Bibliography
Amstutz C.L.,
Fristedt R., Schultink A., Merchant S.S., Niyogi K.K. & Malnoë A.
(2020) An atypical short-chain dehydrogenase-reductase functions in the
relaxation of photoprotective qH in Arabidopsis. Nature Plants6, 154–166.
Ancín M.,
Fernández-San Millán A., Larraya L., Morales F., Veramendi J., Aranjuelo
I. & Farran I. (2019) Overexpression of thioredoxin m in tobacco
chloroplasts inhibits the protein kinase STN7 and alters photosynthetic
performance. Journal of Experimental Botany 70,
1005–1016.
Andersson B. &
Aro E.-M. (2004) Photodamage and D1 protein turnover in photosystem II.
In Regulation of Photosynthesis. (eds E.-M. Aro & B. Andersson),
pp. 377–393. Kluwer Academic Publishers, Dordrecht.
Armbruster U.,
Carrillo L.R., Venema K., Pavlovic L., Schmidtmann E., Kornfeld A.,
Jahns P., Berry J.A., Kramer D.M. and Jonikas M.C. (2014) Ion antiport
accelerates photosynthetic acclimation in fluctuating light
environments. Nature Communications 5, 5439.
Arnoux P.,
Morosinotto T., Saga G., Bassi R. & Pignol D. (2009) A structural basis
for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.The Plant Cell 21, 2036–2044.
Aro E.-M., Virgin
I. & Andersson B. (1993) Photoinhibition of photosystem II.
Inactivation, protein damage and turnover. Biochimica et
Biophysica Acta (BBA)-Bioenergetics 1143, 113–134.
Asada K. (1996)
Radical production and scavenging in the chloroplasts. In
‘Photosynthesis and environment’.(Ed NR Baker) pp. 123–150. 123.
Bader M., Muse W.,
Ballou D.P., Gassner C. & Bardwell J.C. (1999) Oxidative protein
folding is driven by the electron transport system. Cell98, 217–227.
Balsera M. &
Buchanan B.B. (2019) Evolution of the thioredoxin system as a step
enabling adaptation to oxidative stress. Free Radical Biology &
Medicine 140, 28–35.
Balsera M.,
Uberegui E., Schürmann P. & Buchanan B.B. (2014) Evolutionary
development of redox regulation in chloroplasts. Antioxidants &
Redox Signaling 21, 1327–1355.
Bellafiore S.,
Barneche F., Peltier G. & Rochaix J.-D. (2005) State transitions and
light adaptation require chloroplast thylakoid protein kinase STN7.Nature 433, 892–895.
Bergner S.V.,
Scholz M., Trompelt K., Barth J., Gäbelein P., Steinbeck J., Xue H.,
Clowez S., Fucile G., Goldschmit-Clermont M., Fufezan C. and Hippler M.
(2015) STATE TRANSITION7-Dependent Phosphorylation Is Modulated by
Changing Environmental Conditions, and Its Absence Triggers Remodeling
of Photosynthetic Protein Complexes. Plant Physiology168, 615–634.
Bilger W. &
Björkman O. (1990) Role of the xanthophyll cycle in photoprotection
elucidated by measurements of light-induced absorbance changes,
fluorescence and photosynthesis in leaves of Hedera canariensis.Photosynthesis Research 25, 173–185.
Brooks M.D.,
Jansson S. & Niyogi K.K. (2014) PsbS-Dependent Non-Photochemical
Quenching. In Non-Photochemical Quenching and Energy Dissipation
in Plants, Algae and Cyanobacteria. Advances in photosynthesis and
respiration, (eds B. Demmig-Adams, G. Garab, W. Adams III & Govindjee),
pp. 297–314. Springer Netherlands, Dordrecht.
Brooks M.D.,
Sylak-Glassman E.J., Fleming G.R. & Niyogi K.K. (2013) A
thioredoxin-like/β-propeller protein maintains the efficiency of light
harvesting in Arabidopsis. Proceedings of the National Academy of
Sciences of the United States of America 110, E2733-40.
Bru P., Steen
C.J., Park S., Amstutz C.L., Sylak-Glassman E.J., Lam L., Fekete A.,
Mueller M.J., Longoni F., Fleming G.R., Niyogi K.K. and Malnoë A. (2021)
An energy-dissipative state of the major antenna complex of plants.BioRxiv.
Buchanan B.B. &
Balmer Y. (2005) Redox regulation: a broadening horizon. Annual
review of plant biology 56, 187–220.
Buchanan B.B.,
Holmgren A., Jacquot J.-P. & Scheibe R. (2012) Fifty years in the
thioredoxin field and a bountiful harvest. Biochimica et
Biophysica Acta 1820, 1822–1829.
Buchanan B.B.,
Kalberer P.P. & Arnon D.I. (1967) Ferredoxin-activated fructose
diphosphatase in isolated chloroplasts. Biochemical and
Biophysical Research Communications 29, 74–79.
Buchanan B.B. &
Luan S. (2005) Redox regulation in the chloroplast thylakoid lumen: a
new frontier in photosynthesis research. Journal of Experimental
Botany 56, 1439–1447.
Buchanan B.B.
(1980) Role of light in the regulation of chloroplast enzymes.Annual Review of Plant Physiology 31, 341–374.
Buchanan B.B.
(2016a) The path to thioredoxin and redox regulation in chloroplasts.Annual review of plant biology 67, 1–24.
Buchanan B.B. %J
A. review of plant biology (2016b) The path to thioredoxin and redox
regulation in chloroplasts. 67, 1–24.
Carrillo L.R.,
Froehlich J.E., Cruz J.A., Savage L.J. & Kramer D.M. (2016) Multi-level
regulation of the chloroplast ATP synthase: the chloroplast NADPH
thioredoxin reductase C (NTRC) is required for redox modulation
specifically under low irradiance. The Plant Journal 87,
654–663.
Cejudo F.J.,
González M.-C. & Pérez-Ruiz J.M. (2021) Redox regulation of chloroplast
metabolism. Plant Physiology 186, 9–21.
Cejudo F.J.,
Ojeda V., Delgado-Requerey V., González M. & Pérez-Ruiz J.M. (2019)
Chloroplast redox regulatory mechanisms in plant adaptation to light and
darkness. Frontiers in Plant Science 10, 380.
Chassin Y.,
Kapri-Pardes E., Sinvany G., Arad T. & Adam Z. (2002) Expression and
characterization of the thylakoid lumen protease DegP1 from Arabidopsis.Plant Physiology 130, 857–864.
Chiariello M.G.,
Grünewald F., Zarmiento-Garcia R. & Marrink S.J. (2023) pH-Dependent
Conformational Switch Impacts Stability of the PsbS Dimer. The
Journal of Physical Chemistry Letters 14, 905–911.
Collin V.,
Issakidis-Bourguet E., Marchand C., Hirasawa M., Lancelin J.-M., Knaff
D.B. & Miginiac-Maslow M. (2003) The Arabidopsis plastidial
thioredoxins: new functions and new insights into specificity. The
Journal of Biological Chemistry 278, 23747–23752.
Cremers C.M. &
Jakob U. (2013) Oxidant sensing by reversible disulfide bond formation.The Journal of Biological Chemistry 288, 26489–26496.
Cruz J.A., Avenson
T.J., Kanazawa A., Takizawa K., Edwards G.E. & Kramer D.M. (2005)
Plasticity in light reactions of photosynthesis for energy production
and photoprotection. Journal of Experimental Botany 56,
395–406.
Davis G.A.,
Rutherford A.W. & Kramer D.M. (2017) Hacking the thylakoid proton
motive force for improved photosynthesis: modulating ion flux rates that
control proton motive force partitioning into Δψ and ΔpH.Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences 372.
Demmig-Adams B.
& Adams W.W. (1996) The role of xanthophyll cycle carotenoids in the
protection of photosynthesis. Trends in Plant Science 1,
21–26.
Duan Z., Kong F.,
Zhang L., Li W., Zhang J. & Peng L. (2016) A bestrophin-like protein
modulates the proton motive force across the thylakoid membrane in
Arabidopsis. Journal of Integrative Plant Biology 58,
848–858.
Eliyahu E., Rog
I., Inbal D. & Danon A. (2015) ACHT4-driven oxidation of APS1
attenuates starch synthesis under low light intensity in Arabidopsis
plants. Proceedings of the National Academy of Sciences of the
United States of America 112, 12876–12881.
Foyer C.H. (2018)
Reactive oxygen species, oxidative signaling and the regulation of
photosynthesis. Environmental and experimental botany154, 134–142.
Geigenberger P.,
Thormählen I., Daloso D.M. & Fernie A.R. (2017) The unprecedented
versatility of the plant thioredoxin system. Trends in Plant
Science 22, 249–262.
Gopalan G., He
Z., Balmer Y., Romano P., Gupta R., Héroux A., … Luan S. (2004)
Structural analysis uncovers a role for redox in regulating FKBP13, an
immunophilin of the chloroplast thylakoid lumen. Proceedings of
the National Academy of Sciences of the United States of America101, 13945–13950.
Grauschopf U.,
Winther J.R., Korber P., Zander T., Dallinger P. & Bardwell J.C. (1995)
Why is DsbA such an oxidizing disulfide catalyst? Cell83, 947–955.
Gurrieri L.,
Fermani S., Zaffagnini M., Sparla F. & Trost P. (2021) Calvin-Benson
cycle regulation is getting complex. Trends in Plant Science26, 898–912.
Gururani M.A.,
Venkatesh J. & Tran L.S.P. (2015) Regulation of Photosynthesis during
Abiotic Stress-Induced Photoinhibition. Molecular Plant8, 1304–1320.
Hall M.,
Mata-Cabana A., Akerlund H.-E., Florencio F.J., Schröder W.P., Lindahl
M. & Kieselbach T. (2010) Thioredoxin targets of the plant chloroplast
lumen and their implications for plastid function. Proteomics10, 987–1001.
Hallin E.I., Guo
K. & Åkerlund H.-E. (2015) Violaxanthin de-epoxidase disulphides and
their role in activity and thermal stability. Photosynthesis
Research 124, 191–198.
Haussühl K.,
Andersson B. & Adamska I. (2001) A chloroplast DegP2 protease performs
the primary cleavage of the photodamaged D1 protein in plant photosystem
II. The EMBO Journal 20, 713–722.
Heldt H.W.,
Werdan K., Milovancev M. & Geller G. (1973) Alkalization of the
chloroplast stroma caused by light-dependent proton flux into the
thylakoid space. Biochimica et Biophysica Acta (BBA) -
Bioenergetics 314, 224–241.
Herdean A.,
Nziengui H., Zsiros O., Solymosi K., Garab G., Lundin B. & Spetea C.
(2016a) The arabidopsis thylakoid chloride channel atclce functions in
chloride homeostasis and regulation of photosynthetic electron
transport. Frontiers in Plant Science 7, 115.
Herdean A., Teardo
E., Nilsson A.K., Pfeil B.E., Johansson O.N., Ünnep R., Nagy G., Zsiros
O., Dana S., Solymosi K., Garab G., Szabó I., Spetea C. and Lundin B.
(2016b) A voltage-dependent chloride channel fine-tunes photosynthesis
in plants. Nature Communications 7, 11654.
Herrmann J.M.,
Kauff F. & Neuhaus H.E. (2009) Thiol oxidation in bacteria,
mitochondria and chloroplasts: common principles but three unrelated
machinery? Biochimica et Biophysica Acta 1793, 71–77.
Ito K. & Inaba K.
(2008) The disulfide bond formation (Dsb) system. Current Opinion
in Structural Biology 18, 450–458.
Kaiser E., Morales
A., Harbinson J., Kromdijk J., Heuvelink E. & Marcelis L.F.M. (2015)
Dynamic photosynthesis in different environmental conditions.Journal of Experimental Botany 66, 2415–2426.
Kanazawa A. &
Kramer D.M. (2002) In vivo modulation of nonphotochemical exciton
quenching (NPQ) by regulation of the chloroplast ATP synthase.Proceedings of the National Academy of Sciences of the United
States of America 99, 12789–12794.
Kanazawa A.,
Neofotis P., Davis G.A., Fisher N. & Kramer D.M. (2020) Diversity in
photoprotection and energy balancing in terrestrial and aquatic
phototrophs. In Photosynthesis in algae: biochemical and
physiological mechanisms. Advances in photosynthesis and respiration:
including bioenergy and related processes, (eds A.W.D. Larkum, A.R.
Grossman & J.A. Raven), pp. 299–327. Springer International
Publishing, Cham.
Karamoko M.,
Cline S., Redding K., Ruiz N. & Hamel P.P. (2011) Lumen Thiol
Oxidoreductase1, a disulfide bond-forming catalyst, is required for the
assembly of photosystem II in Arabidopsis. The Plant Cell23, 4462–4475.
Kato Y. &
Sakamoto W. (2018) Ftsh protease in the thylakoid membrane:
physiological functions and the regulation of protease activity.Frontiers in Plant Science 9, 855.
Kieselbach T.
(2013) Oxidative folding in chloroplasts. Antioxidants & Redox
Signaling 19, 72–82.
Kirchhoff H.
(2014) Structural changes of the thylakoid membrane network induced by
high light stress in plant chloroplasts. Phil. Trans. R. Soc. B369, 20130225.
Knopf R.R. &
Adam Z. (2018) Lumenal exposed regions of the D1 protein of PSII are
long enough to be degraded by the chloroplast Deg1 protease.Scientific Reports 8, 5230.
Kramer D.M.,
Avenson T.J. & Edwards G.E. (2004) Dynamic flexibility in the light
reactions of photosynthesis governed by both electron and proton
transfer reactions. Trends in Plant Science 9,
349–357.
Kramer D.M., Cruz
J.A. & Kanazawa A. (2003) Balancing the central roles of the thylakoid
proton gradient. Trends in Plant Science 8, 27–32.
Kramer D.M.,
Sacksteder C.A. & Cruz J.A. (1999) How acidic is the lumen?Springer Science and Business Media LLC.
Kramer D.M., Wise
R.R., Frederick J.R., Alm D.M., Hesketh J.D., Ort D.R. & Crofts A.R.
(1990) Regulation of coupling factor in field-grown sunflower: A Redox
model relating coupling factor activity to the activities of other
thioredoxin-dependent chloroplast enzymes. Photosynthesis
Research 26, 213–222.
Kromdijk J.,
Głowacka K., Leonelli L., Gabilly S.T., Iwai M., Niyogi K.K. & Long
S.P. (2016) Improving photosynthesis and crop productivity by
accelerating recovery from photoprotection. Science 354,
857–861.
Krupp R., Chan C.
& Missiakas D. (2001) DsbD-catalyzed transport of electrons across the
membrane of Escherichia coli. The Journal of Biological Chemistry276, 3696–3701.
Kunz H.-H., Gierth
M., Herdean A., Satoh-Cruz M., Kramer D.M., Spetea C. & Schroeder J.I.
(2014) Plastidial transporters KEA1, -2, and -3 are essential for
chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis.Proceedings of the National Academy of Sciences of the United
States of America 111, 7480–7485.
Lee K., Lee J., Kim
Y., Bae D., Kang K.Y., Yoon S.C. & Lim D. (2004) Defining the plant
disulfide proteome. Electrophoresis 25, 532–541.
Lemeille S.,
Willig A., Depège-Fargeix N., Delessert C., Bassi R. & Rochaix J.-D.
(2009) Analysis of the chloroplast protein kinase Stt7 during state
transitions. PLoS Biology 7, e45.
Lennartz K.,
Plücken H., Seidler A., Westhoff P., Bechtold N. & Meierhoff K. (2001)
HCF164 encodes a thioredoxin-like protein involved in the biogenesis of
the cytochrome b(6)f complex in Arabidopsis. The Plant Cell13, 2539–2551.
Levesque-Tremblay
G., Havaux M. & Ouellet F. (2009) The chloroplastic lipocalin AtCHL
prevents lipid peroxidation and protects Arabidopsis against oxidative
stress. The Plant Journal 60, 691–702.
Lindahl M., Tabak
S., Cseke L., Pichersky E., Andersson B. & Adam Z. (1996)
Identification, characterization, and molecular cloning of a homologue
of the bacterial FtsH protease in chloroplasts of higher plants.The Journal of Biological Chemistry 271, 29329–29334.
Li X.-P., Gilmore
A.M., Caffarri S., Bassi R., Golan T., Kramer D. & Niyogi K.K. (2004)
Regulation of photosynthetic light harvesting involves intrathylakoid
lumen pH sensing by the PsbS protein. The Journal of Biological
Chemistry 279, 22866–22874.
Lu Y., Du J.-J.,
Yu Z.-B., Peng J.-J., Xu J.-N. & Wang X.-Y. (2015) Identification of
potential targets for thylakoid oxidoreductase AtVKOR/LTO1 in
chloroplasts. Protein and Peptide Letters 22, 219–225.
Lu Y., Wang
H.-R., Li H., Cui H.-R., Feng Y.-G. & Wang X.-Y. (2013) A chloroplast
membrane protein LTO1/AtVKOR involving in redox regulation and ROS
homeostasis. Plant Cell Reports 32, 1427–1440.
Malnoë A.,
Schultink A., Shahrasbi S., Rumeau D., Havaux M. & Niyogi K.K. (2018)
The plastid lipocalin LCNP is required for sustained photoprotective
energy dissipation in arabidopsis. The Plant Cell 30,
196–208.
Malnoë A. (2018)
Photoinhibition or photoprotection of photosynthesis? Update on the
(newly termed) sustained quenching component qH. Environmental and
experimental botany 154, 123–133.
Marchand C., Le
Maréchal P., Meyer Y. & Decottignies P. (2006) Comparative proteomic
approaches for the isolation of proteins interacting with thioredoxin.Proteomics 6, 6528–6537.
Meurer J.,
Meierhoff K. & Westhoff P. (1996) Isolation of
high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their
characterisation by spectroscopy, immunoblotting and northern
hybridisation. Planta 198, 385–396.
Meurer J.,
Plücken H., Kowallik K.V. & Westhoff P. (1998) A nuclear-encoded
protein of prokaryotic origin is essential for the stability of
photosystem II in Arabidopsis thaliana. The EMBO Journal17, 5286–5297.
Meyer Y., Belin
C., Delorme-Hinoux V., Reichheld J.-P. & Riondet C. (2012) Thioredoxin
and glutaredoxin systems in plants: molecular mechanisms, crosstalks,
and functional significance. Antioxidants & Redox Signaling17, 1124–1160.
Michelet L.,
Zaffagnini M., Morisse S., Sparla F., Pérez-Pérez M.E., Francia F.,
Danon A., Marchand C.H., Fermani S., Trost P. and Lemaire S.D. (2013)
Redox regulation of the Calvin-Benson cycle: something old, something
new. Frontiers in Plant Science 4, 470.
Montrichard F.,
Alkhalfioui F., Yano H., Vensel W.H., Hurkman W.J. & Buchanan B.B.
(2009) Thioredoxin targets in plants: the first 30 years. Journal
of Proteomics 72, 452–474.
Motohashi K. &
Hisabori T. (2006) HCF164 receives reducing equivalents from stromal
thioredoxin across the thylakoid membrane and mediates reduction of
target proteins in the thylakoid lumen. The Journal of Biological
Chemistry 281, 35039–35047.
Motohashi K. &
Hisabori T. (2010) CcdA is a thylakoid membrane protein required for the
transfer of reducing equivalents from stroma to thylakoid lumen in the
higher plant chloroplast. Antioxidants & Redox Signaling13, 1169–1176.
Müller P., Li X.P.
& Niyogi K.K. (2001) Non-photochemical quenching. A response to excess
light energy. Plant Physiology 125, 1558–1566.
Murata N.,
Takahashi S., Nishiyama Y. & Allakhverdiev S.I. (2007) Photoinhibition
of photosystem II under environmental stress. Biochimica et
Biophysica Acta 1767, 414–421.
Nawrocki W.J.,
Liu X., Raber B., Hu C. & De Vitry C. (2021a) Molecular origins of
induction and loss of photoinhibition-related energy dissipation qI.Science ….
Nawrocki W.J.,
Liu X., Raber B., Hu C., de Vitry C., Bennett D.I.G. & Croce R. (2021b)
Molecular origins of induction and loss of photoinhibition-related
energy dissipation qI. Science Advances 7, eabj0055.
Neuhaus H.E. &
Emes M.J. (2000) Nonphotosynthetic metabolism in plastids. Annual
review of plant physiology and plant molecular biology 51,
111–140.
Nikkanen L. &
Rintamäki E. (2014) Thioredoxin-dependent regulatory networks in
chloroplasts under fluctuating light conditions. Phil. Trans. R.
Soc. B 369, 20130224.
Nilkens M., Kress
E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R. & Jahns P.
(2010) Identification of a slowly inducible zeaxanthin-dependent
component of non-photochemical quenching of chlorophyll fluorescence
generated under steady-state conditions in Arabidopsis. Biochimica
et Biophysica Acta 1797, 466–475.
Nishimura K., Kato
Y. & Sakamoto W. (2016) Chloroplast Proteases: Updates on Proteolysis
within and across Suborganellar Compartments. Plant Physiology171, 2280–2293.
Nishiyama Y.,
Allakhverdiev S.I. & Murata N. (2006) A new paradigm for the action of
reactive oxygen species in the photoinhibition of photosystem II.Biochimica et Biophysica Acta 1757, 742–749.
Niyogi K.K.,
Grossman A.R. & Björkman O. (1998) Arabidopsis mutants define a central
role for the xanthophyll cycle in the regulation of photosynthetic
energy conversion. The Plant Cell 10, 1121–1134.
Niyogi K.K., Li
X.-P., Rosenberg V. & Jung H.-S. (2005) Is PsbS the site of
non-photochemical quenching in photosynthesis? Journal of
Experimental Botany 56, 375–382.
Ojeda V.,
Pérez-Ruiz J.M. & Cejudo F.J. (2018) 2-Cys Peroxiredoxins Participate
in the Oxidation of Chloroplast Enzymes in the Dark. Molecular
Plant 11, 1377–1388.
Onda Y. (2013)
Oxidative protein-folding systems in plant cells. International
journal of cell biology 2013, 585431.
Ort D.R.,
Grandoni P., Ortiz-Lopez A. & Hangarter R.P. (1990) Control of
photophosphorylation by regulation of the coupling factor. Plant
biology (USA).
Page M.L.D.,
Hamel P.P., Gabilly S.T., Zegzouti H., Perea J.V., Alonso J.M., …
Merchant S. (2004) A homolog of prokaryotic thiol disulfide transporter
CcdA is required for the assembly of the cytochrome b6f complex in
Arabidopsis chloroplasts. The Journal of Biological Chemistry279, 32474–32482.
Pearcy R.W., Krall
J.P. & Sassenrath-Cole G.F. (2004) Photosynthesis in fluctuating light
environments. In Photosynthesis and the environment. (ed N.R.
Baker), pp. 321–346. Kluwer Academic Publishers, Dordrecht.
Pérez-Ruiz J.M.,
Naranjo B., Ojeda V., Guinea M. & Cejudo F.J. (2017) NTRC-dependent
redox balance of 2-Cys peroxiredoxins is needed for optimal function of
the photosynthetic apparatus. Proceedings of the National Academy
of Sciences of the United States of America 114,
12069–12074.
Pinnola A. &
Bassi R. (2018) Molecular mechanisms involved in plant photoprotection.Biochemical Society Transactions 46, 467–482.
Pulido P., Spínola
M.C., Kirchsteiger K., Guinea M., Pascual M.B., Sahrawy M., Sandalio
L.M., Dietz K.-J., González M. and Cejudo F.J. (2010) Functional
analysis of the pathways for 2-Cys peroxiredoxin reduction in
Arabidopsis thaliana chloroplasts. Journal of Experimental Botany61, 4043–4054.
Puthiyaveetil S.
(2011) A mechanism for regulation of chloroplast LHC II kinase by
plastoquinol and thioredoxin. FEBS Letters 585,
1717–1721.
Quick W.P. &
Stitt M. (1989) An examination of factors contributing to
non-photochemical quenching of chlorophyll fluorescence in barley
leaves. Biochimica et Biophysica Acta (BBA) - Bioenergetics977, 287–296.
Raven J.A. (2011)
The cost of photoinhibition. Physiologia Plantarum 142,
87–104.
Reardon-Robinson
M.E. & Ton-That H. (2015) Disulfide-Bond-Forming Pathways in
Gram-Positive Bacteria. Journal of Bacteriology 198,
746–754.
Saga G., Giorgetti
A., Fufezan C., Giacometti G.M., Bassi R. & Morosinotto T. (2010)
Mutation analysis of violaxanthin de-epoxidase identifies
substrate-binding sites and residues involved in catalysis. The
Journal of Biological Chemistry 285, 23763–23770.
Sassenrath G.F.,
Ort D.R. & Portis Jr A.R. (1990) Impaired reductive activation of
stromal bisphosphatases in tomato leaves following low-temperature
exposure at high light. Archives of Biochemistry and Biophysics282, 302–308.
Sauer R.T. & Baker
T.A. (2011) AAA+ proteases: ATP-fueled machines of protein destruction.Annual Review of Biochemistry 80, 587–612.
Schürmann P. &
Buchanan B.B. (2008) The ferredoxin/thioredoxin system of oxygenic
photosynthesis. Antioxidants & Redox Signaling 10,
1235–1274.
Schürmann P. &
Jacquot J.P. (2000) Plant thioredoxin systems revisited. Annual
review of plant biology 51, 371–400.
Serrato A.J.,
Pérez-Ruiz J.M., Spínola M.C. & Cejudo F.J. (2004) A novel NADPH
thioredoxin reductase, localized in the chloroplast, which deficiency
causes hypersensitivity to abiotic stress in Arabidopsis thaliana.The Journal of Biological Chemistry 279, 43821–43827.
Shapiguzov A.,
Chai X., Fucile G., Longoni P., Zhang L. & Rochaix J.-D. (2016)
Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the
Cytochrome b6f Complex. Plant Physiology 171, 82–92.
Simionato D.,
Basso S., Zaffagnini M., Lana T., Marzotto F., Trost P. & Morosinotto
T. (2015) Protein redox regulation in the thylakoid lumen: the
importance of disulfide bonds for violaxanthin de-epoxidase. FEBS
Letters 589, 919–923.
Slack F.J. &
Ruvkun G. (1998) A novel repeat domain that is often associated with
RING finger and B-box motifs. Trends in Biochemical Sciences23, 474–475.
Stitt M. (2004)
Metabolic regulation of photosynthesis. In Photosynthesis and the
environment. (ed N.R. Baker), pp. 151–190. Kluwer Academic Publishers,
Dordrecht.
Ströher E. &
Dietz K.-J. (2008) The dynamic thiol-disulphide redox proteome of the
Arabidopsis thaliana chloroplast as revealed by differential
electrophoretic mobility. Physiologia Plantarum 133,
566–583.
Takizawa K.,
Kanazawa A. & Kramer D.M. (2008) Depletion of stromal Pi induces high
‘energy‐dependent’ antenna exciton quenching (qE) by decreasing proton
conductivity at CFO‐CF1 ATP synthase. Plant, cell & environment31, 235–243.
Telman W.,
Liebthal M. & Dietz K.-J. (2020) Redox regulation by peroxiredoxins is
linked to their thioredoxin-dependent oxidase function.Photosynthesis Research 145, 31–41.
Tikkanen M.,
Mekala N.R. & Aro E.-M. (2014) Photosystem II photoinhibition-repair
cycle protects Photosystem I from irreversible damage. Biochimica
et Biophysica Acta 1837, 210–215.
Vaseghi M.-J.,
Chibani K., Telman W., Liebthal M.F., Gerken M., Schnitzer H., Mueller
S.M. and Dietz K.-J. (2018) The chloroplast 2-cysteine peroxiredoxin
functions as thioredoxin oxidase in redox regulation of chloroplast
metabolism. eLife 7.
Wang C., Yamamoto
H., Narumiya F., Munekage Y.N., Finazzi G., Szabo I. & Shikanai T.
(2017a) Fine-tuned regulation of the K+ /H+ antiporter KEA3 is required
to optimize photosynthesis during induction. The Plant Journal89, 540–553.
Wang F., Qi Y.,
Malnoë A., Choquet Y., Wollman F.-A. & de Vitry C. (2017b) The High
Light Response and Redox Control of Thylakoid FtsH Protease in
Chlamydomonas reinhardtii. Molecular Plant 10, 99–114.
Wang P., Liu J.,
Liu B., Feng D., Da Q., Wang P., Shu S., Su J., Zhang Y., Wang J. and
Wang H.-B. (2013) Evidence for a role of chloroplastic m-type
thioredoxins in the biogenesis of photosystem II in Arabidopsis.Plant Physiology 163, 1710–1728.
Waszczak C., Akter
S., Jacques S., Huang J., Messens J. & Van Breusegem F. (2015)
Oxidative post-translational modifications of cysteine residues in plant
signal transduction. Journal of Experimental Botany 66,
2923–2934.
Werdan K., Heldt
H.W. & Milovancev M. (1975) The role of pH in the regulation of carbon
fixation in the chloroplast stroma. Studies on CO2 fixation in the light
and dark. Biochimica et Biophysica Acta (BBA) - Bioenergetics396, 276–292.
Werdan K. &
Heldt H.W. (1972) Accumulation of bicarbonate in intact chloroplasts
following a pH gradient. Biochimica et Biophysica Acta283, 430–441.
Wolosiuk R.A. &
Buchanan B.B. (1977) Thioredoxin and glutathione regulate photosynthesis
in chloroplasts. Nature 266, 565–567.
Wunder T., Liu
Q., Aseeva E., Bonardi V., Leister D. & Pribil M. (2013) Control of
STN7 transcript abundance and transient STN7 dimerisation are involved
in the regulation of STN7 activity. Planta 237,
541–558.
Wu J., Rong L.,
Lin W., Kong L., Wei D., Zhang L., Rochaix J.-D. and Xu X. (2021)
Functional redox links between lumen thiol oxidoreductase1 and
serine/threonine-protein kinase STN7. Plant Physiology186, 964–976.
Wu W. & Berkowitz
G.A. (1992) Stromal pH and Photosynthesis Are Affected by Electroneutral
K and H Exchange through Chloroplast Envelope Ion Channels. Plant
Physiology 98, 666–672.
Yokochi Y.,
Fukushi Y., Wakabayashi K.-I., Yoshida K. & Hisabori T. (2021)
Oxidative regulation of chloroplast enzymes by thioredoxin and
thioredoxin-like proteins in Arabidopsis thaliana. Proceedings of
the National Academy of Sciences of the United States of America118.
Yokochi Y.,
Sugiura K., Takemura K., Yoshida K., Hara S., Wakabayashi K.-I., Kitano
A. and Hisabori T. (2019) Impact of key residues within chloroplast
thioredoxin-f on recognition for reduction and oxidation of target
proteins. The Journal of Biological Chemistry 294,
17437–17450.
Yoshida K., Hara
A., Sugiura K., Fukaya Y. & Hisabori T. (2018) Thioredoxin-like2/2-Cys
peroxiredoxin redox cascade supports oxidative thiol modulation in
chloroplasts. Proceedings of the National Academy of Sciences of
the United States of America 115, E8296–E8304.
Yoshida K., Hara
S. & Hisabori T. (2015) Thioredoxin Selectivity for Thiol-based Redox
Regulation of Target Proteins in Chloroplasts. The Journal of
Biological Chemistry 290, 14278–14288.
Yoshida K. &
Hisabori T. (2016) Two distinct redox cascades cooperatively regulate
chloroplast functions and sustain plant viability. Proceedings of
the National Academy of Sciences of the United States of America113, E3967-76.
Yoshida K.,
Matsuoka Y., Hara S., Konno H. & Hisabori T. (2014) Distinct redox
behaviors of chloroplast thiol enzymes and their relationships with
photosynthetic electron transport in Arabidopsis thaliana. Plant
& Cell Physiology 55, 1415–1425.
Yoshida K.,
Yokochi Y. & Hisabori T. (2019) New light on chloroplast redox
regulation: molecular mechanism of protein thiol oxidation.Frontiers in Plant Science 10, 1534.
Yu G., Hao J.,
Pan X., Shi L., Zhang Y., Wang J., Fan H., Xiao Y., Yang F., Lou J.,
Chang W., Malnoë A. and Li M. (2022) Structure of Arabidopsis SOQ1
lumenal region unveils C-terminal domain essential for negative
regulation of photoprotective qH. Nature Plants 8,
840–855.
Yu Z.-B., Lu Y.,
Du J.-J., Peng J.-J. & Wang X.-Y. (2014) The chloroplast protein
LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of
D1 protein degradation. Journal of Photochemistry and Photobiology
B: Biology 130, 68–75.
Zaltsman A., Ori
N. & Adam Z. (2005) Two types of FtsH protease subunits are required
for chloroplast biogenesis and Photosystem II repair in Arabidopsis.The Plant Cell 17, 2782–2790.
Zhu X.-G., Long
S.P. & Ort D.R. (2010) Improving photosynthetic efficiency for greater
yield. Annual review of plant biology 61, 235–261.