
Stochastic parcel tracking in an Euler-Lagrange
compartment model for fast simulation of fermentation

processes

Cees Haringa1,∗, Wenjun Tang1,2, Henk J. Noorman1,2

Abstract

Compartment modeling (CM) [1, 2, 3] is a well-known approach for compu-

tationally affordable, spatially-resolved hydrodynamic modeling of unit oper-

ations. Recent implementations use flow profiles based on CFD simulations

[4, 5, 6], and several authors included microbial kinetics to simulate gradients

in bioreactors [7, 8, 9, 10]. However, these studies relied on black-box kinetics,

that do not account for intra-cellular changes and cell population dynamics in

response to heterogeneous environments. In this paper, we report the implemen-

tation of a Lagrangian reaction model, where the microbial phase is tracked as a

set of biomass-parcels, each linked with an intra-cellular composition vector and

a structured reaction model describing their intra-cellular response to extracellu-

lar variations. A stochastic parcel tracking approach [11] is adopted, in contrast

to the resolved trajectories used in prior CFD implementations [12, 13, 14]. A

penicillin production process is used as a case-study [15]. We show good per-

formance of the model compared to full CFD simulations, both regarding the

extra-cellular gradients [14] and intra-cellular pool response [16], provided the

mixing time in the CM matches the full CFD simulation; taking into account

that the mixing time is sensitive to the number of compartments. The sensitiv-

ity of the model output towards some of the inputs is explored. The coarsest
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representative CM requires a few minutes to solve 80 hours of flow time, com-

pared to approx. 2 weeks for a full Euler-Lagrange CFD simulation of the same

case [16]. This alleviates one of the major bottlenecks for the application of such

CFD simulations towards analysis and optimization of industrial fermentation

processes.

Keywords: CFD, Compartment model, Euler-Lagrange, Fermentation,

Metabolic modeling

Abbreviations1

CFD Computational Fluid Dynamics2

CRD Computational Reaction Dynamics3

CM Compartment Model4

EL Euler-Lagrange5

PBM Population Balance Model6

RTD Residence Time Distribution7

SD Scale-Down8

STR Stirred Tank Reactor9

UDM User Defined Memory10

UDF User Defined Function11
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Roman Units Description

A m2 Area (general)

Cs mol/kg Substrate concentration

Cext mol/kg Generic extracellular concentration

Cint mol/gdw Generic intra-cellular concentration

Cx g/kg Biomass concentration (compartment)

Cx,p g/parcel Biomass concentration (parcel)

F kg/s Feed rate (general)

Fs mol/s Substrate feed rate (general)

Ks mol/kg Affinity constant for substrate

Ns mol Substrate amount

Nc − Total number compartments

Nax − Axial compartments

Nr − Radial compartments

Nθ − Tangential compartments

Np − Total number parcels

Nliq − Number of liquid phase species

Npool − Number of intra-cellular species

Pjump − Probability parcel p leaves compartment

n

Pdest,i − Probability parcel p enters compartment

i

qp molp/Cmolx/h Specific production rate of product

qs mols/Cgdw/s Specific uptake rate of substrate

qs,max mols/Cgdw/s Max. Specific uptake rate of substrate

Qjump − jump quantifier

rp µmol/gdw/h Reaction rate, parcel-based

Rs mol/s Reaction rate of s, compartment-based

S − Stoichiometric matrix

t s Time (general)

∆tmax s Maximum timestep size

V m3 Tank volume

Vn m3 compartment volume

VT m3 Total volume (general)

Xp µmol/gdw Intra-cellular pool
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Greek Units Description

ρ kg/m3 Density

µ h−1 Growth rate

Φ m3/s−1 Flow matrix

φn m3/s−1 Flow out of compartment n

φni m3/s−1 Flow from n to i

ψ − Uniform random number

τ95 s Mixing time

τcirc s Circulation timescale

τrxn s Uptake timescale of substrate

τrun s Simulation runtime

τn s Residence time, compartment n

φij kg/s Flowrate from compartment i to j
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1. Introduction16

Assessing the impact of environmental heterogeneity in industrial fermen-17

tation processes is a challenging aspect of process development. Due to the18

disparity between timescales of nutrient uptake and of mixing, nutrient gra-19

dients may exist in production fermentors [1, 17] which may impact process20

performance [17, 18]. The poor predictability of this impact poses a scale-up21

risk, and may lead to under-performance of industrial fermentation processes22

compared to their lab-scale counterparts. As cells perceive heterogeneous en-23

vironments in the form of temporal fluctuations, experimental studies rely on24

’scale-down simulators’ that impose temporal fluctuations from the perspective25

of the cell [19, 20, 21]. Ideally, such scale-down studies represent the (expected)26

large-scale environment, but quantifying this environment is not trivial for ex-27

isting fermentors, let alone conceptual designs.28

Due to limitations in experimental assessment in production fermentors,29

quantification of the large-scale environment generally relies on simulations,30

combining Computational Fluid Dynamics (CFD) with ’Computational Reac-31

tion Dynamics’ (CRD). To incorporate adaptation of the microbes to fluctuating32

conditions, population balances [22, 23, 24] or agent-based (Lagrangian) reac-33

tion models are used [12, 13, 16], where the biomass is discretized into ’biological34

parcels’ (parcels). But while CFD allows fermentor hydrodynamics to be stud-35

ied in great detail, the computational burden constrains use of combined CFD-36

CRD. Even with considerable simplifications such as a frozen flowfield, days to37

weeks of computation time may be required to study a fed-batch process [16].38

Compartment models (CM) form an interesting middle-ground between ideal39

reactor models and full CFD. Originally these models were based on experimen-40

tal data [1, 3], nowadays CFD is typically used to compute inter-compartment41

flows [4, 5, 6]. Combined with black-box kinetics [7, 8, 9, 10, 25], such models42

provide information on large-scale gradients in seconds. However, black-box ki-43

netics rely on the assumption of instantaneous equilibrium between intra- and44

extra-cellular conditions, which is questionable. As with full CFD, more realis-45
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tic reaction dynamics can be incorporating via population balances [24, 26] or46

agent-based models. While a methodology for parcel tracking in compartment47

models has been published previously [11], biological kinetics were not included.48

Hence, in this work we study the implementation of agent-based CRD in a com-49

partment model. We focus on the technical implementation and benchmarking50

of the outcome against full-CFD simulations. Whilst a considerable reduction51

in computation time is already evident in the current implementation, further52

optimization in order to minimize the computation time is a subject for further53

study.54

2. Compartment model setup55

Penicillin production in a 54m3 stirred fermentor is used as a case study;56

The CFD simulations underlying the compartment model have been described57

in prior work [14, 16]. Compartments are generated using a homogeneous58

cylindrical grid,[6]. In the rest of this work, the used grid is indicated as59

A[Nax]R[Nr]T [Nθ], with Nax, Nr, Nθ indicating the number of compartments60

in the respective dimensions. Conceptually, the methods described here are61

equally applicable to gradient-based compartment layouts [4, 5, 9]. Compart-62

ment generation is conducted in ANSYS FLUENT via a User Defined Function63

(UDF), which assigns a compartment number to each gridcell, sums the cell vol-64

umes within each compartment to acquire the compartment volumes, and loops65

over all faces on compartment interfaces to determine the inter-compartment66

flowrates (convective and turbulent), using the same formulation as Delafosse67

et al. [6]. The data is exported in text files. We opt for this UDF-based68

approach because it provides excellent closure of the compartment mass bal-69

ances. The text files containing compartment data are imported into Julia v1.570

(https://julialang.org/), which was used for all CM-CRD calculations. The71

package differentialequations.jl [27] is used to solve the system of ODEs describ-72

ing the species balances of intra- and extra-cellular components. The current73

model implementation considers the liquid phase and the parcel phase, resulting74
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in a set of Ntot = Nc ·Nliq+Np ·Npool equations, with the first term representing75

the liquid phase balances, and the second term the intra-cellular pool balances76

for each parcel. In this work we focus solely on glucose as a substrate (Nliq = 1).77

2.1. Reaction calculations78

Using agent-based model with structured, multi-pool kinetics, the reaction79

kinetics are calculated for each individual parcel. The rates rp may be a function80

of both the extra-cellular concentration Cs,n in compartment n (where the parcel81

resides) and intra-cellular pools Xp. The differentials for intra-cellular pools are82

then determined by multiplication with the stoichiometric matrix S83

dXp = S · rp − µ ·Xp [µmol/gx/h] (1)

Where the term µ ·Xp represents pool dilution due to growth. For extra-84

cellular species S, the differential equations for the liquid mass balance (in moles)85

read:86

dNS = Φ · (Nc/Vc) + Fs −Rs [mol/s] (2)

With Φ the inter-compartment flux matrix (consisting of convective plus87

turbulent flow), Vc a compartment volume vector, Fs a feed vector (in mol/s)88

and Rs the uptake vector. This vector represents the coupling between cell and89

environment: first the consumption rate is computed for each individual parcel;90

uptake from a compartment n is the sum of consumption rates for the parcels91

residing in n:92

Rs,n = Σp → n(qs,p ·Cx,p) [mol/s] (3)

where qs,p is the consumption rate in the metabolic model and Cx,p the93

quantity of biomass associated with a parcel. The set of differential equations is94

solved with the Bogacki-Shampine 3/2 method [28] as it provides a good balance95
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between accuracy and speed (Appendix B). However, we note the best solver96

may vary depending on the problem size and stiffness.97

2.2. parcel position updating98

In contrast to Delafosse and Delvigne [11], who pre-compute the position99

vectors for each parcel, we compute positional updates within the ODE-update100

function. There is a benefit in terms of memory usage, as only the current101

position is stored, but the need to update positions every timestep introduces102

a small performance penalty. In future work, we may consider the compar-103

ative performance of these methods. Parcel transport consists of two steps:104

1) determining whether a parcel p leaves compartment n, and 2) determining105

the destination compartment i in case it does (most compartments have mul-106

tiple neighbors). The first is determined by the compartment residence time:107

τn = Vn/Σφn, where Σφn is the sum of all flowrates leaving n, convective and108

turbulent. The probability of parcel p leaving n in timespan ∆t hence equals109

Pjump(p, n) = 1− exp(−∆t/τn). For step (2), the relative probability for jump-110

ing to compartment i is Pdest,i = φni/Σφn, with φni the flowrate from n to111

i (convective plus turbulent). Practically, the two steps can be combined by112

introducing a ”jump quantifier” Qjump as highlighted in pseudocode-algorithm113

1; if Qjump is negative, the parcel stays in place. If it is positive, Qjump ranges114

from 0 to 1 and can be used to determine the destination compartment.115

Algorithm .1: Pseudocode describing the ump determination algorithm used in the CM model.
116

1 ψ = rand(1) #draw uniform random number between 0 and 1117

2 Qjump =
Pjump(p,n)−ψ
Pjump(p,n)

# jump qu an t i f i e r118

3 i f Qjump =< 0 not jumping119

4 e l s e Qjump > 0 jump , determine d e s t i n a t i on120

5 i f Pdest,1 >= Qjump jump to 1 s t neighbour121

6 e l s e i f (Pdest,1 + Pdest,2) >= Qjump jump to 2nd neighbour122

7 e l s e i f (Pdest,1 + Pdest,2 + ...+ Pdest,m) >= Qjump jump to mth neighbour123
124

We verified the implementation by confirming that the mixing time mea-125

sured from particulate distribution equalled that of using an Eulerian tracer126

(see Appendix A).127
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2.3. Modeling steps128

The compartment model was developed and evaluated in four steps:129

• Step I: Flow implementation and mixing behavior130

• Step II: Implementation of (black box) Monod kinetics131

• Step III: Implementation of structured kinetics - chemostat132

• Step IV: Implementation of structured kinetics - fed batch133

For each step, the results are compared with prior CFD simulations [14, 16].134

Besides these steps, a sensitivity study towards the accuracy in the prediction of135

the penicillin production rate (qp) and the computation time is done, where the136

impact of several factors is studied: Nc, Np, max. timestep size ∆tmax, inte-137

grator relative tolerance and integration algorithm. For brevity, the sensitivity138

study is reported in Appendix B. We use a case with 26 axial, 6 radial and139

no tangential divisions (A26R6T1) as a base case compartment layout. Unless140

otherwise mentioned, Np = 1000, an integrator RelTol of 0.001 is used, and141

∆tmax = 0.03.142

3. Results and discussion143

3.1. I: Flow and Mixing144

We first confirm the capability of the CM to reproduce mixing from the Eu-145

lerian perspective. Here, the mixing time is monitored at a single probe point,146

equal to the CFD simulations [14]; mixing curves for selected cases are visual-147

ized in fig 1. A; the 95 % mixing time is visualized in fig 1. B. In line with148

Delafosse et al. [6], τ95 matches the CFD simulations well for a large number of149

compartments Nc. But, ideally we want to compute with Nc as small as possi-150

ble, to minimize computational demand. In the low Nc-range, a broad scatter151

in τ95 is observed: few radial compartments Nr result in an over-estimation of152

τ95 (due to under-resolving the re-circulation), while few axial compartments153
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Nax leads to under-estimation of τ95 (due to under-resolving axial mixing re-154

sistance [29, 30]). Properly balancing Nr and Nax can lead to a good solution155

in terms of mixing time. Keep in mind that this solution cannot be considered156

’grid-independent’ as it is acquired by balancing out errors, but provided the157

prediction of the magnitude of the gradient, and subsequent metabolic calcula-158

tions, are not impacted by the low Nc, this approach may provide a pragmatic,159

computationally manageable model of bioreactor heterogeneity. We further ex-160

plore this in section 3.3. Overall we conclude the mixing features observed in161

the full CFD simulation are well represented in the CM model, provided NC is162

chosen appropriately (or set large enough). A more elaborate Eulerian mixing163

verification, including comparison to lab-scale mixing data [31], is presented in164

Appendix A.165

Next, to verify the Lagrangian implementation, the parcel mixing time is166

registered with Np = 103 − 106 in the base case compartment layout. Mixing167

in the full domain is monitored with the coefficient of mixing (CoM) (eq. 4)168

[32]. Figure 1, C compares the tracer-based and parcel-based mixing curves169

and reveals excellent agreement for Np set suffciently large. For lower Np,170

statistical fluctuations in the local parcel concentration prohibit the threshold171

for 95 % mixing from being reached, but this is not necessarily problematic:172

provided fluctuations are fast compared to the reaction timescale (τrxn), these173

fluctuations do not propagate (significantly) in the reaction model. Importantly,174

no systematic offset is observed between the mixing dynamics in the Lagrangian175

and Eulerian perspective. In Appendix A we show some offset is observed176

if large timesteps are taken, as a large ∆t introduces a bias towards longer177

residence times in the parcel-jump algorithm. However, we found that once178

kinetics are involved, adaptive timestepping keeps ∆t sufficiently small to avoid179

such effects (Appendix B).180

CoM(t) =

√√√√√
Σn(

Cn,t−C
C

)2∆Vn

Σn∆Vn

 (4)
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3.2. II: Monod kinetics181

Black-box Monod kinetics (qs = qs,max · (Cs/(Ks + Cs)), with qs,max =182

4.444 · 10−7 mol/gdw/s and Ks = 7.8 µmol/kg) were implemented in both an183

Eulerian and Lagrangian framework, to verify the predicted substrate gradient184

with respect to the CFD simulation reported in prior work [14]. A constant glu-185

cose feed of 1.23 g/m3/s is added at the feed location (y = 7.4 m, r = 0.75 m).186

The biomass concentration is Cx = 55 gdw/kg; in the Lagrangian implementa-187

tion, this translates to Cx,p = Cx · (VT · ρl)/Np gram biomass per parcel, with VT188

the total reactor volume. To facilitate comparison, the excess/limitation/star-189

vation regime definition [14] is used to visualize the gradient. Figure 2 compares190

the observed regime division for various compartment layouts, comparing the191

Eulerian and Lagrangian formulation for reaction coupling, with the full CFD192

simulation. As mentioned above, the finite Np will cause some fluctuations in193

local biomass concentration, which in turn induce spurious substrate concentra-194

tion fluctuations, and hence regime fluctuations. The Lagrangian regimes are195

hence averaged over 1800 s (ca. 30 mixing times). The regime distribution is196

reproduced to a satisfactory degree, although the size of the excess and limita-197

tion regimes is generally somewhat over-estimated in the CM (note that in all198

selected compartment layouts, τ95 was approximately but not exactly matched199

with CFD).200

The spurious oscillations in local substrate concentrations due to the finite201

Np are visualized in fig. 3 at three spatial locations; lower Np naturally results202

in stronger oscillations. A consistent, positive offset in Cs can be observed,203

which is more pronounced at low Np. In brief, this offset is caused by clip-204

ping of the reaction terms in case uptake exceeds availability (it is addressed in205

more detail in [33] in the CD context). This offset explains why, in fig. 2 and206

quantitatively noted in table 1, the starvation zone is somewhat smaller for all207

Lagrangian cases. A higher Np will reduce the offset, but at cost of increased208

computation time. Whether these spurious oscillations translate into the intra-209

cellular response depends on the timescales involved; in case the timescale of210

11



artificial extra-cellular oscillations matches the timescales related to the related211

intra-cellular pools, artificial intra-cellular oscillations may be observed, which212

could result in erroneous results (e.g. if there are irreversible or hysteresis effects213

in the metabolic model). In the current implementation, some intra-cellular os-214

cillations in pool Xgly are observed (especially with low Np), however, these215

oscillations do not lead to consistent offsets, and the oscillations do not substan-216

tially propagate to other intra-cellular pools due to their much longer turnover217

times.218

3.3. III: Structured kinetics: chemostat219

The 9 − pool model for penicillin production [34] was implemented to study220

the performance with structured kinetics. We replicate the ”TU-A” CFD sim-221

ulation of our prior CFD work [16]: 80 h of flow-time are simulated to establish222

a steady-state in intra-cellular pools, the concentration of glucose transporters223

is fixed in chemostat mode to achieve qs,max = 1.13 · 10−3 mol/gdw/h, and224

Ks = 9.8µmol/kg. The base-case (A26R6T1) simulation is compared with the225

CFD results in fig. 4, with Np = 1000. Data was stored every 3600 s to min-226

imize time spent on data writing, and averaged over all parcels. The results227

match very well between CFD and CM, which shows the successful integration228

of agent-based structured kinetics in the compartment model framework. In ta-229

ble 2, results are shown for several other compartment realizations with similar230

τ95, which reveals qp is well estimated even with low Nc and Np. The advantage231

of using the CM over CFD is striking: while full CFD required around 1 day of232

computation per hour of flow time (with frozen flow, ∆t = 0.03 and Np = 2500),233

the CM required slightly more than an hour to run 80 hours of flow time with234

Np = 1000, and less than 2 min for the coarsest realization. A wide range of235

cases, and sensitivity to various settings, is analyzed in Appendix B. Natu-236

rally, the numbers will be dependent on the model complexity: while low Np237

facilitates a fast runtime, it is not suitable to study the potential emergence of238

population heterogeneity; a larger Np is required to model the population dis-239

tribution, with due computational cost. Another application of the CM-CRD240
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approach may be lifeline-based downscaling; figure 5 shows parcel lifelines from241

the above-mentioned cases. While the lower resolution removes rapid turbulent242

fluctuations, these lifelines clearly reflect the major fluctuations observed in full-243

CFD simulations [14]. As such, these lifelines can be analyzed for downscaling244

purposes analogous with the approaches discussed in earlier work [14, 35].245

3.4. IV: Structured kinetics: fed-batch246

To conclude, we compare the compartment model with the fed-batch simula-247

tion reported in prior work [16]. In the current implementation, we are subject248

to the same simplifications as the original CFD, particularly the assumption of a249

constant volume. In future work, this limitation may be lifted, e.g. by stepwise250

updating of the compartment volumes, as recently reported by Nadal-Rey et251

al. [25]. In contrast to the chemostat simulations in sec. 3.3, the amount of252

biomass per parcel Cx,p and the glucose transporter concentration X11 are now253

dynamic pools. Figure 6 shows the comparison between the CFD simulation,254

the CM base-case in fed-batch mode, and a very low resolution case (A18R2,255

NP = 36, ∆tmax = 0.03 s). In addition, ideally mixed realizations with a black-256

box model [16] and the 9-pool model are added. Fig. 6 A provides the imposed257

feed profile, which is corrected for the constant volume assumption that has258

been applied in the current CM as well as the previous CFD simulation. Fig. 6259

B shows the mean biomass concentration, computed as Cx = Σ(Cx,p)/(ρlVT ).260

The profiles from both CM simulations very tightly follow the CFD result; due261

to the stochasticity induced by the low number of parcels, the growth rate (fig.262

6 C) is more strongly oscillating in the CM simulations. Fig. 6 D shows the263

qp is in very good agreement with the CFD simulations, too. If we consider264

the intra-cellular pools (fig. 6 E), we see equally good agreement between the265

CM and CFD simulations, with only minor offsets in mean pool size and the266

standard deviation, the latter being representative of population heterogeneity.267

The emergence of population heterogeneity in the base case CM is further visu-268

alized in figure 6 F. This figure shows the distribution of the amino acid pool,269

glucose transporter pool and penicillin producing enzyme pool. As in fig. 6270
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E, we observe excellent qualitative agreement with a minor quantitative offset271

compared to the full CFD simulations. As for the previous full-CFD approach,272

the CM approach is capable of making predictions regarding the emergence273

of population heterogeneity, although we must stress (as in our previous work274

[16]) that the predictions regarding population heterogeneity have not been ex-275

perimentally verified. At this point, they mostly serve to present hypotheses276

for experimental follow-up. We think such experimental follow-up, as well as277

the development of cell models explicitly designed to model (experimentally ob-278

served) population heterogeneity, presents a very interesting avenue for further279

work.280

In previous work, we compared the CFD model with the ideally-mixed model281

with black-box kinetics. Currently, we also included a single-compartment (ide-282

ally mixed) realization of the 9-pool model, to indicate how much of the qp-283

reduction results from spatial heterogeneity, and how much from the impact284

of low growth rates. Figure 6 D indicates the low growth rate substantially285

contributes to productivity loss, more so than in the black box model (prospec-286

tively due to the reducing XE11, the glucose transporter pool, in the 9-pool287

model). While the qp is still somewhat over-estimated compared to plant data,288

the conceptually simpler and faster-solving ideally mixed implementation may289

suffice for initial screening purposes. The CM-CRD model may then be utilized290

to produce a more accurate quantitative prediction, accounting for the produc-291

tivity losses due to spatial heterogeneity, in a computation time that is vastly292

superior to the full CFD simulation.293

4. Conclusions294

In this work, we report a compartment model using stochastic parcels to rep-295

resent the biotic phase, akin to Lagrangian tracking in CFD simulations. The296

introduction of a particulate phase allows the coupling of structured metabolic297

models, considering the microbial response in multiple intra-cellular pools. In298

addition, the fluctuations in extra-cellular conditions experienced by microbes299
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can be monitored in these compartment models, which, like their CFD coun-300

terparts, can be used in the design of scale-down simulators [35]. The use of301

compartment models for such studies provides a strong computational gain over302

full-CFD models; even with many simplifications and frozen flow, an Euler-303

Lagrange CFD study can take days to weeks for a full batch - compared to304

minutes for the coarsest compartment models. Nevertheless, the main features305

of extra-cellular gradients are maintained, and the microbial response with a306

structured kinetic model closely follows the results of the full CFD simulation.307

With this, the simulations also run considerably faster than real-time, which308

opens up a range of new applications in, for example, process optimization [16],309

that are well out of reach for full CFD simulations for the foreseeable future.310

In this paper, we focused on outlining the concept of a Lagrangian compart-311

ment model, and comparing the results with a full CFD simulation. As such, a312

number of simplifications were made, similar to those used in the CFD model.313

Future extensions may aim at improving the physical representation of fermen-314

tation processes, by including e.g. the gas phase, mass transfer, and volume315

changes in fed-batch processes. Such extensions have recently been shown for316

Eulerian compartment models [25], and can straightforwardly be translated to317

the current framework. Furthermore, we did not currently aim at a full numeri-318

cal optimization. While the computation time is already favorable compared to319

CFD simulations, further gains in processing time may be possible by numeri-320

cal optimization, or considering solvers that are better suited for the stochastic321

nature of parcel tracking than regular ODE-solvers.322
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Table 1: Comparison of mean extra-cellular substrate concentration and the regime division for

different Np; other settings equal that of the base-case. The Lagrangian results are averaged

over 1800 s, the margin indicates 2 standard deviations.

Np = 100 Np = 1000 Np = 10000 CM (Euler) CFD (Euler)

Cs 4.33 · 10−5 4.40 · 10−5 4.43 · 10−5 4.17 · 10−5 3.44 · 10−5

Excess 9.54 ± 4.67% 9.50 ± 2.15% 9.23 ± 0.73% 8.68% 6.8%

Limit. 39.0 ± 10.8% 36.3 ± 4.26% 36.5 ± 2.02% 33.9% 36.2%

Starv. 51.5 ± 12.2% 54.3 ± 5.00% 54.3 ± 2.17% 57.4% 57.0%

Table 2: Performance of various compartment realizations in predicting qp in chemostat con-

figuration. In all cases, the total flowtime is 80 h, ∆tmax = 0.03 s, RelTol = 0.001. More

cases are reported in Appendix B.

Compartments parcels run-time (s) qp(end) % diff. CFD

CFD 2500 > 106 2.99 · 10−4 −

A26R6T1 1000 4314 2.93 · 10−4 −2.14

A48R10T6 1000 16601 2.99 · 10−4 0.16

A18R2T1 1000 4158 2.96 · 10−4 −0.92

A18R2T1 36 100 2.98 · 10−4 −0.37

21



1000 50

0 5000 10000 0 50 100
0

120

0

1

1

0

CFD 
CM A26R6
CM A36R6T6

N time (s)

time (s)

t  
   

 (s
)

95 Co
M

C 
/ C s   

   
  s

CM A48R10T12

C

N   =6ax
N   =12ax
N   =18ax
N   =26ax

N   =36ax
N   =40ax
N   =48ax

A

B C
N  = 10
N  = 10

N  = 10P
3

P
4

P
5

Eulerian
N  = 10P

6

40

80

Figure 1: Mixing behavior in the compartment model. A: Mixing curve (single-point mea-

surement) for several realizations of the compartment model compared to the CFD result.

Note the cases were selected based on agreement with the CFD simulation; more cases are

discussed in Appendix A. B: Point-based mixing time versus number of compartments (col-

ored by Nax) for the full range of tested compartment realizations. C: Comparison between

Eulerian (tracer-based) and Lagrangian (parcel-based) mixing time, using the coefficient of

mixing, for various Np. Nc = 156 in these cases (A26R6T1).

22



Figure 2: Regime analysis in the compartment model using Monod kinetics. Left: Full CFD

model (τ95 = 63.8). Compartment models layouts from left to right: A18R2 (Np = 1000,

τ95 = 56.2), A26R6 (Np = 1000, τ95 = 61.6), A48R12T6 (Np = 5000, τ95 = 68.2)). ”L”

indicates the time-averaged Lagrangian result, ”E” the Eulerian result.

Figure 3: Oscillations in substrate concentration, measured at three different axial locations:

at the feed point (top lines), at r = 0.75 m, y = 3.85 m (middle lines) and at r = 0.75 m, y =

0.25 m (bottom lines). Light gray lines: Np = 100, dark gray; Np = 1000, black: Np = 10000.

The red lines represent the Eulerian solution.
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Figure 5: Example lifelines of specific glucose uptake rate (scaled with qs,max) for a parcel in

the base-case (orange) and coarse model (A18R2, blue), using the chemostat setup, compared

to the CFD case (dark gray). Even with a coarse compartment model, the spatial resolution

of lifelines is sufficient to reveal major fluctuations, which can be subjected to the statistical

analysis described in [14, 35]

24



10 20 30 40
t (h)

0.5

1.0

2.0

F 
 (k

g/
m

  h
) 

50
t (h)

t (h)

0

4
5

t (h)

3
µ 

(1
/h

) 

60 70 10 20 30 40 50 60 70

10 20 30 40 50 60 70 10 20 30 40 50 60 70

1.5

3
2
1

x10-2

q 
 (m

ol
/C

m
ol

 h
) 

C 
  (

g/
kg

)

0

4

6

2

x10-4

0

40
50

30
20
10

x
p

Industrial
BB-ID
9P-CFD

A B

DC

E

A26R6
A18R2
9P-ID

F

10 40 70
t (h)

0

4

8

X 
   

  (
µm

ol
/g

   
) 

10 40 70
t (h)

0

1

10 40 70
t (h)

0

10

20

10 40 70
t (h)

0

0.1

0.2

10 40 70
t (h)

0

1

2

10 40 70
t (h)

0

5 x10-2

st
o 

   
   

   
   

   
   

   
 d

w

X 
   

  (
µm

ol
/g

   
) 

AA
   

   
   

   
   

   
   

 d
w

X 
   

  (
µm

ol
/g

   
) 

PA
A 

   
   

   
   

   
   

  d
w

X 
   

  (
µm

ol
/g

   
) 

E1
1 

   
   

   
   

   
   

   
dw

X 
   

  (
µm

ol
/g

   
) 

E3
2 

   
   

   
   

   
   

   
dw

X 
   

 (µ
m

ol
/g

   
) 

E4
   

   
   

   
   

   
   

 d
w

x103 x103

x102

0 0.20.1
0

8.0

E,
11

# 
(X

   
 )

X     (-)E,11

4.0

AA

6
0

1.0

3.0

10x10

# 
(X

   
 )

X    (μmol/g   )AA                       dw

8 2

x102

-4

2.0

2 5x104
0

4.0 x102

E,
33

# 
(X

   
 )

X     (-)E,33

2.0

3

x102

Figure 6: Dynamics of a fed-batch simulation for 2 compartment realizations (base-case and

A18R2 with Np = 36), compared with the full CFD simulation, an ideal-mixed model, and

plant data [16]. A: Imposed feed profile. B: Biomass concentration. C: Growth rate . D:

Specific penicillin production rate. E: parcel-averaged intra-cellular pools. The dashed lines

indicate ± 1 standard deviation. F: Histograms of 3 pools (amino acids, transporter enzymes,

penicillin production enzymes) showing population heterogeneity at the end of the process.

Orange: current simulation. Transparent blue: CFD simulation from prior work [16].

25



Appendix A. Mixing time verification457

The hydrodynamic performance of the compartment model was verified by458

comparing the mixing behavior observed in three stirred reactor configurations459

with full CFD simulations of the same systems. The following three test cases460

were studied:461

• single Rushton impeller, full domain.462

• dual Rushton impeller, 180o domain463

• dual Rushton impeller (penicillin production), 180o domain464

Note that all cases studied here have the simplification of single phase flow.465

We expect the methods to be equally applicable to multiphase flow. The flow466

patterns in the CFD simulation would be different in that case, but they can467

equally be translated to the appropriate inter-compartment flow maps.468

Appendix A.1. Single impeller geometry469

The single Rushton case is based on the geometry of Jahoda et al [31]: T =470

0.29 m, H = T , C = T/3 and D = T/3. The flow is solved in steady state with471

the multiple-reference frame (MRF) method (Ns = 300 RPM), realizable k− ε472

turbulence model, and 2nd order discretization. Since we are interested in the473

performance of the CM compared to CFD, no mesh dependency study was474

done. After flow convergence, the flow is frozen, and species tracking equations475

enabled. The simulation is switched to transient mode (∆t = 0.01 s). The476

tracer concentration development is monitored at a single probe point (r =477

9.5T/20, Y = T/4, θ = 45o), the tracer pulse is injected at t = 0 at r = T/4, Y =478

0.28 m, θ = 225o, both in line with the experimental setup. With this, the CFD479

mixing curve, reported in fig. B1, C is acquired.480

The CFD domain is translated into a range of compartment layouts, with481

the following divisions: Nax = 3 − 48, Nr = 2 − 12, Nθ = 6 − 18. CM-mixing482

simulations using the same injection and detection locations are conducted in483

Julia. The observed τ95 for all compartment layouts is shown in fig. B1, A,484
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with the dots colored by Nax, and the black line representing the CFD bench-485

mark. It is visible that, while slightly underestimating τ95, the compartment486

mixing time becomes ’grid independent’ for NC > 2500, within the space of487

chosen compartment layouts. For low Nax, the mixing time is strongly under-488

estimated because axial transport is not properly resolved, while a high Nax489

with low Nr leads to a strong over-estimation of the mixing time, because of490

poor resolution of the circulation loop. Nθ has little influence on τ95. As shown491

in fig. B1, C, the local dynamics of mixing are not very well captured by the492

CM, even if τ95 is comparable - the relatively large volume of compartments,493

modeled as ideally mixed zones, inherently induce some ’numerical blending’494

which affect the resolution of local dynamics. This is a conclusion similar to495

that by Delafosse et al. [6], even though in their 2 impeller setup, local dynamics496

were less pronounced to begin with, due to the resistance towards mixing being497

in the inter-compartment region [30, 29].498

Figure B1: A: Mixing time (monitor point) for the 1-impeller setup of Jahoda; CFD versus

various compartment realizations. B: As A, for the 2 impeller setup. C: Mixing curves for

selected compartment realizations vs. CFD, 1 impeller. D: As C, for the 2 impeller setup.
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Appendix A.2. Dual impeller geometry499

The two-impeller geometry is equally based on Jahoda et al. [31]: T =500

0.29 m, H = 2T , C = T/3, ∆C = T and D = T/3. The CFD setup equals501

that of the single impeller case, except only 180o of the domain is modeled,502

with a periodic boundary condition. In this case,the monitor point was placed503

r = 9.5T/20, Y = T/4, θ = 45o and a tracer pulse was injected at t = 0 at504

r = T/4, Y = 0.57 m, θ = 225o, yielding the mixing curve reported in fig. B1,505

D.506

As for the single impeller, a wide range of compartment resolutions is em-507

ployed: Nax = 12 − 96, Nr = 2 − 12, Nθ = 3 − 18. Nax is chosen such that508

the impellers and inter-impeller midplane, where fully radial flow is anticipated,509

consistently align with compartment interfaces. The same applies to the im-510

peller blades (3 blades in the 180o domain) with respect to tangential divisions.511

Fig. B1, B shows the 95% mixing time, with symbols colored by the number of512

axial compartments. The impact of Nax is even more pronounced than for the513

single impeller case, and as such, a wider scatter in τ95 vs. Nc is observed. This514

scatter may seem surprising, considering the good agreement observed by De-515

lafosse et al. [6], but it must be kept in mind all their simulations featured high516

Nc (4360−17600), whereas we explore much lower resolutions. With Nax > 60,517

we observe results consistent with Delafosse. As before, a low Nr leads to a518

higher τ95, although this effect is less pronounced, because the effect of low Nax519

tends to dominate. Still, a proper ’balance’ of Nax and Nr can be used to yield520

a good prediction of τ95 at relatively low NC . For example, 36 · 2 · 12 compart-521

ments leads to a good prediction of τ95, including local dynamics that are well522

in line with the CFD result (fig. B1, D), because the impact of under-resolved523

axial and radial flow balances out. In general, the qualitative agreement be-524

tween the mixing curves from CM and CFD (fig. B1, D) at the bottom of525

the reactor is much better for the 2-impeller case, due to the resistance towards526

mixing being in the inter-impeller region, leading to more gradual mixing in the527

bottom region which lacks the sharp oscillations observed in the 1-impeller case.528

This qualitative agreement is also well in line with the observations of Delafosse529
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et al. [6].530

Figure B2: A: Mixing time (monitor point) for the penicillin reactor; CFD versus various

compartment realizations. B: Mixing curves for selected compartment realizations vs. CFD.

Appendix A.3. Penicillin reactor531

The penicillin reactor is also a 2-Rushton impeller geometry, although it532

differs somewhat from Jahoda et al. Most notably, the bottom impeller has 8533

rather than 6 blades. The tank dimensions are H = 7.7 m, C = T/3, ∆C = T534

and D = T/3. The CFD setup used in this study is described in detail in535

earlier work [14]. Considering both τ95 versus NC (fig. B2, A), and the mixing536

curves (fig. B2, B) for selected cases the trend is very similar to the Jahoda537

2-impeller setup. As noted previously, this implies good results for τ95 can be538

acquired with relatively few compartments, provided the error induced by under-539

resolving Nax and Nr balances. While this solution is not ’grid-independent’, it540

may be a pragmatic way to reduce the required number of compartments (hence541

computation time) in compartment model simulations.542

Appendix A.4. Mixing performance: conclusions543

Overall, we observe that for a sufficient number of compartments (typically544

Nc approaching 104) the mixing behavior in the CM is close to that of a full CFD545

simulation, and becomes independent of Nc. At high Nc, the agreement becomes546

comparable to the observations of Delafosse et al. [6], although in contrast to547

their work, we did not explore Nc > 10000, considering such compartment548

numbers would be impractical in later metabolic simulations. For a low number549
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of compartments, there is substantial scatter in τ95 versus Nc, with under-550

resolution in the axial direction (low Nax) leading to lower τ95 due to faster551

axial transport, and under-resolution in the radial direction (low Nr) leading to552

higher τ95 due to poor representation of the circulation flow. Properly setting553

the combination of Nr and Nax can lead to a good prediction of τ95 at low554

Nc, which may facilitate metabolic computations by keeping the computational555

burden low. This result is not ’grid independent’ - a poor selection of Nr556

and Nax can easily lead to erroneous predictions in both mixing and metabolic557

response (more on this in Appendix B), and hence mixing performance should558

be validated against the CFD data. Additionally, it is recommended to verify559

the metabolic computations against a case with equal τ95 but higher NC - even560

at equal τ95, spatial under-resolution of the substrate gradient may affect the561

model output, which should be avoided.562

Appendix A.5. Parcel mixing563

As shown in the main text, for high Np the Eulerian and Lagrangian mixing564

behavior are in full agreement. The timestep used in positional updating can565

have an impact on the accuracy of the Lagrangian trajectories, however. In this566

work, the position is updated during each function call of the integrator (which567

is multiple times per timestep in the multi-step methods employed here). If the568

∆t between two function evaluations is large, this will introduce inaccuracies569

in parcel behavior by introducing bias towards longer residence times. This570

effect is shown in figure B3, A. Here, simulations were conducted with various571

values for ∆tmax. In addition, the Eulerian tracer concentration was set to 0572

everywhere, so that all differentials dN/dt were equally zero; this results in the573

adaptive timestep solver (and hence parcel position updating) defaulting to the574

maximum stepsize. The impact of the introduced bias is clearly visible: mix-575

ing slows down compared to the Eulerian approach, and a plateau is reached576

at a higher CoM-value, indicating that the parcel distribution remains hetero-577

geneous. Figure B3 B shows the same cases, but in this case the solution is578

simultaneously computing an Eulerian and Lagrangian mixing problem. In this579
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case, the adaptive timestepping kicks in to control the accuracy of the Eulerian580

approach; the timesteps become sufficiently small to accurately resolve mixing581

both in the Eulerian and Lagrangian approach (although statistical fluctuations582

in local Np still lead to a finite plateau-CoM). These results indicate that as583

long as Eulerian dynamics are present, the adaptive timestep algorithm is suffi-584

cient to provide accurate Lagrangian mixing, too. Conceptually, this is logical,585

considering that the physical mixing timescales for the Eulerian and Lagrangian586

phase are similar. However, in cases where Eulerian and Lagrangian behavior587

are decoupled, additional care may be needed to properly set the particle posi-588

tion update interval. As a first estimate, ∆ << τres seems a reasonable choice,589

with τres the residence time in compartment with the shortest residence time.590
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Figure B3: Lagrangian mixing behavior with Np = 25000, A18R2, for various ∆t. A: No

timestep control. B: Timestep control by the Eulerian phase.

CoM(t) =
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)2∆Vn
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Appendix B. Impact of various CM parameters on metabolic pre-591

dictions592

As a base case, we take Nax = 26, Nr = 6, Nθ = 1, Np = 1000, ∆t =593

0.03 s and integration relative tolerance RelTol = 1E − 3. These settings were594

chosen for the manageable amount of compartments (NC = 156), parcels per595

compartment (ca. 6.5) and solution time (ca. 1 − 1.5 h for 80 h flow time).596

All simulations reported in this work were conducted on a desktop computer597

with an INTEL i5-4460 (3.2GHz, quadcore) with 16GB 1600MHz DDR3 RAM,598

colloquially known as ”a decent midrange gaming PC built on a PhD budget599

in 2015”. The ratings presented below are the time required to solve the ODE-600

section of the code: pre-processing (memory allocation, parcel initialization and601

preparing the property vectors and transition matrices) and post-processing602

(data storage and/or plotting) are excluded. Pre-processing was found to be a603

minor component of the total time requirement, whereas the time for plotting604

depends very strongly on the number of datapoints plotted, rather than the size605

of the system itself. All numbers were treated as Float64 (double-precision)606

The current Julia code was constructed following the efficient computation607

guidelines offered in the DifferentialEquations.jl documentation, keeping into608

account the following:609

• In-place computations were used to avoid allocation of memory during610

computation (updating the system of equations and parcel positions re-611

quired 0 allocations). All arrays were pre-allocated, and no global variables612

were used.613

• The equations were devectorized into for-loops to yield minimal overhead614

in the compiled code.615

• Recurring mathematical operations on constants were pre-computed (e.g.616

recurring divisions or exponents).617

• Considering the inherent fluctuations in the solution, a high numerical618

accuracy was not deemed necessary: the BS3 solver was used, for offering619
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the highest speed. A comparison with the TSIT5 solver (default) was620

made.621

Appendix B.1. Impact of Np622

Using the base case for all other settings, Np is varied between 50 − 2500.623

With Npool = 8 dynamic pools, the total number of equations in the system is624

Nc +Np ·Npool. If we plot τrun versus the total number of equations, the time625

requirement scales linear (fig. C 1) - hence an increase in Np gives a proportional626

increase in τrun. The results are quantitatively summarized in table C 1 for627

A26R6T1. This table also list the impact on the parameter of interest in this628

study, qp, at the end of the 80 h simulation timeframe. It can be observed that629

in all cases, the qp in the compartment model is slightly lower than in the CFD630

simulation - within 2.5 % of the CFD simulation. For different compartment631

layouts (A6R6T1 and A36R6T1) a similar linear impact is observed. Table C 2632

lists the time requirement for the other cases.633

Table C 1: Impact of Np on runtime τrun. Other settings: ∆t = 0.03 s, RelTol = 0.001.

Compartments parcels τrun [s] qp(end) % diff. CFD

A26R6T1 50 344 2.94 · 10−4 −1.64

A26R6T1 100 485 2.93 · 10−4 −1.96

A26R6T1 250 1063 2.93 · 10−4 −2.08

A26R6T1 1000 4314 2.93 · 10−4 −2.14

A26R6T1 2500 10403 2.93 · 10−4 −2.09

A26R6T1 5000 21865 2.93 · 10−4 −2.12

Appendix B.2. Impact of Nc634

In fig. C 1, A, the gray symbols indicate the computation time for a fixed635

Np = 1000 and a varying number of compartments (details in table C 3). Here, a636

strong impact of NC on the runtime is observed, scaling with τrun ≈ N3.9
c in the637

studied range. There are a number of factors leading to this sharp increase: Nc638
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Table C 2: Impact of Np on runtime τrun, with different compartment numbers. Other

settings: ∆t = 0.03 s, RelTol = 0.001.

Compartments Nc Np τrun [s]

A6R6T1 36 250 1022

A6R6T1 36 1000 4169

A6R6T1 36 2500 10262

A36R12T1 432 250 2110

A36R12T1 432 100 8293

A36R12T1 432 2500 19887

compartments have N2
c potential connections, increasing the computation time639

of the flow equations. In addition, the lower residence time per compartment as640

well as lower number of parcels per compartment (leading to larger fluctuations641

in local biomass concentration) increase the stiffness of the problem - requiring642

smaller timesteps to properly resolve parcel behavior.643

As observed in table C 3, qp differs substantially from that computed in644

the CFD simulation for cases A6R6T1 and A36R2T1. This offset is easy to645

explain: the mixing time in A6R6T1 is strongly under-estimated compared to646

CFD, while for A36R2T1 it is substantially over-estimated. This hence leads to647

a substantial under-estimation in extracellular heterogeneity for the former, and648

over-estimation for the latter, which affect qp. For all the other cases, the mixing649

time is close to the CFD result (τ95 = 63.8), and consequently, qp is predicted650

within 2.5 % accuracy compared to the CFD result. This indicates the extra-651

cellular gradient does not need to be resolved in high spatial resolution, provided652

the range of Cs and the frequency at which parcels observe changes is well653

approximated, for which matching of τmix suffices even in coarse simulations654

in the current study. Of course, the impact of spatial resolution can more655

substantial for other metabolic models.656
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Table C 3: Impact of Nc on runtime τrun. Other settings Np = 1000, ∆t = 0.03 s, RelTol =

0.001.

Compartments Nc τrun [s] τ95 [s] qp(end) % diff. CFD

A6R6T1 36 4169 20.3 3.78 · 10−4 26.54

A18R2T1 36 4158 56.2 2.96 · 10−4 −0.92

A36R2T1 72 4203 97.2 2.54 · 10−4 −14.92

A26R6T1 156 4314 61.6 2.93 · 10−4 −2.14

A36R12T1 432 8293 63.4 3.00 · 10−4 0.43

A36R6T6 1296 7549 63.3 2.95 · 10−4 −1.36

A48R10T6 2880 16601 65.1 2.99 · 10−4 0.17

A48R10T12 5760 31392 62.2 3.03 · 10−4 1.47

Figure C 1: Impact of various parameters on computation time. Left: the computation time

as a function of the number of equations (parcel*pools + compartment), for 3 compartment

layouts and a variable number of parcels Np. The scaling with Np ·Npool is linear. The gray

curve shows a fixed number of parcels (Np = 1000), with a variable number of compartments.

Scaling follows a power law Nn
c with n > 3, showing an increase in compartments has a large

impact on computational burden. Right: The impact of maximum timestep size ∆t on the

result. For the given settings, the results indicate the maximum timestep size is not used for

∆t > 0.06, hence the computation time is independent of ∆t.
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Appendix B.3. Impact of ∆tmax657

Fig. C 1, B shows the impact of ∆tmax for the base case setup. Note that658

we are using a variable timestep solver, so in order to control accuracy, the used659

timestep may be smaller than ∆tmax. This is clearly reflected in the figure: for660

∆tmax > 0.06 s the runtime τrun is constant, indicating the maximum timestep661

size is not used. Conversely, the computation time for ∆tmax = 0.015 s is double662

that of ∆tmax = 0.03 s, which indicated the maximum timestep size is limiting663

the computation here (and the runtime scales inversely with ∆tmax in this664

range). As mentioned in section Appendix B.2, the ’optimal’ ∆t likely depends665

on Nc because the compartment residence time decreases with an increase in666

compartment number, and smaller steps are needed to properly resolve parcel667

behavior. The results are quantitatively summarized in table C 4. Considering668

the agreement for qp, a higher ∆tmax seems to lead to a very slightly lower669

qp, because there is some bias towards longer compartment residence times670

(hence a slight increase in parcel circulation time). However, the offset in qp671

never exceeds 2.5 %, indicating the use of an adaptive timestepping algorithm672

prevents a residence time bias once metabolic coupling is introduced, meaning673

manual tuning of ∆tmax is not required.674

Table C 4: Impact of ∆t on runtime τrun

Compartments ∆tmax [s] τrun [s] qp(end) % diff. CFD

A26R6T1 0.015 9410 2.94 · 10−4 −1.62

A26R6T1 0.03 4314 2.93 · 10−4 −2.14

A26R6T1 0.06 3818 2.92 · 10−4 −2.38

A26R6T1 0.12 3633 2.92 · 10−4 −2.40

A26R6T1 0.24 3581 2.92 · 10−4 −2.43

A26R6T1 0.48 3602 2.92 · 10−4 −2.43
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Appendix B.4. Impact of RelTol675

Interestingly, RelTol has no large impact the solution accuracy, or the com-676

putation time (table C 5) , which may appear to contradict the statement in677

the previous segment. Most likely, this is because the pool dynamics are slow678

in comparison to ∆tmax = 0.03 s (even with the rapid extra-cellular uptake of679

the current microbe, τrxn ≈ 12∆tmax. As long as a parcel remains in place,680

tolerances are easily met. The situation changes if parcels are moving around,681

which causes discontinuities in the uptake terms due to sudden changes in the682

observed substrate concentration, CS(p). Hence, we hypothesize that the pre-683

viously noted impact on ∆t results from the frequency of parcel jumps and684

consequent rapid changes in uptake (as, in this case, the Lagrangian and Eule-685

rian frameworks are coupled), and not from the solver tolerance.686

Table C 5: Impact of tolerance on runtime τrun

Compartments RelTol τrun [s] qp(end) % diff. CFD

A26R6T1 1E − 2 4287 2.92 · 10−4 −2.11

A26R6T1 1E − 3 4314 2.93 · 10−4 −2.14

A26R6T1 1E − 4 4264 2.93 · 10−4 −2.13

Appendix B.5. Impact of Solver687

All simulations were conducted with the BS3 algorithm, based on Julia688

benchmarks for ODE solutions with high RelTol. We compared the result to the689

default algorithm for differential equations - Tsit5. The difference in runtime690

between these algorithms is approximately a factor 2 (table C 6), without a691

notable difference in qp.692

Table C 6: Impact of tolerance on runtime τrun

Compartments solver τrun [s] qp(end) % diff. CFD

A26R6T1 Tsit5 8400 2.93 · 10−4 −2.19

A26R6T1 BS3 4314 2.93 · 10−4 −2.14
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Appendix B.6. Timing: conclusions693

Overall, the factors that have the biggest impact on the solution timing are694

Nc and Np. In particular NC has a substantial impact on the overall computa-695

tion time, probably because increasing NC both leads to a larger system of fluid696

equations, and because finer timesteps are used by the adaptive timestepper in697

order to properly resolve parcel behavior (due to the shorter per-compartment698

residence time). For the studied range of compartment numbers, the predicted699

qp was negligibly influenced by NC compared to the full-CFD result, provided700

the mixing time matched that of the CFD simulation. The number of parcels701

Np has a linear impact on the computation time in the studied range. Interest-702

ingly, the agreement in qp was hardly impacted by Np, even for just 50 parcels703

in 156 compartments - meaning only 1 in 3 compartments even contain a sin-704

gle parcel at any time, and Cs in each compartment is quite variable. This705

is likely because the timescales of the intra-cellular pools, in particular qp, are706

very long compared to the timescale of the (artificial) fluctuations induced by707

the under-resolved biomass phase. Hence, the impact of these spurious fluctu-708

ations is buffered. Note this conclusion may not generalize to other systems,709

the impact of Np should be studied on a case-to-case basis, and with respect to710

the parameter of interest. In addition, note that currently only the mean pool711

size was compared between the CFD simulation and CM simulation, and it was712

not checked whether the number of parcels was adequate to fully represent the713

population distribution of the pool (i.e. if the higher order moments were also714

matched). It may be that a larger Np is needed to ensure the full pool distribu-715

tion is independent of Np, and as such, to draw conclusions on the emergence716

and distribution of population heterogeneity.717

In this particular case qp is the parameter of interest, and it is well predicted718

(within 2.5 %) even for a low Nc and Np, provided τ95 is close to the CFD719

simulation. The results show that for low Nc and Np a simulation of 80 h flow720

time can be conducted in several minutes - compared to weeks for a full CFD721

simulation with frozen flow. Case in point: a final run with A18R2T1, Np = 36722
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(1 parcel/compartment), ∆tmax = 0.5 s and all other settings at default ran in723

100 s - with a qp offset of 0.4 % compared to full CFD.724
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