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Abstract38

The ongoing explosion of fine-resolution movement data in animal systems provides a unique opportunity to39

empirically quantify spatial, temporal, and individual variation in transmission risk and improve our ability40

to forecast disease outbreaks. However, we lack a generalizable framework that can leverage movement41

data to quantify transmission risk and how it affects pathogen invasion and persistence on heterogeneous42

landscapes. We developed a flexible framework “Movement-driven modeling of spatio-temporal infection risk”43

(MoveSTIR) that leverages diverse data on animal movement to derive metrics of direct and indirect contact44

by decomposing transmission into constituent processes of contact formation and duration and pathogen45

deposition and acquisition. We use MoveSTIR to demonstrate that ignoring fine-scale animal movements on46

actual landscapes can mis-characterize transmission risk and epidemiological dynamics. MoveSTIR unifies47

previous work on epidemiological contact networks and can address applied and theoretical questions at the48

nexus of movement and disease ecology.49

Introduction50

Host contact and transmission processes are fundamental drivers of pathogen emergence and spread (Mc-51

Callum et al. 2001; Begon et al. 2002; Hopkins et al. 2020), but the environmental forces shaping these52

drivers remain poorly understood. Determining how and why transmission rates vary across the landscape53

can identify potential transmission hotspots, determine which individuals are involved in their generation,54

and optimize disease control strategies (Paull et al. 2012; Parratt et al. 2016). However, obtaining precise,55

accurate, and spatially explicit transmission metrics remains a major challenge in epidemiology and disease56

ecology (Albery et al. 2020b).57

The increasing ubiquity of movement data in livestock and wildlife systems provides a unique opportunity58

to empirically quantify spatial, temporal, and individual variation in transmission risk (Jacoby & Freeman59

2016; Dougherty et al. 2018). The data range from high-resolution GPS locations recording animal move-60

ments (Hooten et al. 2017), proximity loggers, camera traps or acoustic monitors that detect hosts in the61

vicinity of other hosts or at specific locations (Stehlé et al. 2011b; Lavelle et al. 2016; Burton et al. 2015),62

and spatially explicit capture-recapture data that provide time-series of host movements between habitat63

patches or point locations (Cayuela et al. 2017; Royle et al. 2014; Silk et al. 2021). While most of these64

data sources can and have served as a basis for construction of spatially-explicit contact networks, discrete65

treatment of observations limits inference on contacts that are in reality occurring in continuous time. Out-66

standing challenges include scaling detected contacts that are collected at fixed time intervals to those that67
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occur in continuous time, and rooting emergent networks in epidemiological theory to accurately capture68

pathogen transmission. While there has been notable recent progress towards inferring contact structure69

from continuous-time animal movements (Gurarie & Ovaskainen 2013; Noonan et al. 2021), these approaches70

have lacked an epidemiological focus, limiting their ability to describe pathogen transmission.71

Movement data provide means to consider components of transmission that are often ignored. While it72

is standard to decompose transmission into contact and probability of infection given contact (Begon et al.73

2002), transmission can be decomposed further into constituent sub-processes that better capture observed74

heterogeneity in transmission risk on actual landscapes (VanderWaal et al. 2016; McCallum et al. 2017). At75

a minimum, movement data can capture four processes related to transmission: contact formation (Craft76

2015), contact duration (Stehlé et al. 2011a; Aiello et al. 2016; Springer et al. 2017), pathogen deposition77

potential (Handel & Rohani 2015; Lunn et al. 2019), and pathogen acquisition risk (Shahzamal et al. 2019).78

Decomposing transmission into these processes holds value when pathogen life histories are more reliant on79

one process than another (e.g., contact duration vs. formation), such that a coarse description of contact (e.g.,80

without accounting for variation in contact duration) might misspecify transmission rate. Despite the recent81

call to better incorporate movement data into disease ecology (Dougherty et al. 2018; Manlove et al. 2021),82

we still lack a generalizable, mechanistic framework that can i) leverage the diversity of available movement83

data to estimate the distinct contribution of each process to aggregate patterns of transmission relevant84

contact, and ii) determine how inferred patterns of spatial, temporal, and individual-level variability in85

transmission risk can affect population-level pathogen invasion and persistence on heterogeneous landscapes.86

A theoretical framework achieving these goals could unify movement and disease ecology, improving our87

ability to account for realistic sources of variation when predicting transmission risk across landscapes. Such88

a framework also has the potential to leverage high resolution mobility data in human systems to better89

forecast outbreak dynamics and effects of interventions (Wesolowski et al. 2016; Meekan et al. 2017; Miller90

et al. 2019).91

Epidemiological network models provide the foundations for representing variation in contact and trans-92

mission (Bansal et al. 2007; White et al. 2017; Silk et al. 2017, 2019). However, many network models used93

in epidemiology are temporally static and account only for contact formation, while overlooking variable94

contact duration and pathogen deposition and acquisition processes (Craft 2015; VanderWaal et al. 2016;95

Enright & Kao 2018). Static networks can also fail to accurately predict disease dynamics on networks when96

the presence of nodes (e.g., the presence of individuals in a population) and edges (e.g., links between two97

individuals) change through time or differ in type (Fefferman & Ng 2007; Springer et al. 2017). Dynamic98

epidemiological network models ameliorate some of these limitations by allowing for individual-level variation99

in contact duration and intensity as the nodes and edges vary through time (Holme & Saramäki 2012; Holme100
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& Liljeros 2014; Richardson & Gorochowski 2015). But even dynamic network models have important limi-101

tations. First, they still rarely account for spatial heterogeneity in contact and transmission (Manlove et al.102

2018; Albery et al. 2020a) and its landscape drivers, limiting their application in traditional models of spatial103

transmission. Second, inferences of network structure are often phenomenological rather than based on the104

dynamic processes that structure the network, which limits prediction of contact and transmission processes105

across demographic and environmental conditions. Third, in both aspatial and network-based host-pathogen106

models, direct and indirect transmission often are modeled as two distinct processes (Springer et al. 2017;107

Silk et al. 2018; Wilber et al. 2019; Yang et al. 2020), failing to recognize the continuum spanning direct to108

indirect contacts (i.e., transmission potential of short to long term direct contact may overlap with short109

to long term indirect contact) (Richardson & Gorochowski 2015; Shahzamal et al. 2019). Finally, “edges”110

in indirect contact networks are often quantified using metrics such as home-range overlap (Godfrey et al.111

2010; Springer et al. 2017), which ignore potentially important fine-scale spatial variation in host space use112

(Albery et al. 2020a).113

Here, we develop and apply a novel framework that we refer to as “Movement-driven modeling of spatio-114

temporal infection risk” (MoveSTIR), which can leverage diverse and widely available spatial and temporal115

data on animal movement and proximity (via GPS tracking, camera grids, proximity collars, spatially explicit116

capture-recapture or acoustic monitors) to derive heterogeneous metrics of contact and, ultimately, make117

empirically-informed predictions of disease risk on real landscapes (Figure 1). MoveSTIR captures contact118

heterogeneity in terms of type and strength along the continuum of indirect and direct contacts, while simul-119

taneously accounting for other constituent components of transmission, such as contact duration, pathogen120

acquisition, pathogen deposition, and pathogen decay. Importantly, by leveraging the extensive and growing121

archive of movement-related data on thousands of taxa currently available in databases such as MoveBank122

(5,915 studies across 1,025 taxa and billions of data points as of 2021; Kranstauber et al. 2011), MoveSTIR is123

broadly applicable without necessarily needing simultaneous infection data. While pairing MoveSTIR with124

epidemiological data will further increase its realm of inference, a strength of MoveSTIR is that it gener-125

alizes and extends many previous approaches for deriving and analyzing observed contact networks (e.g.,126

Richardson & Gorochowski 2015; Springer et al. 2017; Enright & Kao 2018; Silk et al. 2018; Wilber et al.127

2019), providing a common foundation for empirically driven, prospective analyses of spatio-temporal disease128

risk. We show how MoveSTIR can benefit inference of disease dynamics in wildlife, livestock, and human129

systems and demonstrate with a real example how failing to account for fine-scale individual movements can130

significantly mis-represent potential epidemiological dynamics.131
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Material and methods132

Building MoveSTIR from epidemiological theory133

MoveSTIR begins from a simple compartmental host-parasite model that tracks Susceptible and Infected134

host density and the density of the Pathogen in the environment. We make the following assumptions: i)135

the force of infection (FOI) experienced by a susceptible host is a linear function of pathogen density in136

the environment βP , where β is the transmission rate that combines rates of acquisition and contact, ii)137

infected hosts deposit pathogen at rate λ, iii) the pathogen decays in the environment at rate ν, iv) the138

pathogen is well-mixed in the area where contact and acquisition occurs, and v) the infection process does139

not substantially deplete the pathogen in the environment (Dwyer et al. 1997; Fenton et al. 2015). These140

assumptions provide a reasonable starting point for MoveSTIR but can be readily adjusted to account for141

non-linear FOI or extended to account for states such as Exposed and Recovered. For simplicity, we also142

assume that Infected hosts recover at rate γ and are immediately Susceptible. This assumption has no143

bearing on the derivations in this section.144

The following differential equations describe the infection dynamics in a host population145

dS

dt
= −βPS + γI

dI

dt
= βPS − γI

dP

dt
= λI − νP

(1)

where we initially assume a constant population size of S + I = N and no births or deaths.146

We can equivalently express equation 1 as a renewal equation (Arino & van den Driessche 2006), namely147

dS(t)

dt
= −βP (t)S(t) + γI(t)

dI(t)

dt
= βP (t)S(t)− γI(t)

P (t) = P0(t) +

∫ t

0

λI(u)e−ν(t−u)du

(2)

In equation 2, I(u) gives the density of infected individuals at some previous time u, u < t. The function148

e−ν(t−u) defines the pathogen survival function in the environment, assuming that the pathogen decays at149

a constant rate ν. We could readily replace e−ν(t−u) with any survival function reflective of the pathogen of150

interest. The parameter P0(t) is the density of pathogen present at time 0 that are still present at time t.151

We can then substitute in the expression of P (t) to re-write dI(t)
dt as a function of I(u)152
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dI(t)

dt
= S(t)β

∫ t

0

λI(u)e−ν(t−u)du− γI(t) (3)

where we assume P0(t) = 0.153

The function h(t) = β
∫ t

0
λI(u)e−ν(t−u)du is the per capita FOI at time t. The FOI h(t) is a rate with154

units time-1. As such, h(t) defines the FOI felt by an individual at a given moment after accounting for the155

time-dependent accumulation and decay of all pathogens previously deposited by infected hosts. Importantly156

for the development of our framework, h(t) lets deposition rate (λ) and contact formation and acquisition157

of the pathogen (both encapsulated in β) vary independently, and allows for a continuum between direct158

contact (when u ≈ t) and indirect contact (when u < t). However, equation 3 does not i) clearly separate159

contact formation and pathogen acquisition, ii) explicitly account for contact duration, or iii) account for160

directional differences in transmission risk due to the order of when individuals visit locations. For this, we161

extended equation 3 to consider directional interactions occurring at the individual level.162

A pairwise view of the force of infection (FOI)163

Consider a single individual i moving through space. At each moment, the individual experiences a FOI164

dependent upon the full history of infected individuals that previously or presently share its current location.165

Let I(u, x) be the number of infected hosts in location x at time u. If there are N − 1 other hosts in the166

population, we can write I(u, x) =
∑N−1

j=1 δxj(u)(x)δIj(u)(I). The function δxj(u)(x) is an indicator function167

that is defined as168

δxj(u)(x) =


1 if the location of host j at time u is x (i.e., xj(u) = x)

0 otherwise

Similarly, δIj(u)(I) is the indicator function169

δIj(u)(I) =


1 if host j is infected at time u (i.e., Ij(u) = I)

0 otherwise

Taken together, this means that host j at past time u only gets “counted” toward the FOI experienced by170

focal host i at time t if they are infected and shedding pathogen (Ij(u) = I) at time u and in the same171

location x (xj(u) = x).172

With this individual-level view, we can update h(t) to consider the contributions from other individual173

hosts to the FOI felt by a focal host i at time t in location x.174
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hi(t, x) = β′
∫ t

0

N−1∑
j=1

λδxj(u)(x)δIj(u)(I)e
−ν(t−u)du

=

N−1∑
j=1︸︷︷︸

Sum over individuals

∫ t

0

β′︸︷︷︸
Acquisition

δxj(u)(x)︸ ︷︷ ︸
Contact

λδIj(u)(I)︸ ︷︷ ︸
Deposition

e−ν(t−u)︸ ︷︷ ︸
Pathogen decay

du
(4)

where β′ is now an acquisition rate (i.e., an uptake rate times per pathogen probability of infection) as we175

have conditioned on contact with the term δxj(u)(x). Consider a single term in the summation, hi←j(t, x) =176 ∫ t

0
β′δxj(u)(x)λδIj(u)(I)e

−ν(t−u)du. We can define this term as: the FOI felt by individual i ̸= j at time t177

in location x due to individual j’s previous infection history in location x, up to time t. This quantity is a178

rate with units time−1 and encapsulates pathogen acquisition, contact formation, pathogen deposition, and179

direct and indirect transmission. Note because pairwise FOI is asymmetrical hi←j(t, x) does not necessarily180

equal hj←i(t, x). Moreover, contact duration is explicitly accounted for by the integral over δxj(u)(x), which181

specifies how long host i is in contact with host j in the past (indirect) or present (direct). Finally, we182

can more explicitly account for the area of location x by re-writing β′δxj(u)(x) as β̃Φ(xj(u), x) (Gurarie183

& Ovaskainen 2013; Martinez-Garcia et al. 2020), where β̃ has units area units
time (e.g., m2

hour ). The function184

Φ(xj(u), x) is the contact function and is a probability density function that integrates to one over the185

spatial domain of interest with units 1/area units (e.g., see Appendix S1.1; Gurarie & Ovaskainen 2013).186

Quantifying FOI from movement data: the transmission kernel187

How do movement data inform the FOI that individual j imposes on individual i at time t in location188

x, hi←j(t, x)? Here, we focus our discussion and examples on high-resolution GPS tracking data that are189

commonly collected in human, livestock, and wildlife systems. However, MoveSTIR is broadly applicable to190

many types of movement, proximity, and co-occurrence data that are widely available across thousands of191

animal taxa (Appendix S2; Kranstauber et al. 2011).192

Let s(t) be a continuous-time movement trajectory that gives the spatial location of an individual at any193

time t. While we typically do not know s(t), recent developments in movement ecology provide statistical194

tools to estimate s(t) from GPS tracking data (Johnson et al. 2008; Calabrese et al. 2016; Hooten et al.195

2018). This highlights a key advantage of MoveSTIR – it builds directly from state-of-the-art continuous-196

time movement models to improve inference on spatio-temporal infection risk. Here, we assume that s(t) has197

already been estimated. Moving forward, we use the simpler notation hi←j(t) to specify the FOI, recognizing198

that if we have an estimate of the movement trajectory s(t), time t already implies location x.199

To capture FOI exerted along entire movement trajectories, we must aggregate the spatially explicit force200
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defined by hi←j(t) to all of the various locations visited by both individuals from the focal pair. Consider two201

hosts moving through space and time with movement trajectories s1(t) and s2(t). We define a transmission202

kernel Ka2←d1
(τa, τd) that specifies the transmission weight resulting from host 2 at time τa contacting203

past host 1 at time τd (and vice versa). The “a” identifies τa as the time for the host acquiring pathogen204

and the “d” identifies τd as the time for the host depositing pathogen. Similarly, the notation a2 ← d1205

indicates that host 2 is the host acquiring pathogen by encountering the past pathogen deposited by host 1.206

Mathematically, Ka2←d1(τa, τd) defines the spatio-temporal acceleration in FOI and has units time−2.207

The transmission kernels Kai←dj
(τa, τd) are the core of MoveSTIR (Fig. 1). Based on our motivating208

example given in equation 4, we can define Kai←dj
(τa, τd) as209

Kai←dj
(τa, τd) =


[β̃]︸︷︷︸

Acquisition

[Φ(sj(τd), si(τa))]︸ ︷︷ ︸
Contact

[λδIj(τd)(I)]︸ ︷︷ ︸
Deposition

[e−ν(τa−τd)]︸ ︷︷ ︸
Pathogen decay

for τd ≤ τa

0 otherwise

(5)

where the terms are the same as the integrand in equation 4, with β′δxj(u)(x) generalized to β̃Φ(sj(τd), si(τa)).210

The condition τd ≤ τa indicates that host i (who is acquiring pathogen) can contact the current and past211

trajectory of host j (who is depositing pathogen), but not its future trajectory. The transmission kernel212

Kai←dj
(τa, τd) is not restricted to the form shown in equation 5 and can be modified according to the213

biology of the focal host-parasite system (see Appendix S1.2).214

Understanding the transmission kernel Kai←dj(τa, τd)215

Once parameterized from movement data, the transmission kernel Kai←dj (τa, τd) can be integrated over216

different dimensions to provide windows into how individual-level infection risk experienced by a host varies217

in space and time (Table 1; toy examples in Appendix S1.3). There are, however, two distinct ways to218

explore the transmission kernel Kai←dj (τa, τd).219

First, we can calculate what we will refer to as the maximum potential infection risk. For this metric, we220

assume δIj(τd)(I) is always equal to one (i.e., all hosts are always infected) and ask, what is the maximum221

possible exposure that a susceptible focal host could experience given the observed movement trajectories of222

other infected hosts? This is a generalization of the observed “contact network” (sensu Craft 2015), but it223

accounts for the direct to indirect contact continuum.224

Second, we are also interested in understanding the “transmission network” (sensu Craft 2015) – what225

we will here describe as realized infection risk. Realized infection risk is necessarily less than or equal to the226

maximum potential infection risk. While difficult to measure empirically, we can derive a model estimate227
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of the realized infection risk by re-incorporating our transmission kernel into an individual-level model of228

host-pathogen dynamics. We describe such a model in the section From the transmission kernel to infection229

dynamics. We proceed with maximum potential infection risk, but all the calculations we describe can be230

done using realized infection risk.231

A simulated example232

We use the functions in Table 1 to illustrate the descriptive power of the transmission kernel with a233

simulated example of two hosts moving in continuous time and space (Fig. 2A). These are representative234

of trajectories from GPS tracking data fit with continuous-time movement models. This example illustrates235

how MoveSTIR uses movement data to estimate when and where potential infection risk is highest, who is236

contributing the most to infection risk, and how much maximum potential infection risk is due to direct or237

indirect transmission (Fig. 2). Code is provided at https://github.com/mqwilber/moveSTIR.238

First, we can use the transmission kernel to identify how the maximum potential FOI h1←2(t) and h2←1(t)239

varies in space and time (Fig. 2). We see that the FOI and cumulative FOI experienced by host 1 and host240

2 are highly asymmetric. Because host 1 tends to lead host 2 in space and time, host 1 experiences little241

FOI from host 2 over the time period when these hosts are tracked in silico (Fig. 2B,E). In contrast, host 2242

tends to follow host 1 in space and time and experiences moments of elevated FOI as they encounter regions243

of space where host 1 has previously spent time and potentially deposited pathogen (Fig. 2C,F).244

Second, the transmission kernel shows that the relative contributions of direct and indirect transmission245

to cumulative FOI are distinctly different between the two hosts (Table 1; Fig. 2D). The maximum potential246

infection risk experienced by host 1 from host 2 is largely due to “direct transmission”, i.e., host 1’s infection247

risk is primarily a result of instances when the two hosts were in the same place at nearly the same time. In248

contrast, “indirect transmission” (here defined as infection risk after a time lag of 0.15 units, Fig. 2D) was249

responsible for 30% of host 2’s potential cumulative FOI, compared a 0% contribution of indirect transmission250

to host 1’s potential cumulative FOI (Fig. 2D).251

From the transmission kernel to dynamic networks252

MoveSTIR outputs can be represented as a dynamic, epidemiological network (Holme & Saramäki 2012;253

Enright & Kao 2018). The transmission kernels of MoveSTIR at any given time point t specify a weighted,254

asymmetrical adjacency matrix, where the weights are the FOI felt by host i from host j at time t (hi←j(t),255

Table 1). Thus, any of the metrics that can be calculated on a dynamic network and are predictive of256

disease spread (e.g., latency, temporal closeness centrality, burstiness, etc.; Holme & Saramäki 2012) can257

also be explored within the MoveSTIR framework. Moreover, because a dynamic network can always be258
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summarized as a static network (with loss of temporal information), insights from MoveSTIR are directly259

comparable to the vast epidemiological literature that uses static contact networks to make inference on260

disease dynamics (Silk et al. 2017; White et al. 2017). This provides exciting opportunities to compare the261

epidemiological implications of static, weighted networks to dynamic, weighted networks (Stehlé et al. 2011a;262

Springer et al. 2017) and build multi-layered networks to understand transmission among species through263

shared environmental resources (Silk et al. 2018; Wilber et al. 2019, Appendix S2), all within the MoveSTIR264

framework. In Appendix S3, we illustrate how MoveSTIR encompasses earlier approaches that use static265

and dynamic networks.266

From the transmission kernel to prospective infection dynamics267

MoveSTIR’s epidemiological foundation allows it to move directly from spatio-temporally explicit descrip-268

tions of host movements across real landscapes (Fig. 2A), to infection risk (Fig. 2B-F), to prospective269

predictions of disease dynamics in space and time. Thus, MoveSTIR can ask “what if” questions regarding270

potential interventions aimed at reducing pathogen invasion or persistence.271

To address prospective questions with MoveSTIR, we first link the transmission kernels Kai←dj (τa, τd)272

directly to an individual-level, continuous-time Markov process that tracks discrete epidemiological states273

of individuals (e.g., Susceptible, Exposed, Infected, Recovered, etc.; Appendix S4). After this model is274

specified, we can directly simulate disease dynamics on the contact network defined by the movement data275

and encoded in the transmission kernel. Beyond just simulation, we can also use the model to calculate276

fundamental epidemiological metrics such as R0 that determines the ability of the pathogen to invade and277

persist in the population, given the dynamic contact network along a direct to indirect continuum defined by278

the movement data (Appendix S4; Diekmann et al. 2013; Valdano et al. 2015; Leitch et al. 2019). This allows279

for extensive sensitivity analysis (without explicit simulation) to test how spatial, temporal, and individual280

characteristics affect the dynamics of pathogen invasion. In Appendix S4.4, we explore a simulated example281

to demonstrate how MoveSTIR can combine the transmission kernel and dynamic epidemiological models282

to ask prospective questions regarding the role of individual, spatial, and temporal processes on pathogen283

invasion dynamics.284

Empirical application of MoveSTIR285

We demonstrate the utility of MoveSTIR by investigating the implications of observed wild pig (Sus scrofa)286

movement dynamics on the transmission dynamics of a hypothetical introduction of a pathogen with similar287
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characteristics to African swine fever virus (ASFV). We asked three questions: i) How much heterogeneity288

in individual-level infection risk exists in space and time and does ignoring this heterogeneity affect potential289

epidemiological dynamics? ii) What are the proportional contributions of direct and indirect contact to290

potential pathogen invasion and iii) What is the spatial scale of potential transmission hotspots on the291

landscape?292

We captured and deployed GPS collars (Catlog GPS device and Lotek LMRT3 VHF Collars, Lotek, WA,293

US) on 19 adult, free-ranging wild pigs (14 females and 5 males) on a cattle ranch in south Florida from294

April to August, 2017 (University of Florida IACUC protocol #201408495 and #201808495). The GPS295

collars were programmed to record a fix every 30 min. We converted the high-resolution movement data to296

continuous-time movement trajectories discretized to five minute intervals using the R package ctmm (Fig.297

3, Appendix S5; Calabrese et al. 2016).298

We assumed that the contact function Φ(sj(τd), si(τa)) followed a so-called top-hat function such that299

contact could only occur when wild pigs were within 10 m of past or present depositing pigs (Appendix300

S1.1). We chose this threshold as the errors of GPS locations in the study site ranged from 6.6 m in open301

areas to 8.6 m in closed canopy.302

For viral decay in the environment, we used the survival function of an exponential distribution with viral303

decay rate ν = 1/5 day−1. This is consistent with experiments showing that ASFV can remain infectious in304

the environment and excreted material from 1 to 30 days depending on environmental conditions (Mazur-305

Panasiuk et al. 2019). Spatio-temporal factors that affect pathogen decay rate can be included within306

MoveSTIR (Appendix S1.2). Furthermore, we assumed that deposition rate λ and acquisition rate β̃ did307

not depend on host movements or the local environment, though this assumption can be relaxed within308

MoveSTIR (Appendix S1.2). Because our goal was to make inference on relative infection risk, we did not309

need to specify exact values for deposition rate λ or acquisition rate β̃ as they are constant multipliers (e.g.,310

equation 5) and cancel out when calculating relative infection risk.311

We defined direct contact between two hosts as any contact that occurred within a temporal separation312

of 0 to 5 minutes. We defined indirect contacts as any contact that occurred with a temporal separation313

of greater than 5 minutes. Of course, MoveSTIR allows us to be flexible with this definition of direct and314

indirect contact.315

Results316

Over the four months of the study, MoveSTIR identified that individuals experienced drastically different317

total potential cumulative FOI (Fig. 4A) and temporal patterns in how FOI accumulated (Fig. 4A). For318
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example, while individuals 11 and 14 experienced a relatively consistent increase in cumulative FOI over four319

months, individuals 5, 7 and 19 showed a notable burst of accumulation in FOI over a period from late May320

to early June. While Fig. 4A illustrates how FOI changes on weekly to monthly time scales, MoveSTIR321

also allows us to examine how FOI changes over hourly and daily scales (Fig. 4B). For 10 out of the 19322

individuals, there was a significant signal of daily periodicity in temporal FOI, meaning that associations323

that caused peaks in FOI tended to change on a daily temporal scale (Fig. 4B, C).324

We used MoveSTIR to derive static, weighted direct and indirect contact networks from the dynamic,325

weighted networks defined by the transmission kernel (Fig. 5). The edges in these static networks were the326

(asymmetric) average potential FOI experienced by pairwise interactions between two individuals (see Table327

1, Appendix S3). Direct contact networks were drastically less connected (lower mean degree and lower328

transitivity) than the networks that included both direct and indirect connections (Fig. 5). To examine the329

consequences of these differences on the relative potential of ASFV invasion into the system, we assumed an330

Susceptible-Infected-Recovered model for ASFV transmission (Appendix S5). We then computed relative331

R0 from a network with only direct transmission, only indirect transmission, and one with both. The relative332

R0 values for the indirect network and the network that included both were over 200 times greater than the333

relative R0 for a network with only direct contact. While indirect transmission added 126 edges compared334

to direct contact alone (Fig. 5), the relative increase in R0 was almost completely related to the increase in335

average FOI on edges that were already present for direct contacts. While this large effect likely represents an336

upper bound on the influence of indirect transmission in this system, our results clearly illustrate the sizable337

importance of indirect transmission for pathogens with even relatively short persistence in the environment338

(Yang et al. 2021).339

We used our movement-derived networks to further examine the relative contributions of particular340

individuals to ASFV invasion potential. Consistent with our analysis on individual heterogeneity in FOI341

(Fig. 4), removing hosts that experienced high cumulative FOI led to substantially larger proportional342

reductions in R0 (between 35%-46%) than removing other individuals (almost always less than 1%) (Fig. 5).343

To discern epidemiologically relevant behaviors, we calculated the betweenness centrality of individuals in the344

full static network, a network metric that describes how often an individual lies on the shortest path between345

two other nodes. We found that individuals with small contributions to R0 can still have substantial effects346

on network connectivity and thus pathogen spread in space. Individual 22 had a small relative contribution347

to R0 compared to individuals 11, 14, and 17, but was centrally located, bridging highly connected groups348

of individuals (Fig. 3) and leading to higher betweenness centrality than the other individuals. This result349

reinforces the limitations of R0-like metrics for understanding the spatial spread of pathogens in populations350

(Cross et al. 2007).351
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We compared MoveSTIR predictions of transmission relevant contact networks to previous approaches352

that used coarser spatial metrics, such as home range overlap, to derive empirically-informed contact networks353

(e.g., Godfrey et al. 2010; Springer et al. 2017, Fig. 5, details in Appendix S6). Home range overlap analyses354

are a special case of MoveSTIR (Appendix S6). We found that home range overlap analysis predicted a similar355

static, unweighted network structure as MoveSTIR applied to continuous-time, continuous-space movement356

trajectories (Fig. 5B-C). However, home range overlap missed significant individual-level heterogeneity in357

the edge weights of the network (Fig. 5B-C), resulting in an R0 estimate that was 30 times lower than358

the MoveSTIR estimate and a mis-specification of individual-level contributions to pathogen invasion. This359

result was consistent across different metrics of home range overlap (Fig. S7). Thus, ignoring fine-scale360

individual-level heterogeneity in movements within home ranges significantly underestimated predictions of361

pathogen invasion risk.362

Finally, we used MoveSTIR to explore the spatial variation in infection risk on the landscape to identify363

hotspots of average FOI (Fig. 3). We divided the landscape into grid cells that were approximately 15 by 15364

meters and, for each grid cell, calculated the average FOI experienced by individuals in the grid cell (Table365

1, Fig. 3). We found highly localized areas of elevated average FOI on the landscape (Fig. 3). Notably,366

these hotspots were substantially smaller than individual home ranges (Fig. 3), where an average of only367

13% of the area of an individual’s home range (calculated as a 95% utilization distribution; Calenge 2006)368

contained 80% of potential FOI experienced by an individual. This builds on our results above, showing that369

fine-scale spatial heterogeneity in potential transmission risk exists on the landscape and can significantly370

affect spatial disease dynamics.371

Discussion372

There is a burgeoning recognition that our ability to quantify individual, spatial, and temporal heterogeneity373

in transmission risk would benefit from a tighter link between movement and disease ecology (Dougherty374

et al. 2018; Manlove et al. 2021). Here, we developed a framework that we call “Movement-driven modeling375

of spatio-temporal infection risk” (MoveSTIR). MoveSTIR provides a flexible framework to address key376

empirical and theoretical challenges in disease ecology. As we demonstrate with our simulations and empirical377

examples, MoveSTIR allows us to build direct and indirect contact networks across a continuum, derive378

spatially explicit metrics of transmission risk that can be easily integrated with landscape variables, and379

decompose the temporal dynamics of potential or realized infection hazard. MoveSTIR does this by linking380

epidemiological theory with commonly observed movement data. Importantly, application of MoveSTIR381

to real-life movement data demonstrated the significance of accounting for fine-scale individual movements.382
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We observed notably higher potential for pathogen invasion in a wild pig system when we used MoveSTIR383

to extract the detailed information on transmission-relevant contacts contained in our observed movement384

trajectories, compared to earlier approaches that ignore fine-scale host movements. Given the increasing385

availability of movement data across thousands of animal taxa (Kranstauber et al. 2011; Miller et al. 2019),386

MoveSTIR provides a flexible, generalizable framework that exploits the full potential of these data to387

understand the mechanistic underpinnings of individual, spatial, and temporal variation in transmission risk388

and improve epidemiological prediction.389

The flexibility of MoveSTIR stems in part from its link to dynamic, epidemiological networks (Holme &390

Saramäki 2012; Enright & Kao 2018), a framework that MoveSTIR extends by quantifying the contributions391

of direct and indirect contact to network structure in an epidemiologically consistent way. Therefore, Move-392

STIR generalizes much of the previous work on dynamic, static, weighted, directional or multi-layer contact393

networks derived from empirical contact and co-occurrence data. MoveSTIR also builds upon notable previ-394

ous work with movement data, encounter rates, and epidemiological dynamics (Stehlé et al. 2011b; Gurarie &395

Ovaskainen 2013; Richardson & Gorochowski 2015; Martinez-Garcia et al. 2020; Zhang et al. 2020; Noonan396

et al. 2021). What distinguishes MoveSTIR from this previous work is that it is derived from epidemiological397

first principles and explicitly considers contact formation, contact duration, the continuum between direct398

to indirect contact, pathogen deposition, pathogen acquisition, how these rates might be modified by be-399

havior, and the explicit units associated with each of these processes. Thus, MoveSTIR naturally confronts400

constituent processes of transmission that are usually shunted into the black box of β (McCallum et al. 2017)401

and can be expanded to account for additional complexities of transmission such as non-linear dose-response402

curves (Handel & Rohani 2015; Lunn et al. 2019).403

While our application of MoveSTIR focused on wildlife, our framework is equally applicable to addressing404

questions regarding the spatio-temporal infection risk in humans and livestock. In humans, previous stud-405

ies have used radio-frequency identification devices and mobile phone data to build contact networks and406

simulate epidemics (Stehlé et al. 2011a; Wesolowski et al. 2016; Panigutti et al. 2017). Similarly, livestock407

studies use proximity loggers to detect close proximity contacts (Lavelle et al. 2016; Kour et al. 2021). As408

described in Appendix S2, any of the MoveSTIR analyses we describe here can be applied to proximity409

data or array-like data (e.g., from mobile phone towers), whether or not these data are spatially explicit.410

Moreover, because MoveSTIR explicitly considers individual-level deposition and acquisition of a pathogen,411

information on how body position affects relative transmission risk (e.g., a face-to-face contact is more likely412

to lead to a transmission event than a back-to-face contact; Zhang et al. 2020; Kour et al. 2021) can be413

incorporated into MoveSTIR by allowing relative deposition and acquisition rates to depend on host behav-414

iors (Appendix S1.2). Critically, application of MoveSTIR to wildlife, livestock, and human systems does415
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not necessarily require simultaneous infection data, as movement data and a priori assumptions on how416

particular behaviors and environments change relative deposition, acquisition, and pathogen decay rates are417

sufficient to make prospective inference on the spatio-temporal distribution of potential infection risk.418

Despite its advantages, MoveSTIR has a few notable limitations. First, MoveSTIR infers contact net-419

works and transmission risk from individuals whose movement trajectories have been observed at least420

partially. However, it is well-known that incomplete sampling of a network can affect epidemiological pre-421

dictions and MoveSTIR does not resolve this issue (Silk et al. 2017). Second, MoveSTIR makes inference422

on spatio-temporal infection risk from one empirical realization of individual movement trajectories, poten-423

tially limiting the transportability of MoveSTIR predictions into new spatial and social contexts. Both of424

these limitation are not unique to MoveSTIR and are faced by most studies of empirical contact networks.425

However, MoveSTIR does provide exciting potential to address these challenges. If mechanistic movement426

models that depend on spatial and social context are used to fit the observed movement data (Hooten et al.427

2017), then repeated simulation of movement trajectories predicted by these models could generate a distri-428

bution of spatio-temporal contacts networks in novel spatial and social environments and a corresponding429

distribution of epidemiological outcomes predicted by MoveSTIR. Thus, ongoing work in movement ecology430

to augment the out-of-sample prediction of host movements (e.g., Avgar et al. 2016) could directly improve431

the transportability of MoveSTIR’s epidemiological predictions.432

Overall, MoveSTIR is generalizable across host-pathogen systems, has clear epidemiological interpretation433

in spatial and temporal dimensions, is applicable to movement data that already exist for thousands of taxa434

and are increasingly being collected (Kranstauber et al. 2011), and provides a unifying epidemiological435

framework for how host movement data informs the individual, spatial, and temporal contributions to436

disease dynamics. Ultimately, MoveSTIR represents a key step toward improving the transportability of437

epidemiological predictions across spatial, temporal, and ecological contexts.438
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Figure 1: A conceptual overview of movement-driven modeling of spatio-temporal infection risk (Move-
STIR). The inputs to MoveSTIR are movement, contact, and co-occurrence data, which could take on a
wide variety of forms (top panel). These data, with the help of continuous-time movement models, allow us
to construct “contact” networks along a continuum of contact definitions. These networks, along with epi-
demiological information on pathogen decay, deposition, and acquisition, define the backbone of MoveSTIR
– the transmission kernel. The transmission kernel can capture epidemiological assumptions (e.g., pathogen
decay), describe potential infection risk among hosts, explore the structure of static or temporal contact and
transmission networks, and be used to explore movement-driven disease dynamics on real landscapes.
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Figure 2: A. Simulated movement trajectories of two hosts through continuous space and time. The points
tstart indicate the time when the movement trajectories start and tend indicate when they end. B. The
maximum potential force of infection (FOI) experienced by host 1 from host 2’s movements and vice-versa
as calculated from the transmission kernel (Table 1). C. Similar to B., but the potential cumulative FOI
experienced by host 1 from host 2’s movement (and vice-versa) at any time t (Table 1). D. The relative
contribution of direct (time lag equal 0) to increasingly indirect (time lag > 0) transmission to the maximum
cumulative FOI experienced by host 1 from host 2 (and vice-versa). The dashed line shows a pre-determined
dichotomy between direct and indirect transmission. E. The average FOI experienced by host 1 from host 2
in a spatial area (given by grid cells on the plot) over the entire trajectory (see Table 1 for calculation). The
colored lines show the host trajectories as shown in A. F. Same as E. but the average FOI experienced by host
2 from host 1 in a spatial area. For all figures, the transmission kernel is given by equation 5. We consider
maximum potential infection risk by setting δIj(τd)(I) = 1 for all j. The contact function Φ(sj(τd), si(τa))
follows a Gaussian function that depends on the Euclidean distance between locations sj(τd) and si(τa),
with a distance decay parameter α = 0.1 (Appendix S1.1; Gurarie & Ovaskainen 2013). We assume that
acquisition rate is β̃ = 1 area / time, deposition rate is λ = 1 time−1, pathogen decay is ν = 2 time−1 such
that a pathogen on average survives for half of a one unit time interval.
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Figure 3: Map of observed pig movements on the landscape interpolated using continuous-time movement
models at a scale of 5 minutes per time step (Calabrese et al. 2016) . Colored points show the movement
trajectories for individual pigs. We overlaid 15 m by 15 m grids cells on the landscape and for each grid cell
used MoveSTIR to calculate the relative average force of infection (FOI) across all individuals at a particular
location. The color of grid cells range from transparent (minimal or no FOI experienced at the location) to
dark red (high relative FOI experienced at the location). We calculated average FOI using h̄A

i←j(t) (Table
1), extending the metric to sum over all individuals that were ever in the spatial area A (i.e., a grid cell).
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Figure 4: A. The relative potential cumulative force of infection (FOI) experienced by each individual pig
through time from all other collared individuals (

∑
j∈S Hi←j(t) where S is the set of collared pigs, Table

1). All curves are standardized by the maximum cumulative FOI across all individuals. The derivatives
of these curves give the temporal trajectories of FOI for each individual. Different colors refer to different
individuals. B. The relative FOI experienced by individuals 11 and 14 over a five day interval (

∑
j∈S hi←j(t),

Table 1) within the four month study period. We only show individuals 11 and 14 for visual clarity. C. The
power spectral density of temporal FOI (i.e., the trajectories in B. for all individuals over the four month
study). We used the spectral density to identify patterns of periodicity in the time-series of FOI inferred
by MoveSTIR (using Welch’s method, Virtanen et al. 2020). The thick black vertical line indicates daily
periodicity of FOI trajectories (period = 1 / frequency).
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Figure 5: A. The direct contact network inferred by MoveSTIR where direct contact is defined as hosts
that are in the same place within a five-minute window. Direct contact is necessarily symmetric (at least in
the limit as the temporal window size goes to zero), so the direct contact network is not a directed graph.
Differential edge weights are not shown, but are defined as the average FOI due to direct transmission
experienced between pairs of individuals over their collaring time (h̄i←j(t), Table 1). Edge weights were
substantially less for direct contact compared to indirect contact making visual comparison difficult. B.
The full contact network including both direct and indirect contacts. Different edge widths indicate scaled
edge weights that give the average potential force of infection (FOI) between pairs of individuals over their
collaring times. The full contact network is directed, but the directed arrows are not shown for clarity as
many pairwise, directed interactions were relatively symmetrical. The numbers within the nodes give the
percent that R0 for the full network was reduced when a specific individual was removed. C. Similar to B.,
but the network was derived using the overlap of the 95% utilization distributions for the individual pigs
(Appendix S6). For all networks, the size of the node gives a scaled measure of the betweenness centrality of
the node (i.e., the frequency that a node resides on the shortest path between other nodes in the network).
Betweenness values are scaled within a network. The mean degree and transitivity are calculated on the
unweighted version of the network. Squares represent males and circles represent females. Finally, the table
shows the relative R0 values calculated by MoveSTIR for the networks in A.-C. (Appendix S4).
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