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Abstract

This paper investigates the spatial behavior of the solutions of the double-diffusive Darcy
plane flow in a semi-infinite channel. Using the energy estimate method and the differential
inequality technology, a differential inequality about the solutions is derived. By solving this
differential inequality, it is proved that the solutions grow polynomially or decay exponentially
with spatial variable. In the case of decay, we obtain the upper bound for the total energy.
We also give some remarks to generalize the results of this paper.
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1 Introduction

The Darcy equations are often used to describe flow in a porous medium which have been
discussed in the books of Nield and Bejan [1], and Straughan [2]. Many scholars in the literature
have paid attention to the spatial attenuation of the Darcy equations on a semi-infinite cylinder.
Song [3] and Payne and Song [4] considered the fluid in porous media controlled by Darcy equations
in a semi-infinite cylinder. In another paper, Song [5] considered the time-dependent double-diffusive
convective Darcy flow in a semi-infinite channel and the Saint-Venant type decay of the solutions on
a is obtained. For more works, one can see [6-12]. However,these papers need to assume that the
solutions satisfy certain a priori assumptions at the infinity of the cylinder or the channel.

The classical Phragmén-Lindelof alternative theorem does not need such a priori assumption, but

proves that the solution either decays exponentially or increases exponentially with the distance from
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the finite end of the cylinder. In the past decades, the phragmén-lindel6f alternative research has
received a lot of attention (see [13-19]). These papers above always assumed that the generators of
the semi-infinite cylinder or the channel parallel to the coordinate axis.

In this paper, we define a new channel
R= {(a:l,xg)]ml >a,0 <zy < h(wl)},

where a is a positive constant and h(z;) is a smooth curve in the plane. Obviously, the generatrix
of R is no longer parallel to the coordinate axis. We investigate the time-dependent double-diffusive

Darcy flow of a fluid through a porous medium in R. The Darcy plane flow can be written as

Uy = —Pa + gaT + hoC, in R x (0,7),

)
Ua,a =0, in R x (0,7),
T +u T o = AT, in R x (0,7),

)

0iC +uaCo =ACH oAT, in R x (0,7),

where o = 1,2, uq,p, T, C represent velocity, pressure, temperature, and concentration of the flow.

Ja, ho are bounded functions. ¢ is a material positive constant. For simplicity, we assume g satisfies

In this paper, we also use the summation convention summed from 1 to 2, and a comma is used to
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indicate differentiation. e.g., uq guq g = ZZ 5=1 (%) .

The equations (1.1)-(1.4) also satisfy the following initial-boundary conditions

ui(x1,0,t) = ui(x1, h(x1),t) =0, 21 > a,0 <t < T, (1.5)

T(x1,0,t) = T(x1,h(x1),t) =0, 21 > a,0 <t < T, (1.6)

C(z1,0,t) = C(z1,h(x1),t) =0, 21 > a,0 <t < T, (1.7)

ui(a, o, t) = Fi(xa,t), 0 < x2 < h(a),0 <t < T, (1.8)

T(a,x2,t) = H(xa,t),C(a,xa,t) = H(za,t), 0 < 23 < h(a),0 < t < T, (1.9)
wi(z1,22,0) =0, T(z1,22,0) = C(x1,22,0) =0, (x1,22) € R, (1.10)

where F; and H are differentiable functions which are assumed to satisfy appropriate compatibility

conditions

We also introduce the notation:
R, = {(wl,mg)]ml >z>a,0< 29 < h(:cl)},
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L. = {(x1,xz)|x1 =z>a,0<1< h(z)},

where z is a running variable along the z; axis.

Different from paper [5], this paper studies the Phragmén-Lindelof type alternative theorem
of equations (1.1)-(1.10) on R. In the remarks, we consider four types of channel and on each
channel we proof that the solutions either grow exponentially (polynomially, logarithmical) or decay
exponentially (polynomially, logarithmical) as z — oo. Because our model contains nonlinear term
and pressure term that are difficult to deal with, how to set the energy function is the key. As
far as we know, there are few relevant results on the Phragmén-Lindel6f type alternative results of
such nonlinear equations. Therefore, the research of this paper is very meaningful and can provide

reference for the alternative research of other types of nonlinear equations.

2  Preliminary

In order to eliminate the pressure term, we introduce the stream function v(x1,x2,t) = (v1,v2)
satisfied

(uy,u2) = Vi,

where V+ = (0, —0s,). The equations (1.1)-(1.10) can be rewritten as

Av=-Vt.gT —g-V*T -Vt . hC—h-V*C,in R x (0,7), (2.1)
T +Vtv-VT = AT, in R x (0,7), (2.2)

9C +V+tv-VC = AC +0AT, in R x (0,7), (2.3)

v(z1,0,t) = v(x1, h(z1),t) =0, 21 > a,0 <t < T, (2.4)

vp(z1, h(x1),t) = vp (21, h(21),t) =0, 21 > a,0 <t < T, (2.5)
T(z1,0,t) = T(x1,h(x1),t) =0, 21 > a,0 <t < T, (2.6)
C(z1,0,t) = C(z1,h(x1),t) =0, 1 > a,0 <t < T, (2.7)

v(a, 9, t) = Fy (22, t) = /OI2 Fi(s,t)ds, 0 < x9 < h(a),0 <t < T, (2.8)
vi(a, 9, t) = Fy(xa,t) = —Fa(aa,1), 0 < 29 < h(a),0 < t < T, (2.9)
T(a,x2,t) = H(xa,t), C(a,x2,t) = H(za,t), 0 < 39 < h(a),0 <t < T, (2.10)
Vo(x1,22,0) =0, T(21,22,0) =0, (x1,22) € R, (2.11)

where v, is the outward normal derivative of v, g = (g1,92), h = (h1, h2).
Here are some lemmas that will be often used in this paper.

Lemma 1 [20,21] If w(z1,0) = w(z1,h) = 0,w,(x1,0) = wp(z1,h) = 0, then the following



Wirtinger type inequality holds
h2 9
/ ( ) dxo < — (11)712) dxs.
z LZ
Based on lemma 1, the following lemma can be obtained

Lemma 2 If w(z,0) = w(zy,h) =0, then

3 2h/h
[/ w4dx2} ’ < vh (w72)2dx2.

™ L,

Proof Since w(z1,0) = w(z1,h) =0, we have

T3 h
w2(:vl,x2) = 2/0 waacw(xl,C)dC = 2/ wgw(:vl,g“)dc

, OC
From (2.12) we have

w? (21, 22) <2/ ’w—w T1, %2 ’dl‘g
Therefore, we have
h ;
[/ w (ml,mg)d:cg ’ < Q\f/ ‘w—w x1, T2 ‘dacg
0
Using the Holder inequality, we obtain

[/Oh w4(:c1,x2)d:c2}§ < 2\/5[/0]1 w?dzs /Oh (88:2)2d$2:| %

Using lemma 1 in (2.13), we can obtain lemma 2.

(2.12)

(2.13)

To get the Phragmén-Lindeldf type alternative result of the solutions to the equations (1.1)-(1.10),

we first establish three energy functions

¢ t
Fi(z,t) = 51/ / 6_6nUU71d$2d77 + Bl/ / 6_6nng’Ud£L‘2d77
0 JL, 0 JL.

t
+51// e " hyCudzadn
0 z

= A; + Ay + As,

t 1 t
Faat)=fo [ [ e Taduady— 300 [ [ e o1 0sdnady
0 2 0 2

= By + By,

t 1 t
Fg(z,t):// 6_6770071611‘2(177—2// 6_67702’0’2(1332(177
0 2 0 z
t
—i—a// e_‘s"CT,ldchdn
0o JL.

=C1+ Cy + Cs,

where 1, 82,0 are arbitrary positive constants.

(2.14)

(2.15)

(2.16)



Let zg be a positive constant which satisfies z > 29 > 0. Using the divergence theorem, the

equations (2.1)-(2.11), we have

Fi(z,t) — Fi(20,t) = —51/ / / (VU4 d$2d§d77+51/ / ~OM gy Todradn
Le -
+ B / / e OhyCudaadn
0 z
t z t z
zﬁl/ / / e“’”vyaqadxgdidn—i—ﬁl/ / / ef“’”g‘vldeazgdfdn
0 Z0 Lg 0 Z0 Lg
t z
+ 5 / / / e “Mh - V+oCdxadédn. (2.17)
0 Le
Similar, we have
t z 1
FQ(Z,t) — FQ(Zo,t) = 62/ / / |:7(5T2 + T,aT,a] dxodEdn
0 Jzo JrLe L2
1 z
+ ﬁQe—wt/ / T2?dxode, (2.18)
2 z20 Dg

and
t z 1
Fy(z,) — Fy(z0,) = / / / [7502 +c,ac7a}dx2dgdn
0 Jzo JLg 2
1 z t z
+ —e !t / C?dazode + o / / / T o C odzodédn, (2.19)
2 20 JDe 0 Jzo JLe
We also define
F(z,t) = Fi(z,t) + Fa(z,t) + F3(z,t). (2.20)
Combining (2.17)-(2.20), we have
(z,t) / / 526T2+ 6C’2+ﬁ1vav + BT T+ CoC, }dﬂ?gd’ﬂ
+§e*wt / [@T%Cﬂd:gﬁa / / T o C odxadn
L,
t
+ B / / e “ig - VJ"UTd:Ean + B / / e “h . VL’UCd$2d77. (2.21)
0 2 0 z

Based on (2.20) and (2.21), we have the following lemma.

Lemma 3 For the function F'(z,t) defined in (2.20), the following differential inequality is satisfied

oF oF 3
IF(2,8)] < by [ha(z t)] + by [ha—(z t)} (2.22)
where by = max{l—l— ”25 + V?SB 1+ \ﬁ} by = 52\/\/%1.

Proof Using the Holder inequality and the Young inequality, we have

t 1 t 1 t
0/ / faqadl‘zdn‘ < 202/ / e T T odzodn + 2/ / e 10 C ndxadn. (2.23)
0 . 0 2 0 z



Similarly, we have

t t 1 t
‘61/ / e “lg - VL’UTCZZL‘an) < 61/ / e_w"T2d:1:2d7] + 4ﬁ1/ / e M qv odxadn, (2.24)
0 . 0 z 0 z
¢ ¢ 1 t
’51/ / e “lg - VLdexgdn) < 51/ / e_w"Cdegdn + 51/ / e M o odzadn. (2.25)
0o JL. 0o Jr. 4 Jo Jr.

Inserting (2.23)-(2.25) into (2.21) and choosing § > max{24;, 2 21 }, B2 > o2, we have

3

—th // ﬁ25T2+3602+ ~Bivava+ B2T To+5CaC. ]dmgdn

b Lemwt / [@T%Cﬂdm, (2.26)
2 L.
and
0 t 1 1 1 1 1
=+ F > T = T2 n 2 Py aV,a o TaTa o Y,aY,a
- (z,t)_/o /ze [4325 + 1007+ SR ava + 5T Ta + 5CaC ]d:c2dn
1
e / [@T%Cﬂd@. (2.27)

Using the Holder inequality, the Young inequality and lemma 1, we have

1

4] < By / / 2 iy / [ e d$2d77]
) 1
§f 1 // e “Nv2) dmgdn// dl‘gd’l’]}2

§ﬁ1// e M 40 o dxadn, (2.28)
2T 0 .

t t 1
b1 // e_w"z)degdn// e_‘“”Tzda:gdn]2

IN

| A

257r
h~/2 1
|As| < 5 51// e‘“"v’av’adwgdn—i-// e*w"féCdegdn}, (2.30)
57'(' 2 0 . 0 . 4

Inserting (2.28)-(2.30) into (2.14), we have

t
|F1(z,t)] < { m m // e“""lﬁw,av@dmdn

525
L 2B S e h\/ﬁ JE
5257T / / ﬂng dxodn + / / 50 dxodn). (2.31)

Using the Holder inequality, the Young inequality, lemma 1 and lemma 3, we have

1
| By S — B2 / / e “N(To 2d$2d77/ / d:@dn}
< ,32/ / e T T odxodn, (2.32)
) 1
|Ba| < B2 / / (v 2) dmdn/ / “’”T4daz2dn} :
2h\/ l
57r\ﬁ - 1/ /z e " qv odxadn 2/ /z 7“”7 62T T odxadn. (2.33)



Inserting (2.32) and (2.33) into (2.15), we obtain
h [t —on]
|F2(Z,t)’ S _ € n*BQTaT,aded'n

2h\/ 3 [ ]
57_‘_\/» /81/ /z av,oaderd?]} /0 /ze 552rarad$2dn. (234)

Similarly, we have

t t 1
\Cl\gh{// e_"m(C,g)2dx2dn// e_°”7(C’,l)gd:rgdn]2
mtJo JL. 0 JL.
h t
// e N0 o, C ndxadn, (2.35)
|Cs] < // "(v2) dargdn// W"C4dx2dn}

1
< ?Z‘? ﬁl / / Z av,admdn 2 / / Z eenk 5 CaCadmadn, (2.36)

Cg//ewncacadxd +//e“”7T2dxd. 2.37
i<tz [ ] ercaCotmans 22 [ cenpann. @a)

Inserting (2.35)-(2.37) into (2.16), we obtain

|F5(z,t)] < / / e - C C odxadn
2h\/ _ 1 1
wn wn
671_\/— 51/ /z Vala dxgdn] /0 /ze 207aC7adx2dn
—on 2
+ ——0 e T1)°dxodn. 2.38
WE/O/Z (L) dzadn 2.35)

Combining (2.20), (2.27), (2.31), (2.34) and (2.38), we obtain lemma 3.

3 Main result

Based on lemma 4, we can get the following theorem.
Theorem 3.1. Let (v,T,C) be a solution of the equations (2.1)-(2.11) in R, where h/(z) <
0, h > hg > 0, then for fixed t either

TIEEO{ ( /z h(lg) dg) B

/// —wn /325T2+3502+ Blvav - ﬂzT Ta+30 C, )dwzdédn
L

e / 0 /L 5 (B2 + €% dande] } = (3.1)



holds or

topoeo 1 1 1 1 1
/ / / e~ {fﬁgéTQ + =6C% + —B1v.0v.0 + =foTaT o + =C oC o | dradédn
o J: Jr 4 4 2 2 2

1 o0
N / / (8272 4 €] e
2 z L§
2 z 1 1 z 1
< bsQ%(a, t)e b Je O 4 b5Q(a, t)e Ps de WO (3.2)

holds, where 71, b5, bg are positive constants and Q(a,t) will be defined in (3.16).
Proof We consider (2.22) for two cases.
Case 1. 3 29 > a such that F(zp,t) > 0.
From (2.27) we know that %F(z,t) > 0. So, we have F(z,t) > F(zo,t) > 0, z > zp. Therefore,

(2.22) can be written as
OF F
< e —_ >
F(z,t) < by [h = (z,t)} + by [h - (z,t)} , 2> 2. (3.3)

Using the Young inequality, we have
OF OF 57, OF
hs 0] = [ ] [ )

< 2[/1817

<3 E(z,t)} +3 h—(z,t)} . (3.4)

Inserting (3.4) into (3.3), we have
oF
0z

where b3 = %bl, by = %bl + by. Therefore we have

2

Fat)+ g < b4[<h$(z,t)) + 7] , 2> 2. (3.5)

F(z,t) < b [h (z,t)]i + by [hif(z,t)} 22> 2,

From (3.5) it follows that

So, we have

1 1
2by 1—|—b3 . 4}
1 b ba |3 1 b ba |3
WEFGO+a = 3] [ RFEn + g - 5]
1 b2 b3 1
d[ ZF(zt 73—7}>f, > 3.6
\/64 (2 )+4bi 9%, = 1 Z 220 (3.6)

Integrating (3.6) from zp to z, we have

i [\/;F(Z’t) " fb%i B ;zij B [\/QF(zO,t) + i’é - 2’2]}




We drop the second and third terms at the left end of (3.7). In the first term of (3.7) we use the
following inequality

Va+b<a+Vb, a,b>0,

to have

1 3 =1 1 b2 b33
—F > [ ——d¢ - —F 3 _ 3|8
364[ by (z’t)} = /ZO h(()dc 31’3[\/1)4 (z0.6) + 32 2b4}

Therefore we have

171 by 1|1 B2 by 1-iy3
F(z,t)z{gm/zo h(c)dg—ﬁ[\/mnzo,t)ubi—m} } (3.8)

On the other hand, we integrate (2.13) from 2 to z to obtain

L 3 3 3 3 3
P =Feon) < [ [ [ eon[3aiT+ 3602 + Sawana + 5HTTa + 5CaCdradsr
Z0 13

b o

Combining (3.8) and (3.9), we can obtain (3.1).
Case II. V z > a such that F(z,t) <0, then we have from (2.22)

“F(2,1) < by [h%(z,t)} + by [h%f(z,t)} - (3.10)

Using the Young inequality again, we have

oF 3 oF 31, OF 25 1r, OF 11, OF 2
e Ol e L O B e ) B [ L O] R [ S I I G Y
Inserting (3.11) into (3.10), we have
OF OF 12
_F(2,t) < bs [hg(z,t)} + b [hg(z,t)}  2>a, (3.12)

where bs = by + %bQ, bg = %bg. It follows from (3.12) that

oF F(Z, t) bg b5
h—(z,t) > 4/ — — — —.
0z <Z’ ) B \/ be + 4[)% 2bg

So, we have

1 F(z,t) b2 b /2 1
—2bg—b dl /- +5 B [ gt a>a (313
{ o CF(zt) | bR b } {\/ be Abg 266} o P(Q) ¢ (3:13)

bs 462 2bg

Integrating (3.13) from 0 to z, we have

F(z,t) b F(0,t) b2
e || ———t 2 — [
0 [\/ Y \/ e 4b§}

F(Z, t) b% b5 F(a, t) b% b5
bsin [y S S P Y LI S X
+5”[\/ by b 2b6] sin| bs 4B 2bg
1

< —/a mdc. (3.14)




Dropping the first term on the left of (3.14), we have

F(z,t) b} bs /Z 1 F(a,t) b2
bsin |4 [— 25 o[ ¢+ 2 | — 25
5 n[\/ by A 2b6] <= w® T e PTE

F(a,t) bg b5
+b5l”[\/ bs | Ab? 2b6}'

Therefore, we obtain

F(z,t) b% g L ge by
— — < t bs Ja h(C) — 3.15
\/ b6 + 4[% = Q(av )6 5 + 2b6’ ( )
where
2bg F(at) , b2
F(a7t) b% bs b5 \/ b6 +4b§
Qla:?) [\/ bo b2 zbﬁ}e (3.16)

Squaring (3.15), we have

z

2 z 1 1 1
—F(z,1) < b6Q%(a,t)e s 2 HTU 1 b5 Q(a, t)e B S WO (3.17)

So, we have lim,_, [ — F(z, t)} = 0. Now, we integrating (2.27) from z to oo to obtain
bore 1 s 1.5 1 1 1
—F(z,t) > / / / e |:*,82(ST + —0C* + - B1v,aVa + T 0T o + fC’,aC,a] dxod€dn
o ). i 4 4 2 2 2

b e / h /L (877 + 0?) dr. (3.18)
2 JLe

Combining (3.17) and (3.18), we can obtain (3.2).

Remark 3.2. If h(z) = h is a positive constant, then

Z 1 1 Z 1 1
/ZO h(C)dC_h(Z_ZO)’/a mdﬁ:ﬁ(z_a)-

In this case, theorem 3.1 shows that the solutions of equations (2.1)-(2.11) grow polynomially or

decay exponentially as z — 0o, where the growth rate is at least as fast as 2°.

Remark 3.3. If h(z) satisfies

h(Z) < klle,O <mn< 1, k1 > 0, (319)
then
1 1 [* 1
Zde = — T = 21—7'1 _ Zl_Tl 7
/zOhC Ky ZOC ¢ k1(1—n)[ o
Z1 1
A= ——— Zl—n o al—Tl )
/Zo h C k‘l(l - 7'1)[ ]

In this case, theorem 3.1 shows that the solutions of equations (2.1)-(2.11) grow polynomially or
decay exponentially as z — co, where the growth rate is at least as fast as z31~7)_ Obviously, the

growth rate and decay rate are slightly slower than those in Remark 3.2.
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Remark 3.4. If ; =1 in (3.19), then
1 1 [*1 1
/ Sde = — —dC:—ln(i>,
20 h k1 20 ¢ ky Z0
1 1 z
Sd¢=—1In <7>
/20 h < /61 a
In this case, theorem 3.1 shows that the solutions of equations (2.1)-(2.11) grow logarithmic or decay
polynomially as z — oo, where the growth rate is at least as fast as (Inz)® and the decay rate is at

1
least as fast as z kibs.,

Remark 3.5. If h(z) satisfies

h(z) < kaz(Inz)™,0 <1 <1, ka >0, (3.20)
then
1 1 [~ 1 1
—d¢ = — —  ds=—"|(In2)'" — (Inzy)' ™™ ,
/ZO nd ko /)., C(In¢)™ (1 — 7o)k [( ) (In 20)

/: %dg B (1_172);@ {(1112)1‘72 — (In a)l—fz}_

In this case, theorem 3.1 shows that the solutions of equations (2.1)-(2.11) grow logarithmic or decay
exponentially as z — oo, where the growth rate is at least as fast as (In 2)3(1_T2) and the decay rate
—(lnz)1—72 )

is at least as fast as e

Remark 3.6. If 5 =1 in (3.20), then

© 1 L[~ 1 1 lnz
/zo h(C) C ko 2 Cln( s ko n(lnzo)’zo > max{a,e}7

o i ey _ (hw)-ké,
Ina

In this case, theorem 3.1 shows that the solutions of equations (2.1)-(2.11) grow logarithmic or decay
logarithmic as z — co. Obviously, the growth rate and decay rates are slower than those in Remark
3.2 to 3.5.

Remark 3.7. To make decay estimate explicit, we have to derive the upper bounds for —F(a, t).

We will derive the upper bound in the next section.

4  The upper bounds for the total energy

In the case of decay, we choose z = a in (3.18) to obtain
¢ 1 N | 1 1
—F(a,t) > / / €| $B0T% + 20C% 4 Brv v + 5 BT T + 5CaCa| duadgdn
0 R 4 4 2 b b 2 b b 2 9 9

n %e—wt /R [62T2 n 02] dode. (4.1)
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Also, in (2.14)-(2.16) and (2.21) we choose z = a to have

t t
—Fi(a,t) = —61/ / 676nvv71d{£2dn — 51/ / 675nggT1)dx2d77
0 a 0 a

t
—51// e*‘s”th'vdxgdn, (4.2)
0 a
t 1 t
—Fy(a,t) = —f / / e*‘s”TTJdaczdn+762 / / e~ T2 odxodn (4.3)
—F3(a,t) / / e~ MCC ydxadn + = / / e~MC?y ydxadn
—0/ / e~ MCT dxadn, (4.4)
0 z
and
—F(a,t) = —Fi(a,t) — Fy(a,t) — F3(a,t). (4.5)

Now we introduce three auxiliary functions
P (7 e ~ oF, _ o7
Stay, @, 1) = {FI(T’t) + (21— a) | Fa(T,t) + o1 F (7, 1) — %(T,t)i} }6—01@1—@)7
(97' 8;51
F(l‘l, -:Uz’ t) — H(:Ul, x2’ t)e—o'g(xl—a)7

C(l‘l, 9, t) = H(.Tfl? T, t)e—dg(xl—a),

where 01,09, 03 are positive arbitrary constants and

Obviously, S,T',C have the same boundary conditions to v, T, C, respectively. Therefore, (4.2)-(4.4)

can be written as

¢ t
—Fi(a,t) = 51/ / 6_5”Svyld:v2dn — ﬁl/ / 6_57792F5d:c2d77
0 a 0 a

t
— B / / e hyCSdxadn, (4.6)
0 a
t 1 t

—Fy(a,t) = —fo / / e_‘snFTdegdn—l—fﬁg / / e~ 2y ydaadn (4.7)
—F3(a,t) / / 5”C01dx2d77+ / / 5"C2v2d:r2dn

—0’/ / e~ CT 1 dxadn. (4.8)

0 z

Using the divergence theorem, equation (2.1)-(2.11), the Holder inequality and the Young in-
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equality, we can get

—F1 a, t = —,81/ / SU dl‘gdfdn ,31/ / QFSd{EQdT]
- B / / e hoCSdxadn
0 a

t t

261/ /eénS,avﬂdxgdfdn—i-&/ /eéng-VLSdezdfdn
0 JR 0 JR
t

+ b1 / / e h - V1 SCdzydedn

S% // "vav dx2d§d77+51// 75’75 S adxodEdn

1
+25261/ /65”T2dx2d£dn+2ﬂl/ /eéns,asﬂdxzdfdn
0o JR €2 0o JR

1 t 1 t
—i—agﬁl/ /66n02d$2d§d7]+51/ /e‘”’SﬂSvad:ﬁgdﬁdn, (4.9)
2 0o JR 2¢e3 Jo Jr

where €1, €9, €3 are positive constants to be determined later. For Fy(z,t), we have

t 1 t
—Fy(a,t) = —ﬁ2/ / 6_6nrf1dw2d77+2ﬁ2/ / e~ 2y ydaadn
0 a 0 a
t t
= B / / e N IT ) adradedn — Bo / / e VT - V4o adaaddn
0 JR 0 JR
¢ 1
— By / / e—énr,aradxgdgdnJriﬁQe—“ / [ TdzodE
0 JR R
t t
— B / / e, Tdxodédn + Bo / / e~V - VTdaodédn
0 JR 0 JR
t
— B / / e VT - V4iwdaadedn
0 JR
1 t
< S faes / / T dxgdgdnJr—ﬂQ / / e T T odaodedn
1
4

1
+ Ze5B0e° / T2dxodé + — Bre™ % / 2daqde
R 455

1 t
+ 52602 / / 5"T2dx2d§dn+—,82 / / ~O2 dadédn
0

1
+E7BQFM/ /e_anfafadmgdﬁdn—i—BgFM/ /6_57]U7avyad$2d£d’l’]
2 0o JR 2e7 0 JR

1 ¢ 1 [t
+ 5852/ / 6_5nv7avyad$2d€d’l’]—|—52/ / 6_5’7]FVF|2dx2d£d77, (4.10)
2 0o JR 2es Jo Jr

where I'yy = maxgy(o- 1 g;(i = 4,5,6,7,8) are positive constants to be determined later. Similar
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0 (4.10) we have

1 t 1/t
—Fy(a,t) < 5o / / e*‘s"C,aC,adxgdﬁdn—i—— / / e~C o C o dxodédn
0 JR

1
+ 46106 5t/ CdeQdf—Fﬂge_&/ Cde2d§

1
+ —en / / e~ MC2dzodEdn + — / / 5’7r2d:c2d5dn
2 0o JR 2e11

1 t
+2512CM// 5"0 C dx2d§d77+CM// 5’7vav adzodtdn
0

2e12

1 t
+ ~€13 / / My qv dxzdgdwr— / / e eV C | dzadedn
2 0 2813

1 t
+ 5e10 / / e T\ Ty d:cgd&dn~|—2—a / / e™1C oC dxodédn, (4.11)
0 €14

where Cpy = maxgy o, C, ei(i =9,10,11,12,13,14) are positive constants to be determined later.

Next, we choose ¢;(i = 1,2, 3, ..., 14) small enough and § large enough such that

1 1 1 1 1 1
€1 + 7/32FM + *58/82 + — + 5613 < 551,
1
26251 + 6652 < 8525 6454 + 2611CM < 5
1
26251 + 6752FM + 6140 < 52,
<1 1 n 1 1
€5,€10 < 1, 580+ 5e12 < 7

Inserting (4.9)-(4.11) into (4.5) and recalling (4.1), we have

~F(a,t) < o[~ Fla,)] + 5o, (1.12)

where

r(t) = [ Bt 1 / / eS8 oS qdodEdn

5

+—ﬁz / / e T, dx2d§d77+—526 ot / 2dzode

864

+ L / / 5"r2dx2d£dn+ﬁz— / / eIV 2 dadédn

466

+ / / e=C ,C, dxgdﬁdn+—ﬁge ot / C2dzode
9

/ / 5”F2d:c2d£dn+— / / e~ M|CVC|2daodEdn
4511 deq3

+—a / / e~MC o C odzodEdn.
4eqy

From (4.12) we obtain

—Fl(a,t) < r(t). (4.13)
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Combining (4.1) and (4.13), we obtain the following theorem.
Theorem 4.1 Assume that (v, T) are solutions of (2.1)-(2.11). If F(z,t) < 0 for any z > a, then

t 1 1 1 1 1
/ / e N [7625T2 + 2607 + 01000 + =BT T o + =C oC o |dxodEdn
O R 4 4 2 b 9 2 9 9 2 bl bl
1
+ 6_“’t/ [ﬁsz + 02} dxad§
2 R

<r(t). (4.14)

5 Conclusion

In this paper, the Darcy equations (1.1)-(1.3) are reconsidered in a semi-infinite cylinder and the
Phragmén-Lindelof alternative result is obtained. However, there are still some deeper problems to
be studied in this paper. We note that Quintanilla [14] considered the spatial selectivity of solutions
of several kinds of partial differential equations with radius defined in the outer region of the sphere,

in which the so-called outer region of the sphere is
0= {(.%'1,.%’2,.2?3)’.1’% + x% + ZC?}, > R(Q),RQ > 0}.

Li et al. [18,22] studied the selectivity of the wave equation in the region 2, and obtained the rapid
attenuation rate and growth rate. However, this type of research has not received sufficient attention.
Therefore, it will be a meaningful topic to study the spatial properties of solutions of Dacry equations

on ).
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