REFERENCES
1. Helmann JD, Chamberlin MJJArob. Structure and function of bacterial
sigma factors. 1988;57(1):839-872.
2. Helmann JDJBsr. Regulation by alternative sigma factors. 2010:31-43.
3. Gruber TM, Gross CAJARiM. Multiple sigma subunits and the
partitioning of bacterial transcription space. 2003;57(1):441-466.
4. Paget MS, Helmann JDJGb. The σ 70 family of sigma factors.
2003;4(1):1-6.
5. Lonetto MA, Brown KL, Rudd KE, Buttner MJJPotNAoS. Analysis of the
Streptomyces coelicolor sigE gene reveals the existence of a subfamily
of eubacterial RNA polymerase sigma factors involved in the regulation
of extracytoplasmic functions. 1994;91(16):7573-7577.
6. Helmann JD. The extracytoplasmic function (ECF) sigma factors. 2002.
7. Butcher BG, Mascher T, Helmann JD. Environmental sensing and the role
of extracytoplasmic function sigma factors. In: Bacterial
Physiology. Springer; 2008:233-261.
8. Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher TJMm.
The third pillar of bacterial signal transduction: classification of the
extracytoplasmic function (ECF) σ factor protein family.
2009;74(3):557-581.
9. Mascher TJCoim. Signaling diversity and evolution of extracytoplasmic
function (ECF) σ factors. 2013;16(2):148-155.
10. Sineva E, Savkina M, Ades SEJCoim. Themes and variations in gene
regulation by extracytoplasmic function (ECF) sigma factors.
2017;36:128-137.
11. Ho TD, Ellermeier CDJCoim. Extra cytoplasmic function σ factor
activation. 2012;15(2):182-188.
12. Pinto D, Liu Q, Mascher TJMm. ECF σ factors with regulatory
extensions: the one‐component systems of the σ universe.
2019;112(2):399-409.
13. Wecke T, Halang P, Staroń A, Dufour YS, Donohue TJ, Mascher TJM.
Extracytoplasmic function σ factors of the widely distributed group
ECF41 contain a fused regulatory domain. 2012;1(2):194-213.
14. Wu H, Liu Q, Casas‐Pastor D, Dürr F, Mascher T, Fritz GJMm. The role
of C‐terminal extensions in controlling ECF σ factor activity in the
widely conserved groups ECF41 and ECF42. 2019;112(2):498-514.
15. Mishra MN, Kumar S, Gupta N, Kaur S, Gupta A, Tripathi AKJM. An
extracytoplasmic function sigma factor cotranscribed with its cognate
anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue
in Azospirillum brasilense Sp7. 2011;157(4):988-999.
16. Gupta N, Kumar S, Mishra MN, Tripathi AKJM. A constitutively
expressed pair of rpoE2–chrR2 in Azospirillum brasilense Sp7 is
required for survival under antibiotic and oxidative stress.
2013;159(Pt_2):205-218.
17. Rai AK, Dubey AP, Kumar S, et al. Carotenoid biosynthetic pathways
are regulated by a network of multiple cascades of alternative sigma
factors in Azospirillum brasilense Sp7. 2016;198(21):2955-2964.
18. Goutam K, Gupta AK, Gopal BJNar. The fused SnoaL_2 domain in the
Mycobacterium tuberculosis sigma factor σJ modulates promoter
recognition. 2017;45(16):9760-9772.
19. Dubey AP, Pandey P, Singh VS, et al. An ECF41 family σ factor
controls motility and biogenesis of lateral flagella in Azospirillum
brasilense Sp245. 2020;202(16):e00231-00220.
20. Goutam K, Gupta AK, Gopal BJACSFSBC. Crystallographic studies of the
extracytoplasmic function σ factor σJ from Mycobacterium tuberculosis.
2015;71(8):946-950.
21. Zimmermann L, Stephens A, Nam S-Z, et al. A completely reimplemented
MPI bioinformatics toolkit with a new HHpred server at its core.
2018;430(15):2237-2243.
22. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a
visualization system for exploratory research and analysis.
2004;25(13):1605-1612.
23. Hess B, Kutzner C, Van Der Spoel D, Lindahl EJJoct, computation.
GROMACS 4: algorithms for highly efficient, load-balanced, and scalable
molecular simulation. 2008;4(3):435-447.
24. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl EJJoct,
computation. Implementation of the CHARMM force field in GROMACS:
analysis of protein stability effects from correction maps, virtual
interaction sites, and water models. 2010;6(2):459-466.
25. MacKerell Jr AD, Bashford D, Bellott M, et al. All-atom empirical
potential for molecular modeling and dynamics studies of proteins.
1998;102(18):3586-3616.
26. Darden T, York D, Pedersen LJTJocp. Particle mesh Ewald: An N⋅ log
(N) method for Ewald sums in large systems. 1993;98(12):10089-10092.
27. Hess B, Bekker H, Berendsen HJ, Fraaije JGJJocc. LINCS: a linear
constraint solver for molecular simulations. 1997;18(12):1463-1472.
28. Bussi G, Donadio D, Parrinello MJTJocp. Canonical sampling through
velocity rescaling. 2007;126(1):014101.
29. Parrinello M, Rahman AJJoAp. Polymorphic transitions in single
crystals: A new molecular dynamics method. 1981;52(12):7182-7190.
30. Van Gunsteren WF, Berendsen HJJMS. A leap-frog algorithm for
stochastic dynamics. 1988;1(3):173-185.
31. Humphrey W, Dalke A, Schulten KJJomg. VMD: visual molecular
dynamics. 1996;14(1):33-38.
32. Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHJNs, biology
m. Structural basis for− 10 promoter element melting by environmentally
induced sigma factors. 2014;21(3):269-276.
33. Campbell EA, Muzzin O, Chlenov M, et al. Structure of the bacterial
RNA polymerase promoter specificity σ subunit. 2002;9(3):527-539.
34. Lane WJ, Darst SAJPb. The structural basis for promoter− 35 element
recognition by the group IV σ factors. 2006;4(9):e269.
35. Amadei A, Linssen AB, Berendsen HJJPS, Function,, Bioinformatics.
Essential dynamics of proteins. 1993;17(4):412-425.
36. David CC, Jacobs DJ. Principal component analysis: a method for
determining the essential dynamics of proteins. In: Protein
dynamics. Springer; 2014:193-226.