relH  and energy conservation 

The second-order RVH of HLAs is assigned by substituting NRVH (9) to RVH (10) and 

choosing the terms correct to 2

0H  as 


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
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
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
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
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
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
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H

e

rel .                                       (18) 

The motion equations of relativistic variables 
relx  ˆ  and relp  ˆ  have similarly been 

rendered by substituting 
)2(ˆ

relH  for 
)1(ˆ

relH  into the Heisenberg equations (13) and (14) as 

rel

e

rel

e

nn

e

rel tx
cm

itp
cm

EE

mdt

txd

















 



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2

5
3

2

1
)(ˆ

2

53
1

1)(ˆ
2

0
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0

0

0

0 









          (19) 

and 

rel

e

rel

e

nn
e

rel tp
cm

itx
cm

EE
m

dt

tpd

















 



)(ˆ

2

5
3

2

1
)(ˆ

2
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1

)(ˆ
2

0
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0

0

0

0
2

0












.  (20) 

The motion equation for the variable 
relx  ˆ  will finally be achieved by the respective 

substitution reltp  )(ˆ  and dttpd rel /)(ˆ   from (19) and (20) into the derivative of (19) as 

0)(ˆ
4

)()(ˆ
2)2(

2)2()2(

2

2





















rel

rel
rel

rel
rel

rel tx
dt

txd
i

dt

txd 
 ,                                       (21) 

in which the second-order relativistic vibrational frequency 
)2(

rel  is equal to

0

2 )]56()(5.0)34[(  nzn   and includes the nonrelativistic term 0

)2( )34(  nvib   of 

Ref [13], as well. The second-order term 0

22)2( )5.23(  zrel   must be ignored because it is 

only a phase term associated with the infinite number of vibrational axis directions (here the 

typical x-axis has been chosen). 
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As a result, the common features of the first and second-order RVHs 
)1(ˆ

relH  and 
)2(ˆ

relH  

defined by (12) and (18) and their corresponding motion equations (15) and (21) [ 0)2( rel ] 

imply that the general RVH (10) must imitate the motion equation of a quantum harmonic 

oscillator (QHO) in the usual form [13, 23] 

0)(ˆ)(
)(ˆ 2

2

2




rel

rel

vib
rel tx

dt

txd
 ,                                                                                    (22) 

in which the general relativistic vibrational frequency rel

vib  is the same as the corresponding 

relativistic rotational frequency rel

n  given by (6). The solution of equation (22) simultaneously 

yields the temporal relativistic variations of position and linear momentum of the oscillating 

electron as 

    ttrtx rel

vib

rel

vib

rel

nrel  sincos)(ˆ                                                                                 (23) 

and 

    ttrm
dt

txd
mtp rel

vib

rel

vib

rel

vib

rel

ne
rel

erel  sincos
)(ˆ

)(ˆ 


 ,                                  (24) 

where the relativistic amplitude of electron vibration rel

nr  has already been derived by using the 

wave nature of rotating electron (standing wave condition) in the relation (5). It should be 

noticed that the Lorentz factor   is independent of time according to the relation (17).  

 Finally, It is necessary to justify the accuracy of rotational and vibrational relations (1)-

(24) by demonstrating the energy conservation relation in the form 

)()( tEtEE rel

potential

rel

kinetic

rel

mechanical  ,                                                                                           (25) 

in which the relativistic mechanical energy rel

mechanicalE  must remain constant in all vibrational 

time t due to the conservative nature of the Coulomb force. The relativistic kinetic energy 

)(tErel

kinetic  is determined by substituting the relativistic linear momentum reltp  )(ˆ  from (24) 

into the general relation of relativistic kinetic energy (1). The relativistic potential energy 

)(tE rel

potential  is defined by the usual relativistic relation 22 )()(5.0 rel

rel

vibe txm   so that its 

numerical value is obtained by applying 
reltx  )(ˆ  from the solution (23) and implementing 

the relativistic frequency relation (6) in which n

rel

n

rel

vib   . The temporal variations of 

relativistic vibrational kinetic and potential energies )(tErel

kinetic  and )(tE rel

potential  are plotted in Fig. 

3 for the Hydrogen atom with the physical characteristic 1z , n=2, cmr rel 7

2 1032.1  , 
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scmv /1009.1 8

2  , Hzrel 15

0 1059.6  , Hzrel 14

2 1024.8  , and 0000067.1 . The 

sum of relativistic kinetic (red color) and potential (blue color) energies of the oscillating 

electron is always constant, as illustrated with black color. 

 

 

 

Fig. 3. The temporal variations of relativistic kinetic (red colour) and potential (blue colour) energies of oscillating 

electron are demonstrated for Hydrogen atom in the typical excited state n=2. The sum of these two energies gives 

the mechanical energy (black colour) with a constant value due to the conservative property of Coulomb force. 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

6 Conclusions 

The relativistic rotational and vibrational features of the oscillating electron over Bohr’s 

circular orbits have simultaneously been studied by using its wave-particle nature, relativistic 

vibrational Hamiltonian, and Heisenberg equation of motion. The wave-particle property has 

first been implemented to calculate the relativistic de Broglie wavelength rel

n , reduced radius 

rel

nr , and increased angular frequency rel

n  of rotating electron in the relations (4)-(6), 

respectively. The relativistic potential energy relV  is then gained by applying the reduced radius 

rel

nr  from (5) and the expansion of the Lorentz factor   from (17) into the Coulomb potential 

(7). The relativistic kinetic energy relT  has similarly been determined by substituting the 

relativistic linear momentum nerel vmp   into the general relativistic kinetic energy (1). The 

relativistic vibrational energy rel

vibE  will finally be specified as the sum of relativistic kinetic 

relT  and potential relV  energies in the relation (8). 

 The Heisenberg picture now begins by constructing the relativistic vibrational 

Hamiltonian (RVH) 
rel

vibĤ  similar to the nonrelativistic vibrational Hamiltonian vibĤ .[13] By 

applying the first-order RVH 
)1(ˆ

relH  (12) to the Heisenberg equation, the relation (16) was turned 

out for the normalized relativistic natural frequency 00 / ref
 associated with the lowest 

vibrational state 1n . Although the ratio 00 / ref
 is negligibly raised by increasing the atomic 

number z , but this increment becomes sensible for the elements with 20z , as illustrated in 

Fig. 1. Similar incremental behavior has exactly been reported for the linear entropy of HLAS 

in Fig. 4 of Refs [9] and [22], and for the relativistic to the nonrelativistic ratio of position and 

linear momentum of the oscillating electron in Fig. 1 of Ref [22]. It is here discussed how the 

relativistic behavior of these quantities can be interpreted according to the variations of the 

Lorentz factor   plotted in Fig. 2. 

 The second-order RVH 
)2(ˆ

relH  plays a different key role in determining the temporal 

variations of two important variables reltx  )(ˆ  and reltp  )(ˆ  as presented in the relations 

(23) and (24), respectively. These two variables have been implemented to investigate the 

accuracy of results by confirming the energy conservation relation (25). The sum of relativistic 

vibrational kinetic and potential energies )(tErel

kinetic  and )(tE rel

potential  is conserved in all oscillation 

time t, as illustrated in Fig. 3. 
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