References
  1. Ohki Y, Seino, H (2016) N-Heterocyclic carbenes as supporting ligands in transition metal complexes of N2. Dalton Trans 45:874-880. https://doi.org/10.1039/C5DT04298D
  2. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Stable Carbenes. Chem Rev 100:39-92. https://doi.org/10.1021/cr940472u
  3. Eisenhut C, Szilvasi T, Dubek G, Breit NC, Inoue S (2017) Systematic Study of N-Heterocyclic Carbene Coordinate Hydrosilylene Transition-Metal Complexes. Inorg Chem 56: 10061-10069. https://doi.org/10.1021/acs.inorgchem.7b01541
  4. Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S (2018) NHCs in Main Group Chemistry. Chem Rev 118:9678-9842. https://doi.org/10.1021/acs.chemrev.8b00079
  5. Doddi A, Peters M, Tamm M (2019) N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 119:6994-7112. https://doi.org/10.1021/acs.chemrev.8b00791
  6. Tonner R, Oxler F, Neumuller B, Petz W, Frenking G (2006) Carbodiphosphoranes: The Chemistry of Divalent Carbon(0). Angew Chem Int 45:8038-8042. https://doi.org/10.1002/anie.200602552
  7. Frenking G (2014) Dative Bonds in Main-Group Compounds: A Case for More Arrows. Angew Chem Int Ed  53:6040-6046. https://doi.org/10.1002/anie.201311022
  8. Tonner R, Frenking G (2008) Divalent Carbon(0) Chemistry, Part 1: Parent Compounds. Chem Eur J 14:3260-3272. https://doi.org/10.1002/chem.200701390
  9. Tonner R, Frenking G (2007) C(NHC)2: Divalent Carbon(0) Compounds with N-Heterocyclic Carbene Ligands-Theoretical Evidence for a Class of Molecules with Promising Chemical Properties. Angew Chem Int Ed 46:8695-8698. https://doi.org/10.1002/anie.200701632
  10. Ruiz DA, Melaimi M, Bertrand G (2013) Carbodicarbenes, carbon(0) derivatives, can dimerize. Chem Asian J 8:2940-2942. https://doi.org/10.1002/asia.201300887
  11. Antoni PW, Reitz J, Hansmann MM (2021) N2/CO Exchange at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. J Am Chem Soc 32:12878–12885. https://doi.org/10.1021/jacs.1c06906
  12. Gallagher NM, Ye HZ, Feng S, Lopez J, Zhu YG, Voorhis TV, Horn YS, Johnson JA (2020) An N-Heterocyclic-Carbene-Derived Distonic Radical Cation. Angew Chem Int 59:3952-3955. https://doi.org/10.1002/anie.201915534
  13. Kim Y, Byeon JE, Jeong GY, Kim SS, Song H, Lee E (2021) Highly Stable 1,2-Dicarbonyl Radical Cations Derived from N-Heterocyclic Carbenes. J Am Chem Soc   143:8527-8532. https://doi.org/10.1021/jacs.1c00707
  14. Kim Y, Lim K, Lee E (2018) Oxime Ether Radical Cations Stabilized by N-Heterocyclic Carbenes. Angew Chem Int Ed 57:262-265. https://doi.org/10.1002/anie.201710530
  15. Kim Y, Lee E (2018) Stable Organic Radicals Derived from N-Heterocyclic Carbenes. Chem Eur J 24:19110-19121. https://doi.org/10.1002/chem.201801560
  16. Singh T, George A, Parameswaran P, Bharatam PV (2019) Enols, Diamino Enols, and Breslow Intermediates: A Comparative Quantum Chemical Analysis. Eur J Org Chem 14:2481-2489. https://doi.org/10.1002/ejoc.201801817
  17. Berkessel A, Yatham VR, Elfert S, Neudorfl JM (2013) Characterization of the Key Intermediates of Carbene-Catalyzed Umpolung by NMR Spectroscopy and X-Ray Diffraction: Breslow Intermediates, Homoenolates, and Azolium Enolates. Angew Chem Int Ed 52:11158-11162. https://doi.org/10.1002/anie.201303107
  18. Roy MMD, Rivard E (2017) Pushing Chemical Boundaries with N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element Chemistry. Acc Chem Res 50:2017-2025. https://doi.org/10.1021/acs.accounts.7b00264
  19. Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radic Z (2014) Imidazole Aldoximes Effective in Assisting Butyrylcholinesterase Catalysis of Organophosphate Detoxification. J Med Chem 57:1378-1389. https://doi.org/10.1021/jm401650z
  20. Sit RK, Radic Z, Gerardi V, Zhang L, Garcia E, Katalinic M, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P (2011) New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 286:19422-19430. https://doi.org/10.1074/jbc.M111.230656
  21. Katalinic M, Hrvat NM, Baumann K, Pipercic SM, Makaric S, Tomic S, Jovic O, Hrenar T, Milicevic A, Jeic D, Zunec S, Primozic I, Kovarik Z (2016) A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers. Toxicol Appl Pharmacol 310:195-204. https://doi.org/10.1016/j.taap.2016.09.015
  22. Sharma R, Gupta B, Sahu AK, Acharya J, Satnami ML, Ghosh KK (2016) Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE). Chem Biol Interact 259:85-92. https://doi.org/10.1016/j.cbi.2016.04.034
  23. Bedford CD, Harris RN, Howd RA, Miller A, Nolen HW, Kenley RA (1984) Structure-activity relationships for reactivators of organophosphorus-inhibited acetylcholinesterase: quaternary salts of 2-[(hydroxyimino)methyl]imidazole. J Med Chem 27:1431-1438. https://doi.org/10.1021/jm00377a010
  24. Bedford CD, Harris RN, Howd RA, Goff DA, Koolpe GA, Petesh M, Koplovitz I, Sultan WE, Musallam HA (1989) Quaternary salts of 2-[(hydroxyimino)methyl]imidazole. 3. Synthesis and evaluation of (alkenyloxy)-, (alkynyloxy)-, and (aralykyloxy)methyl quaternarized 2-[(hydroxyimino)methyl]-1-alkylimidazolium halides as reactivators and therapy for soman intoxication. J Med Chem 32:504-516. https://doi.org/10.1021/jm00122a035
  25. Namba T, Hiraki K (1958) PAM (pyridine-2-aldoxime methiodide) therapy for alkyl-phosphate poisoning. Jama-J Am Med Assoc 166:1834-1839. https://doi.org/10.1001/jama.1958.02990150030007
  26. Worek F, Backer M, Thiermann H, Szinicz L, Mast U, Klimmek R, Eyer P (1997) Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum Exp Toxicol 16:466-472. https://doi.org/10.1177/096032719701600808
  27. Cannard K (2006) The acute treatment of nerve agent exposure. J Neurol Sci 249:86-94. . https://doi.org/10.1016/j.jns.2006.06.008
  28. Jun D, Musilova L, Musilek K, Kuca K (2011) In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase. Int J Mol Sci 12:2077-2087. https://doi.org/10.3390/ijms12032077
  29. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and Detection of Chemical Warfare Agents. Chem Rev 111:5345-5403. https://doi.org/10.1021/acs.chemrev.5b00402
  30. Radic Z, Dale T, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green B, Radic B, Duggan BM, Ajami D, Rebek J, Taylor (2013) Catalytic detoxification of nerve agentand pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J 450:231-242. https://doi.org/10.1042/BJ20121612
  31. Da-Silva JAV, Nepovimova E, Ramalho, TC, Kuca K, Franca TCC (2019) Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: a near attack conformation approach. J Enzyme Inhib Med Chem 34:1018-1029. https://doi.org/10.1080/14756366.2019.1609953
  32. Havere WV, Lenstra ATH, Geise HJ, Van-den-Berg GR, Benschop HP (1982) 2-[(Hydroxyimino)methyl]-1-methylpyridinium chloride. Acta Cryst 38:2516-2518. https://doi.org/10.1107/S0567740882009248
  33. Carlstrom D (1966) A crystallographic study of N-methyl-pyridine-2-aldoxime (2-PAM)halides. Acta Chem Scand 20:1240-1246. https://doi.org/10.3891/acta.chem.scand.20-1240
  34. Grosev VM, Foretic B, Gamulin O (2011) Vibrational analysis of 1-methyl-pyridinium-2-aldoxime and 1-methyl-pyridinium-4-aldoxime cations. Spectrochim Acta A Mol Biomol Spectrosc 78:1376-1379. https://doi.org/10.1016/j.saa.2011.01.012
  35. Castro AT, Figueroa-Villar JD (2002) Molecular structure, conformational analysis and charge distribution of pralidoxime: Ab initio and DFT studies. Int J Quantum Chem 89:135-146. https://doi.org/10.1002/qua.10302
  36. Da-Silva JAV, Pereira AF, LaPlante SR, Kuca, Ramalho TC, Franca TCC (2020) Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomol 10:192. https://doi.org/10.3390/biom10020192
  37. Vyas S, Hadad CM (2008) Reactivation of model cholinesterases by oximes and intermediate phosphyloximes: a computational study. Chem Biol Interact 175:187-191. https://doi.org/10.1016/j.cbi.2008.05.006
  38. Wong L, Radic Z, Bruggemann RJ, Hosea N, Berman HA, Taylor P (2000) Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis. Biochem 39:5750-5757. https://doi.org/10.1021/bi992906r
  39. Delfino RT, Figueroa-Villar JD (2009) Nucleophilic Reactivation of Sarin-Inhibited Acetylcholinesterase: A Molecular Modeling Study. J Phys Chem B 113:8402-8411. https://doi.org/10.1021/jp810686k
  40. Tatiana AP, Ribeiro S, Alves SR, Oliveira-Silva JJ, Riehl CAS, Figueroa-Villar JD (2012) The effect of neutral oximes on the reactivation of human acetylcholinesterase inhibited with paraoxon. J Braz Chem Soc 23:1216-1225. https://doi.org/10.1590/S0103-50532012000700004
  41. Souza FRD, Garcia DR, Cuya T, Pimentel AS, Goncalves ADS, Alencastro RBD, Franca TCC (2020) Molecular Modeling Study of Uncharged Oximes Compared to HI-6 and 2-PAM Inside Human AChE Sarin and VX Conjugates. ACS Omega 5:4490-4500. https://doi.org/10.1021/acsomega.9b03737
  42. Goncalves ADS, Franca TCC, Caetano MS, Ramalho TC (2014) Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. 32:301-307. https://doi.org/10.1080/07391102.2013.765361
  43. Patel DS, Bharatam PV (2009) Novel +N(←L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem Commun 9: 1064-1066. https://doi.org/10.1039/B816595E
  44. Patel DS, Bharatam PV (2011) Divalent N(I) Compounds with Two Lone Pairs on Nitrogen. J Phys Chem A 115:7645-7655 https://doi.org/10.1021/jp111017u
  45. Kathuria D, Arfeen M, Bankar AA, Bharatam PV (2016) Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study. J Chem Sci 128:1607-1614. https://doi.org/10.1007/s12039-016-1173-2
  46. Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK, Khullar S, Gupta V, Mandal SK (2016) Design, Synthesis, and Structural Analysis of Divalent NI Compounds and Identification of a New Electron-Donating Ligand. Chem Eur J 22:1088-1096. https://doi.org/10.1002/chem.201503618
  47. Patel N, Falke B, Bharatm PV (2018) C → N coordination bonds in (CCC) → N+ ← (L) complexes. Theor Chem Acc 137:34. https://doi.org/10.1007/s00214-018-2208-1
  48. Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV (2020) Divalent NI Compounds: Identifying new Carbocyclic Carbenes to Design Nitreones using Quantum Chemical Methods. J Comput Chem 41:2624-2633. https://doi.org/10.1002/jcc.26417
  49. Singh T, Sahoo SC, Bharatam PV (2021) Compound with Possible N → N Coordination Bond: Synthesis, Crystal Structure and Electronic Structure Analysis. Tetrahedron Lett 77:153246. https://doi.org/10.1016/j.tetlet.2021.153246
  50. Patel N, Sood R, Bharatam PV (2018) NL2+ Systems as New-Generation Phase-Transfer Catalysts. Chem Rev 118:8770-8785. https://doi.org/10.1021/acs.chemrev.8b00169
  51. Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK, Bharatam PV (2018) Can Remote N-Heterocyclic Carbenes Coordinate with Main Group Elements? Synthesis, Structure, and Quantum Chemical Analysis of N+-Centered Complexes. Chem Eur J 24:6418-6425. https://doi.org/10.1002/chem.201705999
  52. Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV (2021) Mesoionic and N-heterocyclic Carbenes-Coordinated N+ Center: Experimental and Computational Analysis. ChemPlusChem https://doi.org/10.1002/cplu.202100281
  53. Gaussian 09, Revision B.01. Frisch MJ , Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara, Toyota MK, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ, Gaussian, Inc., Wallingford CT, 2010.
  54. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215-241. http://dx.doi.org/10.1007/s00214-007-0401-8
  55. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299-310. https://doi.org/10.1063/1.448975
  56. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007-1023. https://doi.org/10.1063/1.456153
  57. Lavallo V, Canac Y, Donnadieu B, Scheller WW, Bertrand G (2006) Cyclopropenylidenes: From Interstellar Space to an Isolated Derivative in the Laboratory. Science 312:722. https://doi.org/10.1126/science.1126675
  58. Pranckevicius C, Liu LL, Bertrand g, Stephan DW (2016) Synthesis of a Carbodicyclopropenylidene: A Carbodicarbene based Solely on Carbon. Angew Chem Int Ed 55:5536-5540. https://doi.org/10.1002/anie.201600765
  59. Ishida Y, Donnadieu B, Bertrand G (2006) Stable four-π-electron, four-membered heterocyclic cations and carbenes. Proc Natl Acad Sci 103:13585-13588. https://doi.org/10.1073/pnas.0604761103
  60. Piel I, Pawelczyk MD, Hirano K, Frohlich R, Glorius F (2011) A Family of Thiazolium Salt Derived N-Heterocyclic Carbenes (NHCs) for Organocatalysis: Synthesis, Investigation and Application in Cross-Benzoin Condensation. Eur J Org Chem 5475–5484. https://doi.org/10.1002/ejoc.201100870
  61. Soleilhavoup M, Bertrand G (2015) Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise.  Acc Chem Res 48:256–266. https://doi.org/10.1021/ar5003494