Bibliography
Amstutz C.L., Fristedt R., Schultink A., Merchant S.S., Niyogi K.K. & Malnoë A. (2020) An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nature Plants6, 154–166.
Ancín M., Fernández-San Millán A., Larraya L., Morales F., Veramendi J., Aranjuelo I. & Farran I. (2019) Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance. Journal of Experimental Botany 70, 1005–1016.
Andersson B. & Aro E.-M. (2004) Photodamage and D1 protein turnover in photosystem II. In Regulation of Photosynthesis. (eds E.-M. Aro & B. Andersson), pp. 377–393. Kluwer Academic Publishers, Dordrecht.
Armbruster U., Carrillo L.R., Venema K., Pavlovic L., Schmidtmann E., Kornfeld A., Jahns P., Berry J.A., Kramer D.M. and Jonikas M.C. (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nature Communications 5, 5439.
Arnoux P., Morosinotto T., Saga G., Bassi R. & Pignol D. (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.The Plant Cell 21, 2036–2044.
Aro E.-M., Virgin I. & Andersson B. (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1143, 113–134.
Asada K. (1996) Radical production and scavenging in the chloroplasts. In ‘Photosynthesis and environment’.(Ed NR Baker) pp. 123–150. 123.
Bader M., Muse W., Ballou D.P., Gassner C. & Bardwell J.C. (1999) Oxidative protein folding is driven by the electron transport system. Cell98, 217–227.
Balsera M. & Buchanan B.B. (2019) Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radical Biology & Medicine 140, 28–35.
Balsera M., Uberegui E., Schürmann P. & Buchanan B.B. (2014) Evolutionary development of redox regulation in chloroplasts. Antioxidants & Redox Signaling 21, 1327–1355.
Bellafiore S., Barneche F., Peltier G. & Rochaix J.-D. (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7.Nature 433, 892–895.
Bergner S.V., Scholz M., Trompelt K., Barth J., Gäbelein P., Steinbeck J., Xue H., Clowez S., Fucile G., Goldschmit-Clermont M., Fufezan C. and Hippler M. (2015) STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. Plant Physiology168, 615–634.
Bilger W. & Björkman O. (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.Photosynthesis Research 25, 173–185.
Brooks M.D., Jansson S. & Niyogi K.K. (2014) PsbS-Dependent Non-Photochemical Quenching. In Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in photosynthesis and respiration, (eds B. Demmig-Adams, G. Garab, W. Adams III & Govindjee), pp. 297–314. Springer Netherlands, Dordrecht.
Brooks M.D., Sylak-Glassman E.J., Fleming G.R. & Niyogi K.K. (2013) A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110, E2733-40.
Bru P., Steen C.J., Park S., Amstutz C.L., Sylak-Glassman E.J., Lam L., Fekete A., Mueller M.J., Longoni F., Fleming G.R., Niyogi K.K. and Malnoë A. (2021) An energy-dissipative state of the major antenna complex of plants.BioRxiv.
Buchanan B.B. & Balmer Y. (2005) Redox regulation: a broadening horizon. Annual review of plant biology 56, 187–220.
Buchanan B.B., Holmgren A., Jacquot J.-P. & Scheibe R. (2012) Fifty years in the thioredoxin field and a bountiful harvest. Biochimica et Biophysica Acta 1820, 1822–1829.
Buchanan B.B., Kalberer P.P. & Arnon D.I. (1967) Ferredoxin-activated fructose diphosphatase in isolated chloroplasts. Biochemical and Biophysical Research Communications 29, 74–79.
Buchanan B.B. & Luan S. (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. Journal of Experimental Botany 56, 1439–1447.
Buchanan B.B. (1980) Role of light in the regulation of chloroplast enzymes.Annual Review of Plant Physiology 31, 341–374.
Buchanan B.B. (2016a) The path to thioredoxin and redox regulation in chloroplasts.Annual review of plant biology 67, 1–24.
Buchanan B.B. %J A. review of plant biology (2016b) The path to thioredoxin and redox regulation in chloroplasts. 67, 1–24.
Carrillo L.R., Froehlich J.E., Cruz J.A., Savage L.J. & Kramer D.M. (2016) Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. The Plant Journal 87, 654–663.
Cejudo F.J., González M.-C. & Pérez-Ruiz J.M. (2021) Redox regulation of chloroplast metabolism. Plant Physiology 186, 9–21.
Cejudo F.J., Ojeda V., Delgado-Requerey V., González M. & Pérez-Ruiz J.M. (2019) Chloroplast redox regulatory mechanisms in plant adaptation to light and darkness. Frontiers in Plant Science 10, 380.
Chassin Y., Kapri-Pardes E., Sinvany G., Arad T. & Adam Z. (2002) Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis.Plant Physiology 130, 857–864.
Chiariello M.G., Grünewald F., Zarmiento-Garcia R. & Marrink S.J. (2023) pH-Dependent Conformational Switch Impacts Stability of the PsbS Dimer. The Journal of Physical Chemistry Letters 14, 905–911.
Collin V., Issakidis-Bourguet E., Marchand C., Hirasawa M., Lancelin J.-M., Knaff D.B. & Miginiac-Maslow M. (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. The Journal of Biological Chemistry 278, 23747–23752.
Cremers C.M. & Jakob U. (2013) Oxidant sensing by reversible disulfide bond formation.The Journal of Biological Chemistry 288, 26489–26496.
Cruz J.A., Avenson T.J., Kanazawa A., Takizawa K., Edwards G.E. & Kramer D.M. (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany 56, 395–406.
Davis G.A., Rutherford A.W. & Kramer D.M. (2017) Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δψ and ΔpH.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 372.
Demmig-Adams B. & Adams W.W. (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1, 21–26.
Duan Z., Kong F., Zhang L., Li W., Zhang J. & Peng L. (2016) A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. Journal of Integrative Plant Biology 58, 848–858.
Eliyahu E., Rog I., Inbal D. & Danon A. (2015) ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants. Proceedings of the National Academy of Sciences of the United States of America 112, 12876–12881.
Foyer C.H. (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and experimental botany154, 134–142.
Geigenberger P., Thormählen I., Daloso D.M. & Fernie A.R. (2017) The unprecedented versatility of the plant‎ thioredoxin system. Trends in Plant Science 22, 249–262.
Gopalan G., He Z., Balmer Y., Romano P., Gupta R., Héroux A., … Luan S. (2004) Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. Proceedings of the National Academy of Sciences of the United States of America101, 13945–13950.
Grauschopf U., Winther J.R., Korber P., Zander T., Dallinger P. & Bardwell J.C. (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell83, 947–955.
Gurrieri L., Fermani S., Zaffagnini M., Sparla F. & Trost P. (2021) Calvin-Benson cycle regulation is getting complex. Trends in Plant Science26, 898–912.
Gururani M.A., Venkatesh J. & Tran L.S.P. (2015) Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. Molecular Plant8, 1304–1320.
Hall M., Mata-Cabana A., Akerlund H.-E., Florencio F.J., Schröder W.P., Lindahl M. & Kieselbach T. (2010) Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function. Proteomics10, 987–1001.
Hallin E.I., Guo K. & Åkerlund H.-E. (2015) Violaxanthin de-epoxidase disulphides and their role in activity and thermal stability. Photosynthesis Research 124, 191–198.
Haussühl K., Andersson B. & Adamska I. (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. The EMBO Journal 20, 713–722.
Heldt H.W., Werdan K., Milovancev M. & Geller G. (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochimica et Biophysica Acta (BBA) - Bioenergetics 314, 224–241.
Herdean A., Nziengui H., Zsiros O., Solymosi K., Garab G., Lundin B. & Spetea C. (2016a) The arabidopsis thylakoid chloride channel atclce functions in chloride homeostasis and regulation of photosynthetic electron transport. Frontiers in Plant Science 7, 115.
Herdean A., Teardo E., Nilsson A.K., Pfeil B.E., Johansson O.N., Ünnep R., Nagy G., Zsiros O., Dana S., Solymosi K., Garab G., Szabó I., Spetea C. and Lundin B. (2016b) A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nature Communications 7, 11654.
Herrmann J.M., Kauff F. & Neuhaus H.E. (2009) Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machinery? Biochimica et Biophysica Acta 1793, 71–77.
Ito K. & Inaba K. (2008) The disulfide bond formation (Dsb) system. Current Opinion in Structural Biology 18, 450–458.
Kaiser E., Morales A., Harbinson J., Kromdijk J., Heuvelink E. & Marcelis L.F.M. (2015) Dynamic photosynthesis in different environmental conditions.Journal of Experimental Botany 66, 2415–2426.
Kanazawa A. & Kramer D.M. (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase.Proceedings of the National Academy of Sciences of the United States of America 99, 12789–12794.
Kanazawa A., Neofotis P., Davis G.A., Fisher N. & Kramer D.M. (2020) Diversity in photoprotection and energy balancing in terrestrial and aquatic phototrophs. In Photosynthesis in algae: biochemical and physiological mechanisms. Advances in photosynthesis and respiration: including bioenergy and related processes, (eds A.W.D. Larkum, A.R. Grossman & J.A. Raven), pp. 299–327. Springer International Publishing, Cham.
Karamoko M., Cline S., Redding K., Ruiz N. & Hamel P.P. (2011) Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. The Plant Cell23, 4462–4475.
Kato Y. & Sakamoto W. (2018) Ftsh protease in the thylakoid membrane: physiological functions and the regulation of protease activity.Frontiers in Plant Science 9, 855.
Kieselbach T. (2013) Oxidative folding in chloroplasts. Antioxidants & Redox Signaling 19, 72–82.
Kirchhoff H. (2014) Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Phil. Trans. R. Soc. B369, 20130225.
Knopf R.R. & Adam Z. (2018) Lumenal exposed regions of the D1 protein of PSII are long enough to be degraded by the chloroplast Deg1 protease.Scientific Reports 8, 5230.
Kramer D.M., Avenson T.J. & Edwards G.E. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends in Plant Science 9, 349–357.
Kramer D.M., Cruz J.A. & Kanazawa A. (2003) Balancing the central roles of the thylakoid proton gradient. Trends in Plant Science 8, 27–32.
Kramer D.M., Sacksteder C.A. & Cruz J.A. (1999) How acidic is the lumen?Springer Science and Business Media LLC.
Kramer D.M., Wise R.R., Frederick J.R., Alm D.M., Hesketh J.D., Ort D.R. & Crofts A.R. (1990) Regulation of coupling factor in field-grown sunflower: A Redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynthesis Research 26, 213–222.
Kromdijk J., Głowacka K., Leonelli L., Gabilly S.T., Iwai M., Niyogi K.K. & Long S.P. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861.
Krupp R., Chan C. & Missiakas D. (2001) DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. The Journal of Biological Chemistry276, 3696–3701.
Kunz H.-H., Gierth M., Herdean A., Satoh-Cruz M., Kramer D.M., Spetea C. & Schroeder J.I. (2014) Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis.Proceedings of the National Academy of Sciences of the United States of America 111, 7480–7485.
Lee K., Lee J., Kim Y., Bae D., Kang K.Y., Yoon S.C. & Lim D. (2004) Defining the plant disulfide proteome. Electrophoresis 25, 532–541.
Lemeille S., Willig A., Depège-Fargeix N., Delessert C., Bassi R. & Rochaix J.-D. (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biology 7, e45.
Lennartz K., Plücken H., Seidler A., Westhoff P., Bechtold N. & Meierhoff K. (2001) HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b(6)f complex in Arabidopsis. The Plant Cell13, 2539–2551.
Levesque-Tremblay G., Havaux M. & Ouellet F. (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. The Plant Journal 60, 691–702.
Lindahl M., Tabak S., Cseke L., Pichersky E., Andersson B. & Adam Z. (1996) Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants.The Journal of Biological Chemistry 271, 29329–29334.
Li X.-P., Gilmore A.M., Caffarri S., Bassi R., Golan T., Kramer D. & Niyogi K.K. (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. The Journal of Biological Chemistry 279, 22866–22874.
Lu Y., Du J.-J., Yu Z.-B., Peng J.-J., Xu J.-N. & Wang X.-Y. (2015) Identification of potential targets for thylakoid oxidoreductase AtVKOR/LTO1 in chloroplasts. Protein and Peptide Letters 22, 219–225.
Lu Y., Wang H.-R., Li H., Cui H.-R., Feng Y.-G. & Wang X.-Y. (2013) A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis. Plant Cell Reports 32, 1427–1440.
Malnoë A., Schultink A., Shahrasbi S., Rumeau D., Havaux M. & Niyogi K.K. (2018) The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in arabidopsis. The Plant Cell 30, 196–208.
Malnoë A. (2018) Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environmental and experimental botany 154, 123–133.
Marchand C., Le Maréchal P., Meyer Y. & Decottignies P. (2006) Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin.Proteomics 6, 6528–6537.
Meurer J., Meierhoff K. & Westhoff P. (1996) Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and northern hybridisation. Planta 198, 385–396.
Meurer J., Plücken H., Kowallik K.V. & Westhoff P. (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. The EMBO Journal17, 5286–5297.
Meyer Y., Belin C., Delorme-Hinoux V., Reichheld J.-P. & Riondet C. (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxidants & Redox Signaling17, 1124–1160.
Michelet L., Zaffagnini M., Morisse S., Sparla F., Pérez-Pérez M.E., Francia F., Danon A., Marchand C.H., Fermani S., Trost P. and Lemaire S.D. (2013) Redox regulation of the Calvin-Benson cycle: something old, something new. Frontiers in Plant Science 4, 470.
Montrichard F., Alkhalfioui F., Yano H., Vensel W.H., Hurkman W.J. & Buchanan B.B. (2009) Thioredoxin targets in plants: the first 30 years. Journal of Proteomics 72, 452–474.
Motohashi K. & Hisabori T. (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. The Journal of Biological Chemistry 281, 35039–35047.
Motohashi K. & Hisabori T. (2010) CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxidants & Redox Signaling13, 1169–1176.
Müller P., Li X.P. & Niyogi K.K. (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125, 1558–1566.
Murata N., Takahashi S., Nishiyama Y. & Allakhverdiev S.I. (2007) Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta 1767, 414–421.
Nawrocki W.J., Liu X., Raber B., Hu C. & De Vitry C. (2021a) Molecular origins of induction and loss of photoinhibition-related energy dissipation qI.Science ….
Nawrocki W.J., Liu X., Raber B., Hu C., de Vitry C., Bennett D.I.G. & Croce R. (2021b) Molecular origins of induction and loss of photoinhibition-related energy dissipation qI. Science Advances 7, eabj0055.
Neuhaus H.E. & Emes M.J. (2000) Nonphotosynthetic metabolism in plastids. Annual review of plant physiology and plant molecular biology 51, 111–140.
Nikkanen L. & Rintamäki E. (2014) Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Phil. Trans. R. Soc. B 369, 20130224.
Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R. & Jahns P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochimica et Biophysica Acta 1797, 466–475.
Nishimura K., Kato Y. & Sakamoto W. (2016) Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. Plant Physiology171, 2280–2293.
Nishiyama Y., Allakhverdiev S.I. & Murata N. (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II.Biochimica et Biophysica Acta 1757, 742–749.
Niyogi K.K., Grossman A.R. & Björkman O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10, 1121–1134.
Niyogi K.K., Li X.-P., Rosenberg V. & Jung H.-S. (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany 56, 375–382.
Ojeda V., Pérez-Ruiz J.M. & Cejudo F.J. (2018) 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. Molecular Plant 11, 1377–1388.
Onda Y. (2013) Oxidative protein-folding systems in plant cells. International journal of cell biology 2013, 585431.
Ort D.R., Grandoni P., Ortiz-Lopez A. & Hangarter R.P. (1990) Control of photophosphorylation by regulation of the coupling factor. Plant biology (USA).
Page M.L.D., Hamel P.P., Gabilly S.T., Zegzouti H., Perea J.V., Alonso J.M., … Merchant S. (2004) A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts. The Journal of Biological Chemistry279, 32474–32482.
Pearcy R.W., Krall J.P. & Sassenrath-Cole G.F. (2004) Photosynthesis in fluctuating light environments. In Photosynthesis and the environment. (ed N.R. Baker), pp. 321–346. Kluwer Academic Publishers, Dordrecht.
Pérez-Ruiz J.M., Naranjo B., Ojeda V., Guinea M. & Cejudo F.J. (2017) NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences of the United States of America 114, 12069–12074.
Pinnola A. & Bassi R. (2018) Molecular mechanisms involved in plant photoprotection.Biochemical Society Transactions 46, 467–482.
Pulido P., Spínola M.C., Kirchsteiger K., Guinea M., Pascual M.B., Sahrawy M., Sandalio L.M., Dietz K.-J., González M. and Cejudo F.J. (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany61, 4043–4054.
Puthiyaveetil S. (2011) A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin. FEBS Letters 585, 1717–1721.
Quick W.P. & Stitt M. (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta (BBA) - Bioenergetics977, 287–296.
Raven J.A. (2011) The cost of photoinhibition. Physiologia Plantarum 142, 87–104.
Reardon-Robinson M.E. & Ton-That H. (2015) Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria. Journal of Bacteriology 198, 746–754.
Saga G., Giorgetti A., Fufezan C., Giacometti G.M., Bassi R. & Morosinotto T. (2010) Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. The Journal of Biological Chemistry 285, 23763–23770.
Sassenrath G.F., Ort D.R. & Portis Jr A.R. (1990) Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. Archives of Biochemistry and Biophysics282, 302–308.
Sauer R.T. & Baker T.A. (2011) AAA+ proteases: ATP-fueled machines of protein destruction.Annual Review of Biochemistry 80, 587–612.
Schürmann P. & Buchanan B.B. (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxidants & Redox Signaling 10, 1235–1274.
Schürmann P. & Jacquot J.P. (2000) Plant thioredoxin systems revisited. Annual review of plant biology 51, 371–400.
Serrato A.J., Pérez-Ruiz J.M., Spínola M.C. & Cejudo F.J. (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana.The Journal of Biological Chemistry 279, 43821–43827.
Shapiguzov A., Chai X., Fucile G., Longoni P., Zhang L. & Rochaix J.-D. (2016) Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex. Plant Physiology 171, 82–92.
Simionato D., Basso S., Zaffagnini M., Lana T., Marzotto F., Trost P. & Morosinotto T. (2015) Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase. FEBS Letters 589, 919–923.
Slack F.J. & Ruvkun G. (1998) A novel repeat domain that is often associated with RING finger and B-box motifs. Trends in Biochemical Sciences23, 474–475.
Stitt M. (2004) Metabolic regulation of photosynthesis. In Photosynthesis and the environment. (ed N.R. Baker), pp. 151–190. Kluwer Academic Publishers, Dordrecht.
Ströher E. & Dietz K.-J. (2008) The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. Physiologia Plantarum 133, 566–583.
Takizawa K., Kanazawa A. & Kramer D.M. (2008) Depletion of stromal Pi induces high ‘energy‐dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CFO‐CF1 ATP synthase. Plant, cell & environment31, 235–243.
Telman W., Liebthal M. & Dietz K.-J. (2020) Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research 145, 31–41.
Tikkanen M., Mekala N.R. & Aro E.-M. (2014) Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochimica et Biophysica Acta 1837, 210–215.
Vaseghi M.-J., Chibani K., Telman W., Liebthal M.F., Gerken M., Schnitzer H., Mueller S.M. and Dietz K.-J. (2018) The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7.
Wang C., Yamamoto H., Narumiya F., Munekage Y.N., Finazzi G., Szabo I. & Shikanai T. (2017a) Fine-tuned regulation of the K+ /H+ antiporter KEA3 is required to optimize photosynthesis during induction. The Plant Journal89, 540–553.
Wang F., Qi Y., Malnoë A., Choquet Y., Wollman F.-A. & de Vitry C. (2017b) The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. Molecular Plant 10, 99–114.
Wang P., Liu J., Liu B., Feng D., Da Q., Wang P., Shu S., Su J., Zhang Y., Wang J. and Wang H.-B. (2013) Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis.Plant Physiology 163, 1710–1728.
Waszczak C., Akter S., Jacques S., Huang J., Messens J. & Van Breusegem F. (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. Journal of Experimental Botany 66, 2923–2934.
Werdan K., Heldt H.W. & Milovancev M. (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochimica et Biophysica Acta (BBA) - Bioenergetics396, 276–292. Werdan K. & Heldt H.W. (1972) Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochimica et Biophysica Acta283, 430–441.
Wolosiuk R.A. & Buchanan B.B. (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266, 565–567.
Wunder T., Liu Q., Aseeva E., Bonardi V., Leister D. & Pribil M. (2013) Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. Planta 237, 541–558.
Wu J., Rong L., Lin W., Kong L., Wei D., Zhang L., Rochaix J.-D. and Xu X. (2021) Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7. Plant Physiology186, 964–976.
Wu W. & Berkowitz G.A. (1992) Stromal pH and Photosynthesis Are Affected by Electroneutral K and H Exchange through Chloroplast Envelope Ion Channels. Plant Physiology 98, 666–672.
Yokochi Y., Fukushi Y., Wakabayashi K.-I., Yoshida K. & Hisabori T. (2021) Oxidative regulation of chloroplast enzymes by thioredoxin and thioredoxin-like proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America118.
Yokochi Y., Sugiura K., Takemura K., Yoshida K., Hara S., Wakabayashi K.-I., Kitano A. and Hisabori T. (2019) Impact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins. The Journal of Biological Chemistry 294, 17437–17450.
Yoshida K., Hara A., Sugiura K., Fukaya Y. & Hisabori T. (2018) Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America 115, E8296–E8304.
Yoshida K., Hara S. & Hisabori T. (2015) Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts. The Journal of Biological Chemistry 290, 14278–14288.
Yoshida K. & Hisabori T. (2016) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences of the United States of America113, E3967-76.
Yoshida K., Matsuoka Y., Hara S., Konno H. & Hisabori T. (2014) Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Plant & Cell Physiology 55, 1415–1425.
Yoshida K., Yokochi Y. & Hisabori T. (2019) New light on chloroplast redox regulation: molecular mechanism of protein thiol oxidation.Frontiers in Plant Science 10, 1534.
Yu G., Hao J., Pan X., Shi L., Zhang Y., Wang J., Fan H., Xiao Y., Yang F., Lou J., Chang W., Malnoë A. and Li M. (2022) Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. Nature Plants 8, 840–855.
Yu Z.-B., Lu Y., Du J.-J., Peng J.-J. & Wang X.-Y. (2014) The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. Journal of Photochemistry and Photobiology B: Biology 130, 68–75.
Zaltsman A., Ori N. & Adam Z. (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis.The Plant Cell 17, 2782–2790.
Zhu X.-G., Long S.P. & Ort D.R. (2010) Improving photosynthetic efficiency for greater yield. Annual review of plant biology 61, 235–261.