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Abstract. In the paper, the author presents three integral representations of

extended central binomial coefficient, proves decreasing and increasing proper-
ties of two power-exponential functions involving extended (central) binomial

coefficients, derives several double inequalities for bounding extended (central)

binomial coefficient, and compares with known results.
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1. Motivations

In this paper, we use the following natation:

Z = {0,±1,±2, . . . }, N = {1, 2, . . . },
N0 = {0, 1, 2, . . . }, N− = {−1,−2, . . . }.

The classical Euler’s gamma function Γ(z) can be defined [21, Chapter 3] by

Γ(z) = lim
n→+∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }. (1.1)

It is known [21, Chapter 3] that

(1) the gamma function Γ(x) is positive on the intervals (0,+∞) and (−2k, 1−
2k) for k ∈ N, see [21, p. 44, Figure 3.1];

(2) the gamma function Γ(x) is negative on the intervals (1 − 2k, 2 − 2k) for
k ∈ N, see [21, p. 44, Figure 3.1];
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(3) the gamma function Γ(z) is single-valued and analytic over the punctured
complex plane C \ {1− k, k ∈ N}, see [1, p. 255, 6.1.3];

(4) the gamma function Γ(z) has simple poles in the left half-plane at the points

1− k and the residue at 1− k is (−1)k−1

(k−1)! for k ∈ N, see [21, p. 44];

(5) the reciprocal 1
Γ(z) is an entire function possessing simple zeros at the points

1− k for k ∈ N, see [1, p. 255, 6.1.3].

The extended binomial coefficient
(
z
w

)
for z, w ∈ C is defined by

(
z

w

)
=



Γ(z + 1)

Γ(w + 1)Γ(z − w + 1)
, z ̸∈ N−, w, z − w ̸∈ N−;

0, z ̸∈ N−, w ∈ N− or z − w ∈ N−;

⟨z⟩w
w!

, z ∈ N−, w ∈ N0;

⟨z⟩z−w

(z − w)!
, z, w ∈ N−, z − w ∈ N0;

0, z, w ∈ N−, z − w ∈ N−;

∞, z ∈ N−, w ̸∈ Z,

(1.2)

where

⟨α⟩n =

n−1∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n+ 1), n ∈ N
1, n = 0

is called the falling factorial.
When defining extended binomial coefficient

(
z
w

)
in (1.2), we considered [9, The-

orem 1] and [12, Theorem 1.2], in which, among other things, the limit formula

lim
z→−k

Γ(nz)

Γ(qz)
= (−1)(n−q)k q

n

(qk)!

(nk)!

was obtained for k ∈ N0 and n, q ∈ N.
It is easy to see that

(
2z

z

)
=


Γ(2z + 1)

Γ2(z + 1)
, z ̸= −1

2
,−1,−3

2
,−2, . . . ;

0, z ∈ N−;

∞, z = −1

2
,−3

2
, . . . .

The above properties of the gamma function Γ(z) and its reciprocal 1
Γ(z) mean that

(1) extended central binomial coefficient
(
2z
z

)
is a single-valued and analytic

function over the punctured complex plane C \
{

1
2 − k, k ∈ N

}
;

(2) extended central binomial coefficient
(
2z
z

)
has simple poles at 1

2 −k and has
simple zeros at the points −k over C for k ∈ N;

(3) extended central binomial coefficient
(
2x
x

)
is positive on the intervals

(
− 1

2 ,+∞
)

and
(
1
2 − 2k, 1− 2k

)
for k ∈ N;

(4) extended central binomial coefficient
(
2x
x

)
is negative on intervals

(
1−2k, 32−

2k
)
for k ∈ N.

In the literature, there have been a number of estimates and inequalities of
central binomial coefficient

(
2n
n

)
for n ∈ N. See [8, 20, 22], for example.
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In [3, Corollary 3.2], [7, p. 2, Eq. (10)], [10, Theorem 3.1], and [18, Section 4.2],
among other things, the integral representations(

2n

n

)
=

1

π

∫ 4

0

√
x

4− x
xn−1 dx

=
2

π

∫ π/2

0

(2 sinx)2n dx

=
1

π

∫ +∞

0

1

(1/4 + x2)n+1
dx

(1.3)

for n ∈ {0} ∪ N were established and applied. See also [16, p. 57], [17, Section 2.4,
Theorem 7], and [19, Lemma 2.5 and Theorem 5.5].

In [6, p. 116, (10)], Merkle obtained that the double inequality

6x <
Γ(2(1 + x))

Γ2(1 + x)
< (1 + x)3x

holds for x ∈ (0, 1) and its reversed inequality is valid for x > 1. In other words,
the double inequality

6x

2x+ 1
>

(
2x

x

)
>

(x+ 1)3x

2x+ 1
(1.4)

is valid for x > 1 and its reversed version holds for 0 < x < 1.
In this paper, we aim to extend integral representations in (1.3) and to extend

and refine the double inequality (1.4).

2. Integral representations

In this section, we extend integral representations in (1.3).

Theorem 2.1. For z ∈ C such that ℜ(z) > − 1
2 , we have(

2z

z

)
=

1

π

∫ 4

0

√
x

4− x
xz−1 dx

=
2

π

∫ π/2

0

(2 sinx)2z dx

=
1

π

∫ +∞

0

1

(1/4 + x2)z+1
dx.

(2.1)

Proof. In [4, p. 19], Kazarinoff proved that∫ π/2

0

sinα x dx =

√
π

2

Γ
(
α+1
2

)
Γ
(
α+2
2

) , −1 < α < +∞. (2.2)

See also [10, p. 112, Remark 5], [11, p. 16, Section 2.3, (2.18)], [15, p. 34, Re-
mark 11.1], and [17, p. 5, (16)]. Replacing α > −1 by 2t > −1 in (2.2) gives∫ π/2

0

sin2t x dx =

√
π

2

Γ
(
2t+1
2

)
Γ(t+ 1)

=
π

22t+1

Γ(2t+ 1)

Γ2(t+ 1)
=

π

22t+1

(
2t

t

)
(2.3)

for − 1
2 < t < +∞. Further making use of the uniqueness theorem of analytic

functions in the theory of complex functions [5, p. 62, Theorem 3.2], we can extend
the integral representation in (2.3) from − 1

2 < t < +∞ to ℜ(z) > − 1
2 . The second

integral representation (2.1) is thus proved.
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The first and third integrals in (2.1) can be derived via variable substitutions
of definite integrals from the second integral in (2.1), as done in the proof of [14,
Theorem 1.3]. The proof of Theorem 2.1 is complete. □

Remark 2.1. The proof of Theorem 2.1 provides an alternative proof of the integral
representation of the Catalan numbers Cn = 1

n+1

(
2n
n

)
for n ≥ 0. Several integral

representations of the Catalan numbers Cn have been reviewed and surveyed in the
paper [17].

3. Monotonicity and inequalities

In this section, we present decreasing and increasing properties of two power-
exponential functions involving extended central binomial coefficient

(
2x
x

)
, derive

several inequalities for bounding extended central binomial coefficient
(
2x
x

)
, and

compare some of these inequalities with the double inequality (1.4).

Theorem 3.1. Let k ∈ N. The function

F1(x) =


[(

2x

x

)
(2x+ 1)

]1/x
, x ̸= 0

e2, x = 0

(3.1)

is decreasing on the interval
(
− 1

2 ,+∞
)
, with the limits

lim
x→(−1/2)+

F1(x) = π2 (3.2)

and

lim
x→+∞

F1(x) = 4. (3.3)

Proof. By straightforward computation, we obtain

lnF1(x) =
1

x

[
ln

Γ(2x+ 1)

Γ2(x+ 1)
+ ln(2x+ 1)

]
,

[x lnF1(x)]
′ = 2

[
ψ(2x+ 1)− ψ(x+ 1) +

1

2x+ 1

]
,

and

[x lnF1(x)]
′′ = 2

[
2ψ′(2x+ 1)− ψ′(x+ 1)− 2

(2x+ 1)2

]
.

Utilizing the duplication formula

ψ(2z) =
1

2
ψ(z) +

1

2
ψ

(
z +

1

2

)
+ ln 2, ℜ(z) > 0 (3.4)

in [1, p. 259, 6.3.8] gives

ψ′(2x+ 1) =
1

4

[
ψ′
(
x+

1

2

)
+ ψ′(x+ 1)

]
, x > −1

2
. (3.5)

Hence, we have

[x lnF1(x)]
′′ = ψ′

(
x+

1

2

)
− ψ′(x+ 1)− 1(

x+ 1
2

)2 , x > −1

2
.
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By the integral representations

Γ(z)

sz
=

∫ ∞

0

tz−1 e−st d t, s > 0, ℜ(z) > 0

and

ψ(n)(z) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−zt d t, ℜ(z) > 0, n ∈ N (3.6)

in [21, p. 49] and [1, p. 260, 6.4.1], respectively, we acquire

[x lnF1(x)]
′′ =

∫ ∞

0

(
1

1 + e−t/2
− 1

)
t e−(x+1/2)t d t < 0, x > −1

2
.

Therefore, the first derivative [x lnF1(x)]
′ is decreasing on

(
− 1

2 ,+∞
)
.

For a, b ∈ R with a < b, let f(x) and g(x) be continuous on [a, b], differentiable
on (a, b), and g′(x) ̸= 0 on (a, b). Theorem 1.25 in [2, pp. 10–11] reads that, if

the ratio f ′(x)
g′(x) is increasing (decreasing) on (a, b), so are f(x)−f(a)

g(x)−g(a) and f(x)−f(b)
g(x)−g(b) .

Taking [a, b] = [a, 0] ⊂
(
− 1

2 , 0
]
and letting

f(x) = x lnF1(x) = ln
Γ(2x+ 1)

Γ2(x+ 1)
+ ln(2x+ 1)

and g(x) = x, we acquire

f ′(x)

g′(x)
= [x lnF1(x)]

′,

which is decreasing on
(
− 1

2 ,+∞
)
. Accordingly, the ratio

f(x)

g(x)
= lnF1(x)

is decreasing on (a, 0). Due to a ∈
(
− 1

2 , 0
)
is arbitrary, the function lnF1(x)

is decreasing on
(
− 1

2 , 0
)
. Similarly, if taking [a, b] = [0, b] ⊂ [0,+∞), due to

b ∈ (0,+∞) is arbitrary, we can find that the function lnF1(x) is decreasing on
(0,+∞). In conclusion, the function F1(x) is decreasing on the interval

(
− 1

2 ,+∞
)
.

It is easy to see that

lim
x→(−1/2)+

lnF1(x) = −2 lim
x→(−1/2)+

[
ln Γ(2x+ 2)− ln Γ2(x+ 1)

]
= −2

[
ln Γ(1)− 2 ln Γ

(
1

2

)]
= 2 lnπ.

The limit (3.2) is thus proved.
By virtue of the L’Hôpital rule, we find

lim
x→∞

lnF1(x) = lim
x→∞

[x lnF1(x)]
′

= 2 lim
x→∞

[ψ(2x+ 1)− ψ(x+ 1)]

= 2 lim
x→∞

[ψ(2x+ 1)− ψ(x+ 1)]

= 2 lim
x→∞

[
1

2
ψ

(
x+

1

2

)
− 1

2
ψ(x+ 1) + ln 2

]
= 2 ln 2,
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where we used the duplication formula (3.4) and the limit formula

lim
x→∞

(
xk+1

[
ψ(k)(x+ a)− ψ(k)(x)

])
= (−1)kk!a, k ∈ N0, a ≥ 0 (3.7)

in [13, Lemma 2.5]. The limit (3.3) is thus proved. □

Corollary 3.1. For x ∈ (0,+∞), the double inequality

22x

2x+ 1
<

(
2x

x

)
<

e2x

2x+ 1

is sharp in the sense that the bases 2 and e cannot be replaced by any larger and
smaller constants, respectively.

For x ∈
(
− 1

2 , 0
)
, the double inequality

π2x

2x+ 1
<

(
2x

x

)
<

e2x

2x+ 1

is sharp in the sense that the bases π and e cannot be replaced by any larger and
smaller constants, respectively.

Proof. This follows from the limits (3.2) and (3.3), the definition F1(0) = e2, and
decreasing property of F1(x) on the interval

(
− 1

2 ,+∞
)
. □

Remark 3.1. From the limit (3.3), F1(0) = e2, and F1(1) = 6, by the decreasing
property of F1(x), we acquire

6 = F1(1) ≤ F1(x) ≤ F1(0) = e2, x ∈ [0, 1]

and

4 = lim
x→+∞

F1(x) < F1(x) ≤ F1(1) = 6, x ∈ [1,+∞).

Equivalently, we obtain

6x

2x+ 1
≤

(
2x

x

)
≤ e2x

2x+ 1
, x ∈ [0, 1] (3.8)

and
4x

2x+ 1
<

(
2x

x

)
≤ 6x

2x+ 1
, x ∈ [1,+∞). (3.9)

When 0 < x < x1 < 1, the upper bound in (3.8) is better than the corresponding

one in (1.4), where x1 is the unique positive root of the equation ln(x+1)
x = 2− ln 3.

When x > x2 > 1, the lower bound in (3.9) is better than the corresponding one

in (1.4), where x2 is the unique positive root of the equation ln(x+1)
x = 2 ln 2− ln 3.

Theorem 3.2. Let k ∈ N. The function

F2(x) =


(
2x+ 1

x

)1/x

, x ̸= 0

e, x = 0

(3.10)

is increasing on the interval
(
− 3

2 ,+∞
)
, with the limits

lim
x→(−3/2)+

F2(x) = 0 (3.11)

and

lim
x→+∞

F2(x) = 4. (3.12)



GENERALIZED CENTRAL BINOMIAL COEFFICIENTS 7

Proof. Taking the logarithm of F2(x) and differentiating yield

lnF2(x) =
1

x
ln

(
2x+ 1

x

)
=

1

x
ln

Γ(2x+ 2)

Γ(x+ 2)Γ(x+ 1)
,

[x lnF2(x)]
′ = 2ψ(2x+ 2)− ψ(x+ 2)− ψ(x+ 1),

[x lnF2(x)]
′′ = 4ψ′(2x+ 2)− ψ′(x+ 2)− ψ′(x+ 1).

Making use of the formulas (3.5) and (3.6), we arrive at

[x lnF2(x)]
′′ = ψ′

(
x+

3

2

)
− ψ′(x+ 2)

=

∫ ∞

0

t

1− e−t

(
1− e−t/2

)
e−(x+3/2)t d t

> 0.

Thus, the first derivative [x lnF2(x)]
′ is increasing on

(
− 3

2 ,+∞
)
.

Taking [a, b] = [a, 0] ⊂
(
− 3

2 , 0
]
and letting

f(x) = x lnF2(x) = ln

(
2x+ 1

x

)
and g(x) = x, we acquire

f ′(x)

g′(x)
= [x lnF2(x)]

′,

which is increasing on
(
− 3

2 ,+∞
)
. Accordingly, in the light of Theorem 1.25 in [2,

pp. 10–11] mentioned in the proof of Theorem 3.1 above, the ratio

f(x)

g(x)
= lnF2(x)

is increasing on (a, 0). Due to a ∈
(
− 3

2 , 0
)
is arbitrary, the function lnF2(x)

is increasing on
(
− 3

2 , 0
)
. Similarly, if taking [a, b] = [0, b] ⊂ [0,+∞), due to b ∈

(0,+∞) is arbitrary, we can find that the function lnF2(x) is increasing on (0,+∞).
In conclusion, the function F2(x) is increasing on the interval

(
− 3

2 ,+∞
)
.

It is straightforward that

lim
x→(−3/2)+

lnF2(x) = −2

3

(
ln

[
lim

x→(−3/2)+

Γ(2x+ 2)

Γ(x+ 1)

]
− ln Γ

(
1

2

))
= −2

3

[
ln

limx→(−1)+ Γ(x)

Γ(−1/2)
− ln Γ

(
1

2

)]
= −∞,

where we used the facts that

Γ

(
−1

2

)
= −2

√
π

and that

lim
x→(−1)+

Γ(x) = −∞.
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This limit can be seen from the definition (1.1) or can be deduced from

lim
z→−n

[(z + n)Γ(z)] =
(−1)n

n!
, n ∈ N0

in [21, p. 44]. The limit (3.11) is thus proved.
By virtue of the L’Hôpital rule, we obtain

lim
x→∞

lnF2(x) = lim
x→∞

[x lnF2(x)]
′

= lim
x→∞

[2ψ(2x+ 2)− ψ(x+ 2)− ψ(x+ 1)]

= lim
x→∞

[
ψ

(
x+

3

2

)
− ψ(x+ 2) + 2 ln 2

]
= 2 ln 2,

where we used the duplication formula (3.4) and the limit formula (3.7). The
limit (3.12) is thus proved. □

Corollary 3.2. For x ∈ (0,+∞), the double inequality

ex <

(
2x+ 1

x

)
=

(
2x

x

)
2x+ 1

x+ 1
< 4x

is sharp in the sense that the bases e and 4 cannot be replaced by any larger and
smaller constants, respectively.

For x ∈
(
− 3

2 , 0
)
, the double inequality

ex <

(
2x+ 1

x

)
=

(
2x

x

)
2x+ 1

x+ 1
< +∞

is sharp in the sense that the base e and the symbol +∞ cannot be replaced by any
larger and smaller constants.

Proof. This follows from the limits (3.11) and (3.12), the definition F2(0) = e, and
increasing property on the interval

(
− 3

2 ,+∞
)
. □

Remark 3.2. From the limit (3.12), F2(0) = e, F2(1) = 3, and the increasing
property of F2(z) on the interval

(
− 3

2 ,+∞
)
, we arrive at

e = F2(0) ≤ F2(x) ≤ F2(1) = 3, x ∈ [0, 1]

and

3 = F2(1) ≤ F2(x) < lim
x→∞

F2(x) = 4, x ∈ [1,+∞).

Equivalently, we acquire

(x+ 1) ex

2x+ 1
≤

(
2x

x

)
≤ (x+ 1)3x

2x+ 1
, x ∈ [0, 1] (3.13)

and
(x+ 1)3x

2x+ 1
≤

(
2x

x

)
<

(x+ 1)4x

2x+ 1
, x ∈ [1,+∞). (3.14)

When 0 < x < x3 < 1, the lower bound in (3.13) is better than the corresponding

one in (1.4), where x3 is the unique positive root of the equation ln(x+1)
x = ln 6− 1.

When x > x4 > 1, the upper bound in (3.14) is better than the corresponding one

in (1.4), where x4 is the unique positive root of the equation ln(x+1)
x = ln 6− 2 ln 2.
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4. Two problems

In this section, we pose two open problems to interested readers.

Problem 4.1. From poles and zeros of the gamma function Γ(z), the reciprocal
1

Γ(z) , and the extended binomial coefficient
(
2z
z

)
mentioned on pages 1 and 2 in

Section 1, we can immediately deduce the limits

lim
x→−k+

F1(x) = +∞

and
lim

x→(−1/2−k)−
F1(x) = 0

for k ∈ N. The function F1(x) defined by (3.1) is also decreasing on the intervals(
−1− k,− 1

2 − k
)
for k ∈ N.

Problem 4.2. From poles and zeros of the gamma function Γ(z), the reciprocal
1

Γ(z) , and the extended binomial coefficient
(
2z
z

)
mentioned on pages 1 and 2 in

Section 1, we can straightforwardly deduce the limits

lim
x→(−1/2−k)+

F2(x) = 0

and
lim

x→(−1−k)−
F2(x) = +∞

for k ∈ N. The function F2(x) defined by (3.10) is also increasing on the intervals(
− 3

2 − k,−1− k
)
for k ∈ N.
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