References
- Ohki Y, Seino, H (2016) N-Heterocyclic carbenes as supporting ligands
in transition metal complexes of N2. Dalton Trans
45:874-880. https://doi.org/10.1039/C5DT04298D
- Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Stable Carbenes.
Chem Rev 100:39-92. https://doi.org/10.1021/cr940472u
- Eisenhut C, Szilvasi T, Dubek G, Breit NC, Inoue S (2017) Systematic
Study of N-Heterocyclic Carbene Coordinate Hydrosilylene
Transition-Metal Complexes. Inorg Chem 56: 10061-10069.
https://doi.org/10.1021/acs.inorgchem.7b01541
- Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S
(2018) NHCs in Main Group Chemistry. Chem Rev 118:9678-9842.
https://doi.org/10.1021/acs.chemrev.8b00079
- Doddi A, Peters M, Tamm M (2019) N-Heterocyclic Carbene Adducts of
Main Group Elements and Their Use as Ligands in Transition Metal
Chemistry. Chem Rev 119:6994-7112.
https://doi.org/10.1021/acs.chemrev.8b00791
- Tonner R, Oxler F, Neumuller B, Petz W, Frenking G (2006)
Carbodiphosphoranes: The Chemistry of Divalent Carbon(0).
Angew Chem Int 45:8038-8042.
https://doi.org/10.1002/anie.200602552
- Frenking G (2014) Dative Bonds in Main-Group Compounds: A Case for
More Arrows. Angew Chem Int Ed 53:6040-6046.
https://doi.org/10.1002/anie.201311022
- Tonner R, Frenking G (2008) Divalent Carbon(0) Chemistry, Part 1:
Parent Compounds. Chem Eur J 14:3260-3272.
https://doi.org/10.1002/chem.200701390
- Tonner R, Frenking G (2007) C(NHC)2: Divalent
Carbon(0) Compounds with N-Heterocyclic Carbene Ligands-Theoretical
Evidence for a Class of Molecules with Promising Chemical Properties.
Angew Chem Int Ed 46:8695-8698.
https://doi.org/10.1002/anie.200701632
- Ruiz DA, Melaimi M, Bertrand G (2013) Carbodicarbenes, carbon(0)
derivatives, can dimerize. Chem Asian J 8:2940-2942.
https://doi.org/10.1002/asia.201300887
- Antoni PW, Reitz J, Hansmann MM (2021) N2/CO Exchange
at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and
Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. J Am
Chem Soc 32:12878–12885. https://doi.org/10.1021/jacs.1c06906
- Gallagher NM, Ye HZ, Feng S, Lopez J, Zhu YG, Voorhis TV, Horn YS,
Johnson JA (2020) An N-Heterocyclic-Carbene-Derived Distonic Radical
Cation. Angew Chem Int 59:3952-3955.
https://doi.org/10.1002/anie.201915534
- Kim Y, Byeon JE, Jeong GY, Kim SS, Song H, Lee E (2021) Highly Stable
1,2-Dicarbonyl Radical Cations Derived from N-Heterocyclic Carbenes. J
Am Chem Soc 143:8527-8532.
https://doi.org/10.1021/jacs.1c00707
- Kim Y, Lim K, Lee E (2018) Oxime Ether Radical Cations Stabilized by
N-Heterocyclic Carbenes. Angew Chem Int Ed 57:262-265.
https://doi.org/10.1002/anie.201710530
- Kim Y, Lee E (2018) Stable Organic Radicals Derived from
N-Heterocyclic Carbenes. Chem Eur J 24:19110-19121.
https://doi.org/10.1002/chem.201801560
- Singh T, George A, Parameswaran P, Bharatam PV (2019) Enols, Diamino
Enols, and Breslow Intermediates: A Comparative Quantum Chemical
Analysis. Eur J Org Chem 14:2481-2489.
https://doi.org/10.1002/ejoc.201801817
- Berkessel A, Yatham VR, Elfert S, Neudorfl JM (2013) Characterization
of the Key Intermediates of Carbene-Catalyzed Umpolung by NMR
Spectroscopy and X-Ray Diffraction: Breslow Intermediates,
Homoenolates, and Azolium Enolates. Angew Chem Int Ed 52:11158-11162.
https://doi.org/10.1002/anie.201303107
- Roy MMD, Rivard E (2017) Pushing Chemical Boundaries with
N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element
Chemistry. Acc Chem Res 50:2017-2025.
https://doi.org/10.1021/acs.accounts.7b00264
- Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radic Z (2014)
Imidazole Aldoximes Effective in Assisting Butyrylcholinesterase
Catalysis of Organophosphate Detoxification. J Med Chem 57:1378-1389.
https://doi.org/10.1021/jm401650z
- Sit RK, Radic Z, Gerardi V, Zhang L, Garcia E, Katalinic M, Amitai G,
Kovarik Z, Fokin VV, Sharpless KB, Taylor P (2011) New structural
scaffolds for centrally acting oxime reactivators of phosphylated
cholinesterases. J Biol Chem 286:19422-19430.
https://doi.org/10.1074/jbc.M111.230656
- Katalinic M, Hrvat NM, Baumann K, Pipercic SM, Makaric S, Tomic S,
Jovic O, Hrenar T, Milicevic A, Jeic D, Zunec S, Primozic I, Kovarik Z
(2016) A comprehensive evaluation of novel oximes in creation of
butyrylcholinesterase-based nerve agent bioscavengers. Toxicol Appl
Pharmacol 310:195-204.
https://doi.org/10.1016/j.taap.2016.09.015
- Sharma R, Gupta B, Sahu AK, Acharya J, Satnami ML, Ghosh KK (2016)
Synthesis and in-vitro reactivation screening of imidazolium aldoximes
as reactivators of sarin and VX-inhibited human acetylcholinesterase
(hAChE). Chem Biol Interact 259:85-92.
https://doi.org/10.1016/j.cbi.2016.04.034
- Bedford CD, Harris RN, Howd RA, Miller A, Nolen HW, Kenley RA (1984)
Structure-activity relationships for reactivators of
organophosphorus-inhibited acetylcholinesterase: quaternary salts of
2-[(hydroxyimino)methyl]imidazole. J Med Chem 27:1431-1438.
https://doi.org/10.1021/jm00377a010
- Bedford CD, Harris RN, Howd RA, Goff DA, Koolpe GA, Petesh M,
Koplovitz I, Sultan WE, Musallam HA (1989) Quaternary salts of
2-[(hydroxyimino)methyl]imidazole. 3. Synthesis and evaluation of
(alkenyloxy)-, (alkynyloxy)-, and (aralykyloxy)methyl quaternarized
2-[(hydroxyimino)methyl]-1-alkylimidazolium halides as
reactivators and therapy for soman intoxication. J Med Chem
32:504-516. https://doi.org/10.1021/jm00122a035
- Namba T, Hiraki K (1958) PAM (pyridine-2-aldoxime methiodide) therapy
for alkyl-phosphate poisoning. Jama-J Am Med Assoc 166:1834-1839.
https://doi.org/10.1001/jama.1958.02990150030007
- Worek F, Backer M, Thiermann H, Szinicz L, Mast U, Klimmek R, Eyer P
(1997) Reappraisal of indications and limitations of oxime therapy in
organophosphate poisoning. Hum Exp Toxicol 16:466-472.
https://doi.org/10.1177/096032719701600808
- Cannard K (2006) The acute treatment of nerve agent exposure. J Neurol
Sci 249:86-94. .
https://doi.org/10.1016/j.jns.2006.06.008
- Jun D, Musilova L, Musilek K, Kuca K (2011) In vitro ability of
currently available oximes to reactivate organophosphate
pesticide-inhibited human acetylcholinesterase and
butyrylcholinesterase. Int J Mol Sci 12:2077-2087.
https://doi.org/10.3390/ijms12032077
- Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and
Detection of Chemical Warfare Agents. Chem Rev 111:5345-5403.
https://doi.org/10.1021/acs.chemrev.5b00402
- Radic Z, Dale T, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G,
Green B, Radic B, Duggan BM, Ajami D, Rebek J, Taylor (2013) Catalytic
detoxification of nerve agentand pesticide organophosphates by
butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J
450:231-242.
https://doi.org/10.1042/BJ20121612
- Da-Silva JAV, Nepovimova E, Ramalho, TC, Kuca K, Franca TCC (2019)
Molecular modeling studies on the interactions of
7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with
VX-inhibited human acetylcholinesterase: a near attack conformation
approach. J Enzyme Inhib Med Chem 34:1018-1029.
https://doi.org/10.1080/14756366.2019.1609953
- Havere WV, Lenstra ATH, Geise HJ, Van-den-Berg GR, Benschop HP (1982)
2-[(Hydroxyimino)methyl]-1-methylpyridinium chloride. Acta Cryst
38:2516-2518. https://doi.org/10.1107/S0567740882009248
- Carlstrom D (1966) A crystallographic study of
N-methyl-pyridine-2-aldoxime (2-PAM)halides. Acta Chem Scand
20:1240-1246.
https://doi.org/10.3891/acta.chem.scand.20-1240
- Grosev VM, Foretic B, Gamulin O (2011) Vibrational analysis of
1-methyl-pyridinium-2-aldoxime and 1-methyl-pyridinium-4-aldoxime
cations. Spectrochim Acta A Mol Biomol Spectrosc 78:1376-1379.
https://doi.org/10.1016/j.saa.2011.01.012
- Castro AT, Figueroa-Villar JD (2002) Molecular structure,
conformational analysis and charge distribution of pralidoxime: Ab
initio and DFT studies. Int J Quantum Chem 89:135-146.
https://doi.org/10.1002/qua.10302
- Da-Silva JAV, Pereira AF, LaPlante SR, Kuca, Ramalho TC, Franca TCC
(2020) Reactivation of VX-Inhibited Human Acetylcholinesterase by
Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study.
Biomol 10:192.
https://doi.org/10.3390/biom10020192
- Vyas S, Hadad CM (2008) Reactivation of model cholinesterases by
oximes and intermediate phosphyloximes: a computational study.
Chem Biol Interact 175:187-191.
https://doi.org/10.1016/j.cbi.2008.05.006
- Wong L, Radic Z, Bruggemann RJ, Hosea N, Berman HA, Taylor P (2000)
Mechanism of oxime reactivation of acetylcholinesterase analyzed by
chirality and mutagenesis. Biochem 39:5750-5757.
https://doi.org/10.1021/bi992906r
- Delfino RT, Figueroa-Villar JD (2009) Nucleophilic Reactivation of
Sarin-Inhibited Acetylcholinesterase: A Molecular Modeling Study. J
Phys Chem B 113:8402-8411.
https://doi.org/10.1021/jp810686k
- Tatiana AP, Ribeiro S, Alves SR, Oliveira-Silva JJ, Riehl CAS,
Figueroa-Villar JD (2012) The effect of neutral oximes on the
reactivation of human acetylcholinesterase inhibited with paraoxon. J
Braz Chem Soc 23:1216-1225.
https://doi.org/10.1590/S0103-50532012000700004
- Souza FRD, Garcia DR, Cuya T, Pimentel AS, Goncalves ADS, Alencastro
RBD, Franca TCC (2020) Molecular Modeling Study of Uncharged Oximes
Compared to HI-6 and 2-PAM Inside Human AChE Sarin and VX Conjugates.
ACS Omega 5:4490-4500. https://doi.org/10.1021/acsomega.9b03737
- Goncalves ADS, Franca TCC, Caetano MS, Ramalho TC (2014) Reactivation
steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing
the computational cost in hybrid QM/MM methods. 32:301-307.
https://doi.org/10.1080/07391102.2013.765361
- Patel DS, Bharatam PV (2009) Novel +N(←L)2 species
with two lone pairs on nitrogen: systems isoelectronic to
carbodicarbenes. Chem Commun 9: 1064-1066.
https://doi.org/10.1039/B816595E
- Patel DS, Bharatam PV (2011) Divalent N(I) Compounds with Two Lone
Pairs on Nitrogen. J Phys Chem A 115:7645-7655
https://doi.org/10.1021/jp111017u
- Kathuria D, Arfeen M, Bankar AA, Bharatam PV (2016) Carbene →N+
Coordination Bonds in Drugs: A Quantum Chemical Study. J Chem Sci
128:1607-1614. https://doi.org/10.1007/s12039-016-1173-2
- Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK,
Khullar S, Gupta V, Mandal SK (2016) Design, Synthesis, and Structural
Analysis of Divalent NI Compounds and Identification of a New
Electron-Donating Ligand. Chem Eur J 22:1088-1096.
https://doi.org/10.1002/chem.201503618
- Patel N, Falke B, Bharatm PV (2018) C → N coordination bonds in
(CCC) → N+ ← (L) complexes. Theor Chem Acc 137:34.
https://doi.org/10.1007/s00214-018-2208-1
- Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV (2020)
Divalent NI Compounds: Identifying new Carbocyclic
Carbenes to Design Nitreones using Quantum Chemical Methods.
J Comput Chem 41:2624-2633. https://doi.org/10.1002/jcc.26417
- Singh T, Sahoo SC, Bharatam PV (2021) Compound with Possible N → N
Coordination Bond: Synthesis, Crystal Structure and Electronic
Structure Analysis. Tetrahedron Lett 77:153246.
https://doi.org/10.1016/j.tetlet.2021.153246
- Patel N, Sood R, Bharatam PV (2018)
NL2+ Systems as New-Generation
Phase-Transfer Catalysts. Chem Rev 118:8770-8785.
https://doi.org/10.1021/acs.chemrev.8b00169
- Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK,
Bharatam PV (2018) Can Remote N-Heterocyclic Carbenes Coordinate with
Main Group Elements? Synthesis, Structure, and Quantum Chemical
Analysis of N+-Centered Complexes. Chem Eur J
24:6418-6425. https://doi.org/10.1002/chem.201705999
- Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV (2021) Mesoionic and
N-heterocyclic Carbenes-Coordinated N+ Center:
Experimental and Computational Analysis. ChemPlusChem
https://doi.org/10.1002/cplu.202100281
- Gaussian 09, Revision B.01. Frisch MJ , Trucks GW, Schlegel HB,
Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B,
Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov
AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara, Toyota MK, Fukuda
R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven
T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers
E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J,
Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M,
Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C,
Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R,
Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth
GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O,
Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ, Gaussian, Inc.,
Wallingford CT, 2010.
- Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for
main group thermochemistry, thermochemical kinetics, noncovalent
interactions, excited states, and transition elements: Two new
functionals and systematic testing of four M06-class functionals and
12 other functionals. Theor Chem Acc 120:215-241.
http://dx.doi.org/10.1007/s00214-007-0401-8
- Hay PJ, Wadt WR (1985) Ab initio effective core potentials for
molecular calculations. Potentials for K to Au including the outermost
core orbitals. J Chem Phys 82:299-310.
https://doi.org/10.1063/1.448975
- Dunning TH (1989) Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen. J Chem
Phys 90:1007-1023. https://doi.org/10.1063/1.456153
- Lavallo V, Canac Y, Donnadieu B, Scheller WW, Bertrand G (2006)
Cyclopropenylidenes: From Interstellar Space to an Isolated Derivative
in the Laboratory. Science 312:722.
https://doi.org/10.1126/science.1126675
- Pranckevicius C, Liu LL, Bertrand g, Stephan DW (2016) Synthesis of a
Carbodicyclopropenylidene: A Carbodicarbene based Solely on Carbon.
Angew Chem Int Ed 55:5536-5540.
https://doi.org/10.1002/anie.201600765
- Ishida Y, Donnadieu B, Bertrand G (2006) Stable four-π-electron,
four-membered heterocyclic cations and carbenes. Proc Natl Acad Sci
103:13585-13588. https://doi.org/10.1073/pnas.0604761103
- Piel I, Pawelczyk MD, Hirano K, Frohlich R, Glorius F (2011) A Family
of Thiazolium Salt Derived N-Heterocyclic Carbenes (NHCs) for
Organocatalysis: Synthesis, Investigation and Application in
Cross-Benzoin Condensation. Eur J Org Chem 5475–5484.
https://doi.org/10.1002/ejoc.201100870
- Soleilhavoup M, Bertrand G (2015) Cyclic (Alkyl)(Amino)Carbenes
(CAACs): Stable Carbenes on the Rise.
Acc
Chem Res 48:256–266. https://doi.org/10.1021/ar5003494