REFERENCES
1. Helmann JD, Chamberlin MJJArob. Structure and function of bacterial sigma factors. 1988;57(1):839-872.
2. Helmann JDJBsr. Regulation by alternative sigma factors. 2010:31-43.
3. Gruber TM, Gross CAJARiM. Multiple sigma subunits and the partitioning of bacterial transcription space. 2003;57(1):441-466.
4. Paget MS, Helmann JDJGb. The σ 70 family of sigma factors. 2003;4(1):1-6.
5. Lonetto MA, Brown KL, Rudd KE, Buttner MJJPotNAoS. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. 1994;91(16):7573-7577.
6. Helmann JD. The extracytoplasmic function (ECF) sigma factors. 2002.
7. Butcher BG, Mascher T, Helmann JD. Environmental sensing and the role of extracytoplasmic function sigma factors. In: Bacterial Physiology. Springer; 2008:233-261.
8. Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher TJMm. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. 2009;74(3):557-581.
9. Mascher TJCoim. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. 2013;16(2):148-155.
10. Sineva E, Savkina M, Ades SEJCoim. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. 2017;36:128-137.
11. Ho TD, Ellermeier CDJCoim. Extra cytoplasmic function σ factor activation. 2012;15(2):182-188.
12. Pinto D, Liu Q, Mascher TJMm. ECF σ factors with regulatory extensions: the one‐component systems of the σ universe. 2019;112(2):399-409.
13. Wecke T, Halang P, Staroń A, Dufour YS, Donohue TJ, Mascher TJM. Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain. 2012;1(2):194-213.
14. Wu H, Liu Q, Casas‐Pastor D, Dürr F, Mascher T, Fritz GJMm. The role of C‐terminal extensions in controlling ECF σ factor activity in the widely conserved groups ECF41 and ECF42. 2019;112(2):498-514.
15. Mishra MN, Kumar S, Gupta N, Kaur S, Gupta A, Tripathi AKJM. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7. 2011;157(4):988-999.
16. Gupta N, Kumar S, Mishra MN, Tripathi AKJM. A constitutively expressed pair of rpoE2–chrR2 in Azospirillum brasilense Sp7 is required for survival under antibiotic and oxidative stress. 2013;159(Pt_2):205-218.
17. Rai AK, Dubey AP, Kumar S, et al. Carotenoid biosynthetic pathways are regulated by a network of multiple cascades of alternative sigma factors in Azospirillum brasilense Sp7. 2016;198(21):2955-2964.
18. Goutam K, Gupta AK, Gopal BJNar. The fused SnoaL_2 domain in the Mycobacterium tuberculosis sigma factor σJ modulates promoter recognition. 2017;45(16):9760-9772.
19. Dubey AP, Pandey P, Singh VS, et al. An ECF41 family σ factor controls motility and biogenesis of lateral flagella in Azospirillum brasilense Sp245. 2020;202(16):e00231-00220.
20. Goutam K, Gupta AK, Gopal BJACSFSBC. Crystallographic studies of the extracytoplasmic function σ factor σJ from Mycobacterium tuberculosis. 2015;71(8):946-950.
21. Zimmermann L, Stephens A, Nam S-Z, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. 2018;430(15):2237-2243.
22. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. 2004;25(13):1605-1612.
23. Hess B, Kutzner C, Van Der Spoel D, Lindahl EJJoct, computation. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. 2008;4(3):435-447.
24. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl EJJoct, computation. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. 2010;6(2):459-466.
25. MacKerell Jr AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. 1998;102(18):3586-3616.
26. Darden T, York D, Pedersen LJTJocp. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. 1993;98(12):10089-10092.
27. Hess B, Bekker H, Berendsen HJ, Fraaije JGJJocc. LINCS: a linear constraint solver for molecular simulations. 1997;18(12):1463-1472.
28. Bussi G, Donadio D, Parrinello MJTJocp. Canonical sampling through velocity rescaling. 2007;126(1):014101.
29. Parrinello M, Rahman AJJoAp. Polymorphic transitions in single crystals: A new molecular dynamics method. 1981;52(12):7182-7190.
30. Van Gunsteren WF, Berendsen HJJMS. A leap-frog algorithm for stochastic dynamics. 1988;1(3):173-185.
31. Humphrey W, Dalke A, Schulten KJJomg. VMD: visual molecular dynamics. 1996;14(1):33-38.
32. Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHJNs, biology m. Structural basis for− 10 promoter element melting by environmentally induced sigma factors. 2014;21(3):269-276.
33. Campbell EA, Muzzin O, Chlenov M, et al. Structure of the bacterial RNA polymerase promoter specificity σ subunit. 2002;9(3):527-539.
34. Lane WJ, Darst SAJPb. The structural basis for promoter− 35 element recognition by the group IV σ factors. 2006;4(9):e269.
35. Amadei A, Linssen AB, Berendsen HJJPS, Function,, Bioinformatics. Essential dynamics of proteins. 1993;17(4):412-425.
36. David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. In: Protein dynamics. Springer; 2014:193-226.