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Understanding mathematical topics is important for both educators and students

mend content in online learning systems. Compared to traditional text classification,
Correspondence mathematical topic classification has several main challenges: (1) the length of math-
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is complex including algebra, geometry, and calculus. In order to overcome these
problems, we propose a framework that combines content tokens and mathemati-
cal knowledge concepts in whole procedures. We embed entities from mathematics
knowledge graphs, integrate entities into tokens in a masked language model, set
up semantic similarity-based tasks for next-sentence prediction, and fuse knowl-
edge vectors and token vectors during the fine-tuning procedure. We also build a
Chinese mathematical topic prediction dataset consisting of more than 70,000 math-
ematical questions with topics. Our experiments using real data demonstrate that
our knowledge graph-based mathematical topic prediction model outperforms other
state-of-the-art methods.
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1 | INTRODUCTION

How best to teach conceptual and procedural knowledge in mathematics is an open question in education. Procedural knowledge
is defined as “Learning that involves only memorizing operations with no understanding of underlying meanings”, whereas
conceptual knowledge is “Explicit or implicit understanding of the principles that govern a domain and of the interrelations
between pieces of knowledge in a domain™!. Given certain knowledge, it is possible to design procedural knowledge-based
or conceptual knowledge-based questions. Therefore, in terms of teaching and learning, knowledge points have several uses,
including developing auto-generated test systems, measuring the study abilities of students, and influencing the practice-based
theory of mathematical knowledge for teaching.

Correctly predicting the knowledge point to which a question belongs is not a trivial task. There are three main challenges, as
follows. (1) Short context classification: for given mathematical questions, the length of the context is usually shorter than the
original text of the classification task, in our case, the average length of question text (calculate the length of different tags). How
to learn using such short texts, especially in the pre-training procedure, is an important problem. (2) Mathematical knowledge
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point encoding: the entities and relationships in the mathematical knowledge graph should be extracted and encoded in the
question classification task using a language model. (3) Heterogeneous information learning: a mathematical question contains
both normal content and mathematical keywords, resulting in two individual vector spaces. Distinguishing lexical, syntactic,
and keywords related to mathematics in a question from the normal context is a difficult task, as is fusing these two different
content types in the pre-training and fine-tuning procedures.

Mathematical symbols are not just abbreviations, and students need to learn to understand each symbol in the context of
a variety of concrete situations, pictures, and languages. The symbols of mathematics allow us to both discover and express
relationships between concepts.

Example I: There are 100 orange trees in an orchard, and each tree has an average of 600 oranges. Several orange trees
can increase their yield, but if this occurs, the distance between the trees and the sunlight received by each tree will decrease.
According to experience, each tree will produce an average of five oranges. Find the functional relationship between the number
of trees grown and the total yield of oranges.

Example 2: How many real roots does the following equation have? x? + 3x + 4 = 0.

To overcome the challenges mentioned above, we propose a new method called KG-M T P (knowledge graph-based math-
ematical topic prediction), which pre-trains a mathematics representation model using both large-scale tagged questions and
knowledge graphs for use in mathematical education.

Motivated instances: There are three types of question: (1) short content; (2) long content with knowledge entities; (3)
mathematics world problems. Although they have different representations in terms of content, they have the same topic.

To facilitate the study and evaluation of mathematical topic prediction tasks, we built a novel benchmark dataset named Chn-
math, based on middle school mathematics. For most mathematical concepts, teachers design different content and use different
symbols and questions to evaluate students’ understanding. Therefore, we directly collected real questions used in middle school
education to build a benchmark. Next, we invited several mathematics teachers to provide a question on each of several (at most
five) topics. Moreover, in order to improve the quality of the dataset, we removed those items that contained fewer than 10 words.
We call this benchmark dataset Chn-Math.

The main contributions of this paper are as follows.

e We propose an pre-trained method that uses word and entity encoding to predict mathematical topics. Our model is
based on BE RT but integrates a mathematical knowledge graph. We also propose some novel tasks during pre-training
processing to improve the performance of the model. Our method can be applied not only to mathematical questions but
to all classification problems.

e We introduce a novel topic prediction task for mathematical questions in Chinese. Mathematical questions contain normal
text, mathematical symbols, pictures, and concrete instances, in contrast to other short texts. This represents an interesting
and significant contribution to NLP(natural language processing) research.

e We evaluate the accuracy of the top k items in the Chn-Math dataset. Compared with state-of-the-art deep learning models,
such as BE RT, the evaluation results demonstrate that our model outperforms other baselines.

The structure of this paper is as follows. In Section 2, we discuss related work in two categories: text classification methods
and natural language models. In Section 3, we present our motivation and notations used in our problems. Section 4 shows the
architecture of our model(KG-MT P). In Section 5, we present experimental results obtained using our framework. Section 6
present our conclusion and several directions for future work.

2 | RELATED WORK

Mathematical question topic prediction is closely related to other research areas, including text classification and natural language
processing, which focus on programming computers to process and analyze large amounts of natural language data. In this
section, we provide a brief review of related works in two categories: text classification methods and natural language models.

2.1 | Text Classification Method

Text classification is a similar problem to mathematical topic prediction, especially in the case of short texts. The task in text
classification is to assign a document to one or more classes based on its content. Short texts have natural characteristics including
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FIGURE 1 Model learning from a new dataset to generate novel nodes and edges

sparseness, large scale, immediacy, and non-standardization”?. Traditional short-text classifying methods leverage semantic and
topic models (e.g, latent Dirichlet allocation) with single or multiple levels of granularity™. In recent years, text classifiers have
been designed using deep learning models to improve performance; these include word embedding-based methods such as Pte
and LEAM®, and graph convolutional network-based methods such as SSC-GCN® and Text GCN.

Our work uses similar ideas to those of these methods, the major difference is that we use a pre-trained model with a knowledge
structure instead of word embedding or structure embedding.

2.2 | Pre-Trained Natural Language Model

There are many pre-trained language representation models for capturing information from text in various NLP tasks. Pre-
trained models can train auto-encoders on an unlabeled corpus with fine-tuning for special tasks. The best of these methods is
the deep bidirectional model with multiple layer transformers (BE RT) proposed in 20188, XL.Net integrates an auto-regressive
model in the pre-training process and outperformed BERT on 20 NLP tasks®. Other methods optimize encoding methods in
the pre-training procedure and also show better performance than BERT; these include SpanBert'?, ERNIE (BERT with
knowledge graphs), and ERN I E (Baidu)!2.

Our work refers to ideas and architectures from the above-mentioned pre-training techniques; however, unlike these models,
our model integrates a knowledge graph and proposes novel masking and prediction strategies to enhance entity representation.

3 | PRELIMINARIES

3.1 | Mathematical Understanding and Motivation

Conceptual understanding involves knowing more than isolated facts and methods. The successful student understands
mathematical ideas and has the ability to transfer their knowledge into new situations and apply it to new contexts.

There are four key components of mathematics questions: concrete experiences, symbols, language, and pictures. Here, we
focus on first three components. The connections between symbols, language, and concrete experiences can be developed and
established to improve students’ mathematical understanding. Our motivation is how to distinguish these components in ques-
tions and extract latent semantics during the pre-training and fine-tuning procedures. As shown in Figure[I] we use knowledge
graphs to help the model to navigate and to enhance use and understanding of the mathematics corpus.

3.2 | Problem Formulation

In this section, we first define several basic concepts and then provide a formal definition of knowledge point classification
problems. Detailed descriptions of the notation used in our problems can be found in Table[I]
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TABLE 1 Notation used in our problems

Notation Description

q Mathematical question

e Knowledge entity; e, 1s the entity in question g

r Knowledge entity relations; r(e;, e j) 18 the rela-
tion between entities e; and e;

Kg Knowledge graph, KXG = {e,r}

T Topic set; ¢ is the concrete topic and t C T

1! i-th topic of ¢

(] () (n])

I I ] ] Output
Pre-training | Mask Language Model, Related Question Prediction,
Tasks Relevancy Rank
) f f ] f f .
p | | | | |'
Question ; ; ;
1 : .
Embedding [Tllﬂ] [ TZLH] [ Ts* ] [ Trln+1] [ cLs ] training
N
I R x 12
Multi-Head Attention Multi-Head Attention
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Token & Entity I ; I ; - I - I ; -
Embedd|ng [ T{' ] [ Tzl ] [ Té’ ] eee El oo Erln Input
[MASK] [MASK]

FIGURE 2 Architecture detail of KG-MT P

The mathematics topic prediction problem refers to how to judge, given a question ¢ and total topics 7, whether each topic
t belongs to g.

4 | METHODOLOGY

In this section, we describe the construction of our model, including (1) the overall framework architecture of KG-MT P; (2)
encoding of knowledge entities in knowledge graphs; (3) two pre-training procedures: masking tokens by their mathematical
semantics, and predicting the next question via related knowledge entities; and (4) details of the fine-tuning procedure with token
and mathematical semantic fusion in questions.

4.1 | Model Architecture

The architecture is shown in figure 2] The architecture of the KG-MT P model consists of three main separate procedures: (1)
generating the underlying textual encoder to capture basic lexical and external mathematical information in a knowledge graph;
and (2) setting up three tasks: an advanced mask content model with knowledge entities, mathematical concept similarity-based
next-question prediction, token and knowledge entity fusion in the transfer procedure, and details of fine tuning with entity
semantics.
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4.2 | Knowledge Entity Embedding

Based on mathematical education concepts, we need to embed components of the knowledge graph, including entities and
relations, into continuous vector spaces'3. The mathematical knowledge graph contains three different relations between two
entities: subclass, has, and is. For simplicity, we use a translation distance model TransE ) exploit the relations as vectors in
the same space R<. Given two embedded entities e;and e ; connected by r,e; +r = e g when (A, r, t) holds. Other TransE extend
methods could also be implemented in our knowledge graphs, such as TransH'™, TransR®, or KG2EZ.,

4.3 | Pre-Training with Knowledge Graphs

Semantic Mask Procedure Although the masked language model (MLM) is strictly more powerful than a bidirectional model
or single directional model, randomly selected WordPiece tokens in the MLM procedure would cause loss of the semantics of
mathematical questions. Similar to the use of MLM in BE RT pre-training, here, we select masked tokens with their related
knowledge entities. We refer to this procedure as “semantic MLM” (SMLM). In all of our experiments, we set a parameter 6 to
determine whether to mask a normal token or knowledge entity. For each sentence in a mathematical question, we replace the
i-th token with a [MASK] token if the generated random value is larger than 6. Moreover, unlike ERN I E'Y, which assigns
an aligning sequence {e|, ..., e, } to the token sequence {w;, ..., w, }, we select entities from tokens and choose parts of entities
at random. In order to reflect the correlation between mathematical concepts and duplicated entities in mathematical questions,
we mask these entities using [MASK] and predict the masked words using the corresponding hidden vectors.

In our training procedure, the strategy of token replacement is the same as that used in BE RT. We replace the chosen entity
by the following rules: (1) token [MASK] 80% of the time; (2) a random entity 10% of the time. Then, a transformer function
is used to predict the original token or entity with cross-entropy loss.

Related Question Prediction In many natural language tasks such as question answering and natural language inference,
understanding of the relationships of sentences is captured by next-sentence prediction in BERT®. Here, as the length of
mathematical content tends to be shorter than that of other types of text corpus, especially as many questions have only one
sentence, we design a strategy to generate the relationships of different mathematical questions with their mathematical concepts
in knowledge graphs. We first extract mathematical entities ef for question g. Then, we choose a pair of questions < A, B > and
evaluate their similarity using sim(elf“, el.B ), where sim is the similarity function for two sets. When the similarity value is larger
then a threshold parameter y, we treat B as a related question of A (i.e., < A, B > is labeled as Related), otherwise < A, B >
is labeled as N ot Related for training purposes. Despite the simplicity of the idea, we can choose various similarity functions
to measure the relationship between two questions and demonstrate the benefit in our tagging problem.

Algorithm 1 Question relevancy rank

Require: a batch of pre-training samples /3, the number of candidate samples for ranking C
Ensure: NDCG_Loss

1: P, Pair_Index= Random_Pairs_from_Batch(/3,C)

2: Correlation_Scores = []

3: for pair in P do

4 related_pair0 = FindNeighbors(pair[0])

5 related_pairl = FindNeighbors(pair[1])

6: score = JaccardSimilarity(related_pair0, related_pairl)

7 add score — Correlation_Scores

8: end for

9: Sequence_Output = BERT()3)
10: Candidate_Pairs = GetPairs(Sequence_Output, Pair_Index)
11: Candidate_Correlation_Scores = PearsonCorrelation(Candidate_Pairs)
12: NDCG_Loss = NDCG(Correlation_Scores, Candidate_Correlation_Scores)

Question Relevancy Rank

Mathematical concept questions and word problems are expressed differently for the same testing topic. Therefore, in our
work, we integrate knowledge entities to train the encoding procedure to reconstruct token vectors. During the pre-training
process, in each batch operation, we select n pairs of questions, < ¢;, q; >, and calculate their similarity using the sim function.
The input collection for the transformer is {< ¢, ¢, Vi) > < 41543 V13) > < 4;5 4,V j) > }, where Vii.j) is the similarity
value, which is used as the score of each pair of questions.
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FIGURE 3 Relevancy rank task: our aim is to train word embedding to make questions much closer if they are similar
based on the knowledge semantic measure

The goal of our transformer layers is to reconstruct the vectors of tokens and make two questions more similar after training,
when they have close mathematical semantics. As shown in Figure [3] our encoders are:

{0, .. 0} = MH — ATT({w|™", .., wi=D}),
A() A(i) =MH ATT @i-1) (i—1) (1)
{e,",...e, } = — ({e; e, D).

The question’s semantic is encoded by its related entities; for simplicity, we use the function mean to calculate the vector space
é;') of the question. In the fusion layer, we integrate the token sequence and semantic vector and compute the output embedding
for each token and entity as follows:

e";i) = mean(e(]i), e(zi), ey eg)),
h; = a(Wﬁi)w;.i) +) +a- e,
w! = oW, h; +b0),

(i) _ (@) (@)
e = oW, + b0).

2

In order to train the token and entity more closely in related questions, we use the ranking model N DCG (normalized discounted
cumulative gain) as the loss function. The process is shown in Algorithm[I] We define gain as the Pearson correlation coefficient
of each pair of questions p(q;, q;), use a collection L of < g;, q; > ranked by coefficient value p, and set 7 as the index position
of the collection.

Many existing similarity methods for use in knowledge graphs could be applied to p(g;,q;), including string-based
approaches’®, graph-based approaches®, and embedding-based approaches#121¢ Here, for simplicity, we use a graph-based
method to compare two nodes based on their nearest neighbor. Given two questions ¢; and ¢;, E; and E; are sets of entities
belonging to each question, respectively. For each entity e; in set E, we obtain direct neighbor relationships < e, r;,,e; > and
place these in an array called the Jaccard function according to the type of relationship.
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2064) 1 =0

D(< g;, q; >, 1) =4 2069 _ 1 _ ©)
log,(t+1)
DCG(L, f) = ), ¥, D(r) @)
t=1

For simplicity, rank function f is defined as ranking collection E_by p(q;, q;) descent. Let the ideal DCG (I DCG) be defined
by its original similarity value as follows:

IDCGL, ) = Z y({;D(r). ®))
=1

Here, function f’ is not generated to the maximum DCG value of the collection but to rank collection £ by the v(g;, ¢ ;) value,

which represents the original similarity of (g;, ¢;). Finally, the loss function is defined in every layer for training as NDCG(L) =
DCG
1DCg’

4.4 | Topic Prediction Procedure

The topic prediction procedure of our model is similar to the fine-tuning process in BE RT. We use a feature-based approach
where fixed vectors of both tokens and entities are extracted from the pre-trained model. We use a special token [CLS] at the
beginning of each question, and then we reuse the mean function to create semantic embedding with related entities. In contrast
to the pre-training procedure, the topic prediction procedure focuses on the final target, mathematics question classification. In
each integrator layer, we combine both token embedding information and entity embedding information.

Finally, we use the sigmoid output function before the full connection layer and utilize binary cross-entropy as the loss
function:

o, 3)=Le={l) ¢ enlyc}’, (6)

N
1
b=-5 ;[pcy,-,c “logo(x; ) + (1 —y; ) - log(1 = o(x; )], @)

where ¢ > 1 for multi-label binary classiﬁcz;tion, and p, is the weight of the positive value for the class c.

S | EXPERIMENTS

In this section, we present experimental results obtained using our framework. First, we describe our dataset and experimental
environment. Then, in comparison with several state-of-the-art methods, we evaluate our models with respect to precision and
top-K. Finally, we demonstrate the effects of the parameters in various datasets.

5.1 | Pre-Training Dataset

Dataset: An overview of a real world Chinese mathematics dataset is given. We remove duplicated questions and simple
questions with only a few terms. At last, we collect more than sixty thousand questions with 541 topic labels in Table 2}
For each label, we choose 80% of the data at random for training and use the remaining data for testing.

5.2 | Parameter Settings and Training Details

We use PyTorch and the ‘bert-base-chinese’ (Footnote) version of BE RT to implement the model. For pre-training, to accelerate
the procedure, we set the maximum sequence length to 256 instead of 512, as the computation of self-attention is costly with
respect to length. The two datasets are trained for 10 epochs on four GPUs (GTX 1080 Ti) with gradient accumulation per eight
steps, which makes the batch size approximately 544. The random seed is 42, and the learning rate of Adam is 3e-5.

For fine-tuning, each model is trained for 60 epochs, saved as a checkpoint, and evaluated against the validation set every 10
epochs. The parameter of gradient accumulation steps in this procedure is 6, the batch size is 480, the learning rate of Adam is
Se-4, and the random seed is 2018. All other hyper-parameters are the same as in BERT .
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TABLE 2 Summary statistics of Chn-M ath

Chn-M ath Knowledge Graph
Attribute Value Attribute Value
# Questions 63913 # Entities 450
# Labels 541 # Edges 671
# Length 76.39+ 43.56
# Entities 5.21+3.49

We select the top three checkpoints based on their evaluation losses on the validation set, and report the averaged results on
the test set.

5.3 | Experimental Evaluation

Based on the “all spot” and “special spot” scenarios, which are the same for all users, and the “favorite spot” scenario, which
varies among users, we compare our method with a variety of competing methods grouped into three categories: classification
methods, anomaly detection methods, and deep learning methods.

e FastText learns vector representation and classifies texts. We train models in D, .., using the FastText source code
in github.

e TextCN N uses multiple kernels of different sizes to extract key information from sentences. We train models in D, ;,;,4
using the TextC N N source code in github.

e BERT uses base model BERT as the pre-trained model and refines the model during the fine-tuning procedure in the
Chn-M ath dataset.

o BERT);;, implements the model under both D,,;,p.;0q a0d D, 40104 datasets. As D, 40104 has no label, we retrain the
BERT model only on the pre-training task.

o KG-MT Pg,, uses the same architecture as BERT except the MLL, which is replaced by our entity mask strategy. In
this model, we set only one mask task during the pre-training process.

e KG-MT Py k¢ is similar to ERN I E; we fuse the knowledge graph based on word and question granularity. In this
model, we implement the semantic mask model in pre-training and in the fine-tuning procedure.

® KG-MT Pg s rop rr 18 based on KG-MT Pp), ¢ With two additional tasks: related question prediction and question
relevancy rank. Datasets and all parameters are the same as in KG-MT Pg,, and KG-MT Pg,,.

5.3.1 | Overall Performance

As shown in Table@, KG-MT Pgy; rop rr Performs the best, significantly outperforming other baseline models. More in-depth
analysis shows that the existing Chinese-only BE RT model performs a little worse than the mathematics pre-trained model
BERT),,; s in the top five, but is better in the top one and three. KG-MT P models achieve significantly better results than
FastText and TextC N N. The main reasons are twofold. 1) the Entity encoding can capture both word-level and question-level
representation. All the KG-M T P methods are better than the original BE RT-based models. 2) With the KG-M T P methods,
our proposed tasks such as related question prediction and relevant rank improve the performance effectively.

5.3.2 | Data Characteristic Sensitivity

In order to evaluate the effects of question content, we tested several main models (Table[3) on different split datasets. As shown
in Figure ] we evaluate the effectiveness of models with respect to two aspects: the length of questions and the number of
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TABLE 3 Results of various models on D, ,,,,

Model Precision

acc@1] acc@3 acc@5
FastText 38.44% 56.25% 62.80%
TextCNN 34.69% 55.34% 63.44%
BERT 55.57% 74.45 % 82.07%
BERT\;1 m 56.10% 75.27 % 82.29%
KG-MTPg 56.19% 75.39% 82.93%
KG-MTPEM’KG 56.87% 75.70 % 83.09%

KG-MTPgp roP.RR  0710%  7553%  83.17%

entities in questions. For the length sensitivity experiment, we set the maximum length to 256 words (longer texts are set to 256),
and divide Chn-M ath into six subgroups of equal length. As the number of items in different groups are different, and most
questions contain fewer than 100 words, we select 1000 questions from each group at random. For entity sensitivity analysis, we
also generate subgroups by one entity to five entities and consider additional groups as non-entities. Based on the results shown
in Tables[dand[5] we make the following observations. All the pre-trained models in Chn- M ath perform better than the un-pre-
trained Chinese language model BERT in all length groups. Although the KG-MT Py rop rg model with all tasks performs
best on the whole dataset, it still does not perform quite as well as other simpler models. For instance, KG-M T Pp,, performs
the best in Top-1 in G2, and BE RT);; ), has the highest accuracy in Top-5 in G4, which demonstrates that the performances of
various pre-trained models are not stable.

30000 9000
7 8000
25000 % z
20000 . 6000 {11 L
15000 %% 2%%%%%5
i
10000 % % 3000 VUL L UL U,
so00 || || || annr
mnr woo | U B
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(a) Distribution of question lengths. (b) Count of entities in questions.

FIGURE 4 Question features distribution of dataset.

We further compare the prediction accuracy of our best-performing model KG-MT Ppys pop rr (KG-MT P for short) with
those of the three baseline methods, i.e., FastText, TextCN N, and BERT (BERT for short) , by keeping the parameters the
same. As shown in Table[4] all the models performed worse as the length of questions increased, indicating that an increasing
number of terms increased the amount of noise information, especially in G4, which might contain word problem questions with
many descriptive words. In terms of entity size, as shown in Table[5] models perform better when questions contain more entities.
This is probably because entity size is important in questions. More entities could facilitate richer mathematical semantics.
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TABLE 4 Performance evaluation for various question lengths

Method Gl:length < 64 G2:65 < length < 128 G3:129 < length < 192 G4 :193 < length < 256
acc@1 acc@3 acc@5 acc@1 acc@3 acc@5 acc@1 acc@3 acc@5 acc@1 acc@3 acc@5
FastText 42.35 55.46 66.37 35.81 52.34 68.13 29.99 47.29 64.34 29.57 41.07 60.72
TextCN N 41.17 56.25 65.40 32.33 51.38 62.55 28.44 44 .87 61.32 2391 38.71 59.75
BERT 52.40 73.88 82.59 58.30 76.35 83.15 55.00 73.66 81.78 49.40 70.38 78.86
BERT 1 m 54.50 74.04 82.34 59.19 77.27 83.78 55.50 75.58 82.21 51.60 71.82 80.60
KG-MT Pgy, 55.10 74.53 82.87 59.80 78.07 84.32 55.20 75.78 81.96 51.10 71.88 81.07
KG-MT Pgy, kg 56.30 74.07 83.24 59.30 78.04 84.78 57.09 74.76 83.34 52.00 72.76 80.90
KG-MTPEM’RQP,RR 57.90 75.55 83.88 57.69 75.45 83.33 55.88 75.59 82.70 51.70 71.44 80.72
TABLE 5 Performance evaluations with various entities
Method non 1 2 3 4
acc@1 acc@3 acc@5 acc@] acc@3 acc@5 acc@1 acc@3 acc@5 acc@] acc@3 acc@5 acc@1 acc@3 acc@5
FasiText 4323 506 6231 4734 5534 6739 4725 5622 70.85 4856 5674 7129 4724 587  71.07
TextCNN 4256 5104 6055 4588 5621 65.19 4896 57.84 66.61 4435 5721 6893 4658 56.87 70.50
BERT 4970 69.12 7835 58.69 75.13 8234 5749 7395 8224 5709 7421 8160 5510 7376  83.05
BERT, 4981 69.10 7879 5829 76.17 8231 58.19 7540 8287 58.60 7442 8212 5725 7735 8425
KG-MT Py, 50.78 6824 78.13 5799 76.15 8373 5689 7641 8251 5809 73.67 80.79 58.69 7733  84.70
KG-MT Py 48.13 6890 7835 5859 77.35 8345 59.19 76.86 84.42 60.19 7448 8286 59.59 77.61 8424
KG-MT Py roprr 5054 6923 78.68 5819 74.67 8271 5880 7495 83.69 59.09 7493 8322 59.69 7807 8415
TABLE 6 Keywords of different labels (in part)
Labels Keywords
Variable, Constant, Inverse Function,
Function Quadratic Function, Dependent Variable,
Trigonometric Function, ...
) Arc, Radius, Diameter, Curve
Circle

Circumscribed Circle, Sector, External Cutting, ...

Plane Geometry

Quadrilateral, Straight Line, Square,

Congruent Triangle, Right-Angle Trapezoid,
Diamond, ...

5.3.3 | Term and Entity Visualization

In this section, we demonstrate the effectiveness of the knowledge-based encoding method in our pre-trained model through
word-level and question-level visualization. As shown in Figure [5] and [flwe use the t-SNE tool to visualize word-level and
question-level visualization by BERT and K M-MT P2V, We choose several labels, some of which are close in terms of math-
ematical semantics, whereas others are relatively different. We choose keywords for each class via the TF-IDF method, and
discard stop words and LaTeX symbols (which have been translated into terms). Some of the selected words are shown in Table

6

To provide an illustrative visualization of the question vectors learned by BERT,;, and KG-MT Py pop rr> We select
350 distinct labels and their related questions and obtain question vectors from the output layers. The results show that KG-
MT Pg ) rop rr can learn more discriminate question vectors, which means that most questions are closer to each other if they
belong to the same label. Question vectors integrating knowledge information appear more similar than original vectors.



JIN ET AL 11

* # Funtion # Funtion *
15 +* i A Crcle 3.0 4 A Circle
* [ Flane Geometry [ Flane Geometry E +r
* A 25 - * *
lo .
RN W A A A ol * N
5 4 A A
L A 5
Wk ET aa M, 151 » .0 ma =
0 A pgm m A A
u H g u 10 A .I -
* g a0 ‘ A O [ |
-5 B * * % »a 05 | A
= A A 4 A A
* *
-10 * B * 0.0 A AmA
- 0 5 0 5 20 -15 -1§ -05 00 05 10 15
(a) BERT,),, (b) KG-MT Ppp; rop ri
FIGURE 5 The t-SNE visualization of word vectors
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FIGURE 6 The t-SNE visualization of question vectors (perplexity=30, init="random”)

5.3.4 | Data Size Sensitivity

In order to evaluate the effect of the size of the labeled data, we tested the performance of the original BERT,,, and KG-
MT Pg s rop.rr With different sizes of training data. In dataset Chn-M ath, each label has various numbers of question
instances, from 30 to 231. Therefore, we generate several datasets according to the number of questions and evaluate the
prediction accuracy. The results are shown in Figure|[7]

We evaluate the prediction accuracy in various groups to demonstrate effectiveness by data size. Here, we split the data into
seven groups (named S Z) based on the number of questions, e.g., SZ1 = [30,60], SZ2 = [60,90], and SZ3 = [90,120].
The results illustrate that prediction performance is improved given more instances in all Top-1, Top-3, and Top-5 targets. We
note that our model KG-M T P performs better in the .S Z 1 group, which indicates the effectiveness of knowledge entities in a
situation with few instances. Similarly, compared with the un-pre-trained BE RT model, KG-M T P performs relatively well.
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FIGURE 7 Prediction accuracy for various data sizes.

5.4 | Insights and Results Discussion

To better understand the performance of various models, we summarize our experimental results and also discuss performance
in different situations.

(1) Difficulty of mathematics understanding. Mathematical questions are usually shorter than normal text and contain
language, symbols, and pictures that are heterogeneous in text. The goals of mathematics understanding are counting, sorting,
matching, seeking patterns, making connections, and recognizing relationships. Therefore, external knowledge is necessary to
extract the latent semantics of questions and has been utilized in some short text classification models. In this work, for simplicity,
we ignore figures and choose questions without figures, although obviously figures may contain some mathematical information.

(2) Effectiveness of entities. Our experiments showed that knowledge graph entities could improve the accuracy of prediction,
which suggests that the information fusion method could result in richer features of questions. However, to the best of our
knowledge, there is no public mathematics knowledge graph specifically in Chinese. It is a difficult task to extract elements from
mathematics textbooks and generate their relationships. Moreover, according to our experience, mathematical symbols written
in LaTeX format are also significant for prediction.

(3) Effectiveness of question length. There are many different styles of question that can be used very effectively to develop
knowledge of mathematics and mathematical skills, including algebraic expressions, linear equations, fractions, and functions;
thus, some questions are simple and short whereas some others are complex and longer. Based on our evaluation, simple questions
are relatively easy to classify.

(4) Effectiveness of data size. More instances for training would improve the performance of pre-trained models such as
BERT and KG-MT P.1tis obvious that a larger data corpus would also improve performance. Pre-trained models with knowl-
edge information fusion perform better, especially in situations with fewer instances, probably because knowledge has a more
important role when the data are insufficient. For common mathematical questions, there are enough examples for training, and
so the role of knowledge entities is not very important. However, when the size of the dataset is relatively small, as is the case
for some unusual mathematical concepts, external information is more important for improving the accuracy of models.

6 | CONCLUSION AND FUTURE WORK

In this work, we have investigated the problem of question topic prediction. We proposed a framework based on a pre-trained
model, integrating external information in a mathematical knowledge graph. To improve the expressive of model, three pre-
training tasks is designed. And we designed a novel topic prediction task for mathematical questions in Chinese. We also built
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a real dataset with human-defined labels and set up a knowledge graph for mathematics concepts used in middle school educa-
tion. Extensive experiments show that our KG-M T P model significantly outperforms all baselines, including BERT and its
extended models.

There are several directions for future work. First, we only used textual information to describe semantics of questions. Other
information such as figures will be considered in further research. Second, our current work did not consider the structure of
mathematical formulas in LaTeX, which usually contains latent concepts. Third, we plan to add more data besides current
questions in middle school education and update our mathematical knowledge graph accordingly. We will make the dataset
available to the public and hope that more researchers will make use of it. Furthermore, although our experiments were on
Chinese data, our method is generalizable and we plan to apply it to questions in English and to other subjects such as physics
and chemistry.
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