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The free propagation in time of a normalisable wave packet is the oldest problem of continuum
quantum mechanics. Its motion from microscopic to macroscopic distance is the way in which most
quantum systems are detected experimentally. Although much studied and analysed since 1927 and
presented in many text books, here the problem is re-appraised from the standpoint of semi-classical
mechanics. Particular aspects are the emergence of deterministic trajectories of particles emanating
from a region of atomic dimension and the interpretation of the wave function as describing a
single particle or an ensemble of identical particles. Of possible wave packets, that of gaussian
form is most studied due to the simple exact form of the time-dependent solution in real and in
momentum space. Furthermore, this form is important in laser optics. Here the equivalence of
the time-dependent Schrödinger equation to the paraxial equation for the propagation of light is
demonstrated explicitly. This parallel helps to understand the relevance of trajectory concepts and
the conditions necessary for the perception of quantum motion as classical.

PACS numbers: 03.65.Aa, 03.65.Sq, 03.65.Ta

I. INTRODUCTION

The question of the relation of quantum to classi-
cal mechanics and the concomitant interpretation of the
wave function can be traced to the dawn of wave me-
chanics. It is best discussed on the basis of continuum
motion (originally called aperiodic motion). Already in
the year 1926 in which he proposed a wave equation for
material particles, Schrödinger realised the necessity to
connect his description of particles by wave dynamics to
that of classical motion. In a paper on the “Transition
from micro- to macro-mechanics” [1] he showed that a
wavepacket composed of harmonic oscillator functions
(today called a coherent state) oscillates as a localised
“particle”. That is, he sought to demonstrate that a
wave function can be assigned to a single atomic par-
ticle. In 1927 this proof was criticised by Heisenberg,
also under the title “Transition from micro- to macro-
mechanics” [2]. Although Schrödinger was thinking of
bound states, Heisenberg showed the counter example of
a freely-propagating gaussian wave packet which spreads
as time progresses and so cannot describe a single par-
ticle. Even today, this spreading of a wave packet is
presented in many text books as a hallmark of quantum
behaviour inexplicable in classical mechanics.

However, also in 1927, Kennard [3] recognised that a
gaussian wave packet contains infinitely many momen-
tum components and, correctly using Born’s statistical
interpretation of the wave function, pointed out that
these components will spread “like a charge of shot”.
Hence, wave function spreading corresponds to the ex-
pected classical behaviour of an ensemble of particles
having an initial spread in momentum.

According to the statistical interpretation of a wave
function Ψ(r, t), the measurement of observables, posi-
tion, momentum and energy of bound states can yield

only the average, expectation values of these quantities.
For bound states, modern imaging techniques can give in-
directly the distribution |Ψ(r, t)|2. Certain experiments,
e.g. Compton scattering or fast electron scattering, im-
age the corresponding bound momentum wave function
distribution |Ψ̃(p, t)|2. For continuum wave functions
this imaging is performed more directly by measuring
the projection |〈 r |Ψ 〉|2 = |Ψ(r, t)|2 of a wave packet on
a detector at macroscopic distance. The momentum dis-
tribution Ψ̃|2 = |〈p |Ψ 〉(p, t)|2 is inferred from times of
flight. For this reason, since position and momentum dis-
tribution of particles can be measured by counting indi-
vidual particles, the spatial and temporal propagation of
continuum wave packets from a quantum zone of atomic
dimension to a classical detector at macroscopic distance
represents the simplest transition from quantum to clas-
sical behaviour.

The question of the identification of the component
for fixed p, defined mathematically from a Fourier trans-
form, with a classically measured momentum (mass × ve-
locity) was examined by Kemble in 1937 [4]. He showed
that a measurement at macroscopic separation from the
microscopic region of creation of the wave packet justifies
the introduction of a classical velocity. More importantly,
in a result referred to today as the ”Imaging Theorem”
(IT), he showed that the space wavefunction asymptoti-
cally assumes the form of the momentum wave function
and the r coordinate of the wave function propagates in
time according to the classical law r(t). This explains
why particles move at macroscopic distances along clas-
sical trajectories.

The IT shows also that after propagation from mi-
croscopic to macroscopic positions and times, the semi-
classical approximation to wave functions is justified.
Since Kemble, the IT has been re-discovered and used
spasmodically in scattering theory but developed in more
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detail quite recently. It has been suggested to embody
the essence of the quantum to classical transition in that
the wave function is preserved to asymptotic distances
but the coordinates change along classical trajectories.
This explains why experimenters can measure the mani-
festations of quantum entanglement whilst using classical
trajectories to trace the motion of particles from micro-
scopic collision complexes out to macroscopic detectors.
The locus of points of constant measurement probabil-
ity are classical paths described by the asymptotic wave
function.

To bring aspects of the wave function more in line with
the human experience of classical trajectories even at mi-
croscopic dimensions, Bohm [5] proposed an additional
postulate, accompanying the Schrödinger equation solu-
tion Ψ(r, t), which leads to the definition of trajectories
r(t) throughout all space and time. This does require a
postulate since, although in classical mechanics a velocity
arise as dr(t)/dt, there is no such definition of a velocity
in quantum mechanics. The plausible step of Bohm was
to suggest such a connection, and hence a trajectory r(t)
from integration of the velocity function, based upon a
certain similarity of the equation of wave mechanics to
that of classical mechanics.

There is now an enormous literature on Bohmian me-
chanics or “quantum trajectory” methods, extending to
several volumes covering many aspects of quantum me-
chanics, see Refs.[6–11]. Here consideration is given to
unbound particle motion as the simplest clear example of
where well-defined trajectories occur classically. Of such
motions, the free propagation of a gaussian wave packet,
as first solved by Heisenberg [2] is the simplest. Although
much-studied since that time, our aim is to throw some
new light on the exact solution and on the approximate
IT semi-classical solution with respect to the nature of
the emergent trajectories.

At each fixed time the gaussian wave function is the
ground state of the harmonic oscillator (HO) and it is
shown that the energy, both potential and kinetic, of the
HO figure prominently. The motion both from and to
a minimum gauss wavepacket is considered and the pre-
cise correspondence to the optics text-book case of the
focussing of a light beam with gaussian profile is demon-
strated. Furthermore it is shown that the momentum-
space gaussian wave function emerges naturally not only
asymptotically but also along the Bohm trajectory.

In what follows, a smooth transition from Bohmian
trajectories to the reality of the asymptotic classical tra-
jectories is demonstrated. Whether or not one views the
Bohm velocity and trajectories as ”real” is left to the
reader. The concept certainly has worth in so far as the
“trajectory” does represent one aspect of the motion of
the quantum wave. The construction of Bohmian tra-
jectories simply follows the path of the normal vectors to
the surfaces of constant action in the quantum wave func-
tion. This illuminates the behaviour of the wave function,
in particular its phase development. The Bohm picture
allows concepts familiar from classical mechanics to be

applied to wave mechanics.

Indeed, the motion of wave fronts in quantum mechan-
ics is equivalent to the propagation of the wave fronts of
classical electromagnetic waves. Of course this connec-
tion can be traced all the way back to Hamilton, through
Schrödinger and de Broglie, up to the present day [12].
An illuminating discussion of the analogy between clas-
sical mechanics and wave optics is given by Lanczos [13],
see also the Refs. [10, 11]. We demonstrate explicitly the
equivalence of the time-dependent Schrödinger equation
(TDSE), as an approximation to the time-independent
Schrödinger equation (TISE), and the paraxial approxi-
mation to the Helmholtz equation. This provokes one to
examine further the approximate status of the TDSE.

The semi-classical limit of quantum mechanics is iden-
tical to the eikonal approximation in optics. The identi-
fication of particle classical trajectories in semi-classical
wave mechanics is an exact parallel of the assignment
of ray trajectories to light in wave optics. This analogy
is explored in some detail, particularly with respect to
gaussian laser beams, to illuminate further the concept
of trajectories in quantum waves and rays in light waves.

The plan of the paper is as follows. In section II the
propagation of quantum wave packets is described. The
approximate semi-classical asymptotic form is derived.
A result known as the “Imaging Theorem” (IT) connects
the space wave function to the momentum wave function
and justifies the introduction of a classical velocity. The
IT is applied to the freely-moving gaussian wave packet.

In Bohmian mechanics, outlined in section III, a veloc-
ity is ascribed to all space and time points in the wave
function. For a gaussian wave packet, an interpretation
is given of the “quantum potential” and Gouy phase in
terms of the instantaneous quantised harmonic oscillator
state. It is demonstrated that the constant probability
along a Bohm trajectory is explained by the IT result
expressing this probability in terms of the invariant ini-
tial momentum space wave function. This constancy is
shown to emerge from a time scaling of space coordinates
along the trajectory.

In section IV the implications of wave packet spreading
for the interpretation of the quantum to classical transi-
tion as applying to a single particle or only to an ensemble
of particles is considered.

In section V the precise equivalence of the time-
dependent Schrödinger equation (TDSE) as an approx-
imation to the time-independent Schrödinger equation
(TISE) and the paraxial equation as an approximation
to the Helmholtz equation of classical optics, is proven.

In Section VI the focussing of laser beams is translated
into a similar situation for quantum particle beams and
this allows a simple criterion that a detection would be
perceived as quantum or as classical motion of particles
to be given. This is in complete analogy to the perception
of wave or beam motion for light.

The results are summarised and commented in the
Conclusions section VII.
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II. WAVE FUNCTION PROPAGATION IN
SPACE AND TIME

In solutions Ψ(r, t) of the time-dependent Schrödinger
equation (TDSE), the coordinates r and the time t are in-
dependent. By propagation, at each time t, the distribu-
tion of the wave function in the position r changes. This
change can be calculated from the fundamental equation
for wave function propagation, for simplicity assuming a
time-independent Hamiltonian H,

|Ψ(t) 〉 = e−
i
~H(t−t′) |Ψ(t′) 〉 (1)

Projected into position space this gives the wave function
propagation

Ψ(r, t) =

∫
K(r, t; r′, t′) Ψ(r′, t′) dr′, (2)

where the space-time propagator K is simply

K(r, t; r′, t′) = 〈 r |e− i
~H(t−t′)| r′ 〉. (3)

The point to note here is that, for fixed time interval
t − t′, ”paths” beginning at all possible r′ lead to the
response at a given final position r. This is acknowledged
in the path integral formula for the evaluation of the
kernel K [14], where all possible paths linking r′ with r
for motion in a fixed potential are taken into account.

In the very simplest dynamics of free motion it is re-
markable that the exact quantum kernel K(r, t; r′, t′) is
identical to its semi-classical approximation [15]. Then
the paths arising in the exact propagation of the wave
function are restricted to those connecting r′ with r
which obey classical mechanics.

A. The Semi-classical Wave Function; Classical
trajectories.

In this section the semi-classical (SC) wave func-
tion arising from propagation where the action function
S(r, t) has reached values much in excess of ~ is derived.
It is shown that for the SC wave function a definite clas-
sical relation r(t) does emerge and defines a classical tra-
jectory.

One begins with the exact propagation described by
the integral equation (2),

For free motion the exact propagator kernel assumes
its semi-classical form [15]

K(r, t; r′, t′) =
1

(2πi})3/2

∣∣∣det
∂2Sc
∂r∂r′

∣∣∣1/2 eiSc(r,t;r′,t′)/}

=
1

(2πi})3/2

(
dp′

dr

)1/2

eiSc(r,t;r
′,t′)/},

(4)

where now Sc(r, t; r
′, t′) is the classical action in coordi-

nate space and we define the initial classical momentum

p′ = ∂Sc/∂r
′. Since r and t − t′ are fixed but r′ is

variable then all momenta corresponding to given r′ are
possible. Thus, although the kernel describes classical
motion, there is still an infinity of possible classical tra-
jectories contributing to the r′ integral of Eq. (2).

The second key approximation, which restricts severely
the possible trajectories, is to consider propagation to a
distance r which is large compared to the initial extent
of the wave function in r′. This distance can still be very
small on a macroscopic scale. Then, we consider the limit
r � r′. In this limit one has r′ ≈ 0, so that the action
can be expanded around this point as

Sc(r, t; r
′, t′) ≈ Sc(r, t; 0, t′) +

∂Sc
∂r′

∣∣∣
0
· r′. (5)

Specifying the initial momentum ∂Sc/∂r
′|0 ≡ −p′, sub-

stitution in the integral Eq. (2) gives a Fourier transform
and the result

Ψ(r, t) ≈ (i)−3/2
(
dp′

dr

)1/2

Ψ̃(p′, t′) eiSc(r,t;0,t
′)/}, (6)

where Ψ̃(p′, t′) is the momentum-space wavefunction of
the initial, spatially-confined quantum system.

This equation is known as the Imaging Theorem (IT)
approximation for the final wavefunction Ψ(r, t) [16]. Ac-
tually, suitably generalised, it is valid for motion in ar-
bitrary applied fields [17]. For the simple case of free
motion, each final position r, t along a single classical
trajectory corresponds to a unique initial momentum p′

emanating from r′ = 0, t′ = 0 (we take the initial time
to be zero).

For the free motion of a particle of mass m, one has
the final momentum mr/t = p = p′ and the van Vleck
determinant [15] is

dp

dr
=

∣∣∣∣det
∂p

∂r

∣∣∣∣ =
(m
t

)3
. (7)

The asymptotic wavefunction then is

Ψ(r, t) ≈
(m
it

)3/2
eimr

2/(2}t) Ψ̃(mr/t). (8)

Note that the classical action Sc implies the classi-
cal trajectory r(t) = pt/m embedded in the quantum
momentum-space wave function.

The probability of a particle to be located at fixed
position r is equal to the probability that it was launched
with fixed momentum p. Then, from Eq. (6)

|Ψ(r, t)|2 dr(t) = |Ψ̃(p)|2 dp (9)

showing that, although the wave function is preserved,
the locus of points of constant detection probability is
a classical trajectory. The sharper is dr(t) defined by
the detector, the narrower is the detected momentum
distribution dp.

The IT approximate wave function, whose co-ordinates
describe a classical trajectory, justifies the asymptotic
dependence of the coordinates r and t and therefore the
transformation Ψ(r, t) → Ψ(r(t)) ∝ Ψ̃(mr/t) and the
definition of a classical velocity v = r/t.
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B. The freely-moving gaussian wave packet

In appendix A the time propagation of the initial wave
packet, both in position and momentum space is con-
sidered. The time propagators in position, momentum
and mixed position-momentum spaces are given and it
is shown that, since the semi-classical propagators are
exact, the coordinates of the propagators are connected
by classical trajectories. The exact time-dependent func-
tions for a gaussian wave packet are presented next.

In quantum mechanics it is accepted usually that cal-
culations obtain equivalent results when carried out ei-
ther in position or momentum space. Certain calcula-
tions are easier to perform in one or other space. First
we consider free-particle propagation in momentum space
which certainly is simpler than the propagation in con-
figuration space. One can calculate the time-dependent
momentum wave function from the propagator equation

Ψ̃(p, t) =

∫
K̃(p, t; p′, 0)Ψ̃(p′, 0) dp′, (10)

with momentum-space kernel

K̃(p, t; p′, 0) =

(
1

2π~

)1/2

e−
i
~
p′2
2m t δ(p− p′). (11)

Then the propagating wave function has the form

Ψ̃(p, t) = Ψ̃(p, 0) e−
i
~
p2

2m t (12)

That is, the initial momentum wave function is un-
changed except for an acquired energy phase. This is
valid for any normalisable initial wave packet.

Specifically for a gaussian one has

Ψ̃(p, t = 0) =

(
σ2

~2π

)1/4

e−σ
2p2/(2~2), (13)

where ~/σ is the width in momentum space. The time
propagated wave function is

Ψ̃(p, t) = Ψ̃(p, 0) e−
i
~
p2

2m t

=

(
σ2

~2π

)1/4

e−σ
2p2/(2~2) e−

i
~
p2

2m t

≡
(

1

πσ̃2

)1/4

e−p
2/(2σ̃2) e−

i
~
p2

2m t.

(14)

Here we define the inverse momentum space width
σ̃ ≡ ~/σ so that σσ̃ = ~ conforming to the uncertainty
relation. As shown below, the parameter σ then is the
wave packet width in configuration space.

Although given in many text books in complicated
form, where the physical parameters m, σ and ~ are kept
separately, the essential physics of the propagation can
be subsumed in a single parameter. Already Heisenberg

[2] recognised that one can define the characteristic pa-
rameter

T =
m

~
σ2 (15)

with dimension of time. Then one can use it to define
a dimensionless time τ ≡ t/T . As will be shown, this
parameter becoming larger than unity denotes the onset
in time of classical trajectory behaviour, or alternatively
the transition from wave to particle behaviour. Equally,
it will emerge that it marks the transition from Bohmian
trajectories to classical trajectories. In Optics, the equiv-
alent parameter delineates near-field wave and far-field
light ray spatial regions.

Peculiar to a gaussian is that both Ψ̃(p, 0) and the
phase factor are exponentials involving p2. This means
that the exact momentum-space wave function Eq. (12)
can be written in the compact form,

Ψ̃(p, t) =

(
1

πσ̃2

)1/4

e
− p2

(2σ̃2)
(1+iτ)

. (16)

Thus the only effect of time propagation is to introduce
the complex time factor (1 + iτ) into the exponent of the
gaussian.

The configuration-space wave function can be derived
from the propagation Eq. (2) with initial wave function

Ψ(x, t = 0) =

(
1

πσ2

)1/4

e−x
2/(2σ2), (17)

or more simply as the Fourier transform (FT) of the mo-
mentum wave function Eq. (16). Then for t > 0 the ini-
tial gaussian wavefunction propagates according to the
exact form

Ψ(x, t) =

(
1

πσ2

)1/4
1

(1 + iτ)1/2
e−x

2/[2σ2(1+iτ)]. (18)

Again, comparison with the initial wave function of
Eq. (17) shows that the only effect of time propagation
is to introduce the imaginary factor (1 + iτ) into the ex-
ponent of the gaussian.

Indeed, from Eq. (16) and Eq. (18) one sees the ex-
pected conjugate similarity of momentum and configura-
tion space wave functions. However, the apparently in-
nocuous difference that the time factor (1 + iτ) appears
in the numerator of the exponent in Eq. (16) but in the
denominator in Eq. (18) has a profound effect. It is the
difference between a complex number z and the number
1/z = z∗/|z|2. This implies that the momentum wave
function propagates form invariantly, only the phase fac-
tor varies with time. However, the space wave function
spreads in time due to the extra factor 1/|z|2 = (1+τ2) in
the exponent. As time progresses the width of the wave
packet increases. The preservation of normalisation dur-
ing spreading is the reason for the extra normalisation
factor (1 + iτ)−1/2 in Eq. (18) compared to Eq. (16).
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The complex normalisation factor (1 + iτ)−1/2 in
Eq. (18) can be written

(1 + iτ)−1/2 = (1 + τ2)−1/2 exp

[
− i

2
arctan τ

]
. (19)

The phase factor occurring corresponds exactly to what is
known in the Optics of gaussian propagation as the Gouy
phase [18]. Its physical meaning is explained below.

The IT condition emerges in the limit of large times.
Large times corresponds to τ ≡ t/T � 1. In this limit,
putting explicitly T = mσ2/~, the exact wave function
Eq. (18) has the asymptotic form

Ψ(x, t) ≈
(
σ2

π

)1/4 ( m
i~t

)1/2
× e−[mxσ/(

√
2~t)]2eimx

2/(2~t).

(20)

Substituting the classical condition p = mx/t of the
stationary phase approximation, valid asymptotically,
one has the equivalent form

Ψ(x, t) ≈
(
σ2

~2π

)1/4 (m
it

)1/2
e−σ

2p2/(2~2)e
i
~
p2

2m t

=
(m
it

)1/2
Ψ̃(p, 0) e

i
~
p2

2m t.

(21)

Hence, the space wave function is proportional to the
momentum wave function Eq. (12). This is just the one-
dimensional form of the IT of Eq. (6), with p = mv =
mx/t and dp/dx = m/t for free motion. Note that the
phase factor i−1/2 = exp (iπ/4) is the asymptotic Gouy
phase.

It must be emphasised that the introduction of an
asymptotic classical velocity v is justified mathemati-
cally from the IT approximation and gives a large time
classical connection x(t) = vt between the quantum-
mechanically independent coordinates x and t within the
quantum wave function. The emergence of a classical ve-
locity from a quantum mechanical momentum does not
have to be postulated.

III. THE BOHMIAN TRAJECTORIES.

Following Bohm [5], as an additional postulate, a tra-
jectory r(t) is defined and interpreted as that of a parti-
cle, or ensemble of particles, described by the wave func-
tion Ψ(r, t) playing the role of a “pilot” wave. The devel-
opment of Bohmian mechanics is given in great detail, for
example in the lengthy volume of Holland [6]. A sketch
of the derivation is as follows, reverting to three space
dimensions.

First the wave function is written in amplitude-phase
(also called polar) form

Ψ(r, t) = R(r, t) e
i
~S(r,t). (22)

where R and S are real functions. Following Holland,
with the momentum operator p̂ = −i~∇, a “local” mo-
mentum is defined as

p̂Ψ(r, t) = −i~∇Re i~S(r,t) +∇SΨ(r, t). (23)

Then the second term is used to define a real local veloc-
ity function

ṙ = v(r, t) ≡ 1

m
∇S(r, t). (24)

The justification is to be found in the appearance of an
equation of the same form as the Hamilton-Jacobi (HJ)
equation of classical mechanics. This arises from substi-
tution of this complex wavefunction in the TDSE for a
single particle of mass m(

− ~2

2m
∇2 + V (r)− i~ ∂

∂t

)
Ψ(r, t) = 0 (25)

and separation of real and imaginary parts leading to two
coupled equations. The first is,

(∇S)2

2m
+ V (r) +Q(r, t) +

∂S

∂t
= 0, (26)

reducing, for Q = 0 to the classical HJ equation. The
additional term is the “quantum potential”

Q(r, t) = − ~2

2m

[
∇2R

R

]
. (27)

One notes that this potential, in direct analogy to the ap-
pearance of a centrifugal potential, is a fictitious potential
arising from the kinetic energy part of the Hamiltonian
operator.

The second equation is the continuity equation for the
probability density with R2 and flux j = (R2∇S

m ),

∂R2

∂t
+∇ .

(
R2∇S

m

)
= 0. (28)

The Bohmian trajectory r(t) is then calculated by in-
tegrating the velocity equation Eq. (24). This trajectory
r(t) is viewed as a particle’s “quantum” trajectory, de-
terministically connecting the initial ri to the final r.
We emphasise, what is being designated a momentum
function is simply the gradient ∇S of the phase of the
quantum wavefunction. Important is that the direction
of ∇S is the normal to the instantaneous wave front.

Refraining from philosophical questions as to the “re-
ality” of such trajectories, we adopt a pragmatic stand-
point within standard quantum mechanics. If one recog-
nises that the function ∇S(r, t) gives the normal to the
wave front surface at each space-time point, then one
can plot the locus of such normal vectors. Knowledge of
this locus provides useful insight into the quantum wave
function and in this sense does not contradict standard
quantum mechanics.
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However, due to the quantum potential, even for free
motion the Bohm trajectories do not agree with the clas-
sical ones (although the latter ones enter the semiclassical
version of the propagator which is quantum mechanically
exact). The relation between the two types of trajecto-
ries is investigated in more detail using a Gaussian initial
wavefunction. It will turn out that the Bohm trajectories
connect smoothly to those classical trajectories defined
in a mathematically correct way in the IT wave function
Eq. (8).

A. The Bohmian velocity and trajectories for a
gaussian wave packet.

In polar form the exact space wave function Eq. (18)
has the more complicated form

Ψ(x, t) =
1

[πσ2(1 + τ2)]
1
4

exp

[
− i

2
arctan τ

]
× exp

[
− x2

2σ2(1 + τ2)

]
exp

[
i

x2 τ

2σ2(1 + τ2)

]
.

(29)

The action function of this exact wave function is

S = ~
x2

(2σ2)

τ

(1 + τ2)
− ~

2
arctan τ. (30)

The Bohmian velocity is postulated as

ẋ ≡ 1

m

∂S

∂x
=
x

T

τ

(1 + τ2)
(31)

and can be written also as

ẋ =
x

t

τ2

(1 + τ2)
. (32)

One recognises that asymptotically, when τ � 1, then
|x/t| is the constant classical speed v which is positive.

The Bohmian velocity equation can be integrated over
time to yield the Bohmian trajectory

x(t) = x0(1 + τ2)1/2 (33)

where, to emphasise the zero of time on the trajectory,
now we define x(0) ≡ x0. To satisfy the large time limit of
the classical trajectory x(t) ≈ ±vt one has the condition
x0 = ±vT , so that, for a fixed final momentum p = ±mv,
the trajectory has a fixed well-defined position at t = 0.
Each trajectory, Bohmian and its classical asymptote, is
then characterised solely by its final velocity ±v and the
constant T .

The Bohmian trajectory equation can be written in the
form

x(t) = ±v(t2 + T 2)1/2 (34)

and the classical IT trajectory x(t) = ±vt is the t � T
limit. Note that the Bohmian trajectory has the t = 0

FIG. 1: The axes are in atomic units (a.u.). The continuous
blue lines are the Bohmian trajectories x(t) representing the
spreading in one dimension (vertical axis) of a gaussian wave-
function for positive times. The horizontal axis is the time
axis. The time constant is T = 1 a.u.. The trajectories are
asymptotic to the IT straight-line x = ±vt classical trajecto-
ries which extrapolate back to x = 0. As example, the red
dashed lines are the asymptotes for v = ±1.0.

conditions, position x0 = ±vT and the initial velocity
ẋ(0) = 0 for all trajectories. By contrast the classical
trajectories have the t = 0 conditions, position x0 = 0
and constant classical velocity v = p/m for the different
trajectories.

The Bohmian trajectories are shown in Fig. 1 for a
selection of initial values across the width of the gaussian
centred at x = 0. One sees that all trajectories start out
perpendicular to the x-axis indicating zero initial Bohm
velocity. This is seen from Eq. (31) at t = 0. Initially the
normal to the phase fronts of the gaussian wavefunction
indeed are orthogonal to the spreading direction x. The
difference between Bohm and the classical straight-line
x = ±vt trajectories is clear. The Bohmian trajectories
do not cross reflecting the single-valued property of the
wave function. They are asymptotic to the straight-line
classical trajectories, which all can be extrapolated back
to the origin x = 0. This is in line with the expansion of
the action around r′ = 0 of Eq. (5) which leads to the SC
wave function of the IT approximation. From Fig. 1 one
sees that the two Bohm trajectories beginning at vT =
±1.0 converge rapidly (for T ≈ 3.0) to the IT straight-
line classical trajectories for v = ±1.0. In line with the IT
prediction, the distribution in space of |Ψ(x, t)|2 , when
plotted as a function of x/t = p/m for τ � 1 i.e. for
t � T , is exactly that of the momentum distribution
|Ψ̃(p, t = 0)|2 and does not change in time.
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B. Quantum potential, Gouy phase and the
harmonic oscillator.

The quantum potential is defined in terms of the am-
plitude R(x, t) which from Eq. (29) can be written

R(x, t) =

(
1

πσ2

)1/4
1

(1 + τ2)1/4
e
− x2

(2σ2)
1

(1+τ2) . (35)

From this expression the quantum potential is

Q(x, t) = − ~2

2m

1

R

∂2R

∂x2

= − ~2

2mσ4

[
x2

(1 + τ2)2
− σ2

(1 + τ2)

]
= − m

2T 2

[
x2

(1 + τ2)2
− σ2

(1 + τ2)

]
.

(36)

Some remarks on the description of this function as a
“potential”.

1) As noted already, its origin is the kinetic energy
term in the Hamiltonian and so it is clearly a fictitious
potential. In this picture, the Bohm velocity, analogous
to the radial velocity, appears in only a part of the total
kinetic energy.

2) Although dealing with free propagation under a
constant Hamiltonian, the potential function Q is time-
dependent.

3) The appearance of the second x-independent but
time-varying contribution is unusual for a potential func-
tion. For fixed t it is a constant.

We clarify these aspects in that, first we recognise that
at each fixed time, the spreading gaussian function is
the ground state wave function of the harmonic oscillator
(HO).

With T = mσ2/~ the function Q can be written

Q(x, t) = − m

2T 2

x2

(1 + τ2)2
+

~
2T

1

(1 + τ2)
(37)

For fixed time t, the wave function is that of the ground-
state HO with frequency

ω(t) =
1

T

1

(1 + τ2)
(38)

and in particular ω(0) = 1/T at time zero, which gives
additional meaning to the constant T . Then the quantum
potential takes the form

Q(x, t) = −1

2
mω2(t)x2 +

1

2
~ω(t) (39)

at each fixed time t. Of course this shows clearly that
the quantum “potential” is indeed the difference of the
oscillator potential energy and total energy, i.e. the ki-
netic energy of the instantaneous oscillator state. This
form also shows that the mysterious x-independent sec-
ond term in Q is simply the total energy of the oscillator.

Even more interesting, in appendix B it is shown that
the x-independent term in the quantum potential, the
HO eigenenergy, has its origin in the derivative of the
Gouy phase contribution to the total action function S.
The phase factor is the action from the integral of the adi-
abatic energy of the oscillator E0(t) ≡ ~ω(t)/2 in Eq. (39)
i.e.

exp

(
i

~

∫ t

E0(t′)dt′
)

= exp

(
i

2

∫ t

ω(t′)dt′
)

= exp

(
i

2
arctan τ

) (40)

which is exactly the Gouy phase of Eq. (29). Some au-
thors have identified the Gouy phase with a geometric
phase [19, 20]. It has been identified in ionised-electron
wave packets [21] and a connection to Maslov phases [15]
pointed out. Here we have shown its origin to be simply
the dynamic adiabatic time-dependent energy phase of
the time-dependent Schrödinger equation. This is a new
interpretation of the Gouy phase in quantum mechanics.

C. The Wave Function along a trajectory.

The nature of the exact wave function along the Bohm
trajectory x(t) is striking in its simplicity. Substituting
the trajectory x(t) = x0(1 + τ2)1/2 into Eq. (29) gives
the wave function

Ψ(x(t)) =
1

[πσ2(1 + τ2)]
1
4

exp

[
− i

2
arctan τ

]
× exp

[
− x20

2σ2

]
exp

[
i
x20 τ

2σ2

]
.

(41)

That is, the gaussian function has a constant ampli-
tude along the trajectory. Furthermore, recognising that
x0 = vT , where v is the asymptotic constant classically
velocity, this equation can be written in the form

Ψ(x(t)) =
1

[πσ2(1 + τ2)]
1
4

exp

[
− i

2
arctan τ

]
× exp

[
−σ

2p2

2~2

]
exp

[
i

~
p2t

2m

]
,

(42)

where p2 = (~x20/σ2)2 = (mv)2 is precisely the mo-
mentum variable appearing in the initial, but constant
in time, gaussian momentum wave function Ψ̃(p, 0) of
Eq. (12). The action phase factor is also that of the clas-
sical asymptotic trajectory. Proceeding further with the
transformation, one can show that along the trajectory(

dp

dx

)1/2

=
σ

~1/2
(1 + τ2)1/4. (43)

Then the space wave function is

Ψ(x(t)) =

(
dp

dx

)1/2

exp

[
− i

2
arctan τ

]
Ψ̃(p, 0) exp

[
i

~
p2t

2m

]
.

(44)



8

which is precisely of the IT form of Eq. (6). Thus we see
the remarkable result that along the Bohm trajectory,
the value of the coordinate space wave function is pro-
portional to the initial momentum space wavefunction
which propagates unchanged in time. The asymptotic
form of the IT wave function is valid for all times but
with the substitution p = mv = mx/(t2 +T 2)1/2. It con-
verts smoothly into the semi-classical wave function with
p = mv = mx/t for t� T .

Note that Eq. (44) shows that along the Bohm trajec-
tory, the space wave function provides an image of the
initial momentum wave function, as an extension of the
IT to the near zone. Also, following Eq. (9) one sees from
Eq. (44) that the probability

|Ψ(x, t)|2 dx(t) = |Ψ̃(p, 0)|2 dp, (45)

to locate a particle on the Bohmian trajectory and its
classical IT extension, is a constant.

D. Time-scaling of Space; the Co-moving Frame.

In this section it is shown that the transition to a Bohm
trajectory can be viewed as a time scaling of space. This
gives a further meaning to the appearance of the Gouy
phase.

The time-scaling of space coordinates is employed fre-
quently in dynamics, not only in quantum mechanics
[22, 23] but also in classical mechanics [24] and cosmol-
ogy [25]. In the context of this paper it was employed
by Solovev [22] to show the equivalence of free motion
to harmonic oscillator motion in quantum mechanics.
A thorough discussion of such time transformations in
non-relativistic quantum mechanics is given by Takagi
[26], who emphasised the transformation to a co-moving
frame. In hydrodynamics such a transformation is de-
scribed as going from the Euler frame to the Lagrange
frame. Here we expose a novel connection of the time-
scaling of space to the concept of Bohm trajectories and
their classical asymptotes.

In the TDSE of free motion

− ~2

2m

∂2Ψ

∂x2
− i~ ∂Ψ

∂t
= 0 (46)

we introduce new space and time coordinates,

q ≡ x

a(t)
t̄ ≡

∫ t dt′

a(t′)2
, (47)

where a(t) is dimensionless so that q and t̄ retain their
usual dimensions. Substitution in Eq. (46) gives the
transformation

Ψ(x, t) = a−1/2 exp

(
i

2
aȧmq2

)
Φ(q, t̄), (48)

where Φ satisfies the TDSE of a harmonic oscillator (HO)
with time-dependent frequency, i.e.(

− ~2

2m

∂2

∂q2
+

1

2
ma3ä q2

)
Φ = i~

∂Φ

∂t̄
. (49)

Note that the dot signifies differentiation w.r.t. t.
If, in recognition of the Bohm trajectory Eq. (33), we

choose a(t) = (1+τ2)1/2, where τ = t/T , then we obtain
the standard HO equation with a time-independent fixed
frequency ω0 = 1/T(

− ~2

2m

∂2

∂q2
+

1

2
mω2

0 q
2

)
Φ = i~

∂Φ

∂t̄
. (50)

The solutions to Eq. (50) are the HO wavefunctions of
which the ground state, with energy E0 = 1

2~ω0, is

Φ(q, t̄) =

(
1

πσ2

)1/4

exp

(
− q2

2σ2

)
exp

(
− i
~
E0t̄

)
, (51)

where the standard energy phase is E0t̄/~ = 1
2ω0t̄ =

1
2 t̄/T = 1

2 arctan τ , showing that the new time is simply
proportional to the Gouy phase.

Hence, in the co-moving frame Φ is the fixed non-
expanding gaussian, only space expands. This is exactly
in line with our introduction of a complex space trajec-
tory.

Indeed, for this choice of scaling function a(t) = (1 +
τ2)1/2, one has q = x/a = x0 = vT . Then, transforming
back to the laboratory frame using Eq. (48), gives

Ψ(x, t) =
1

[πσ2(1 + τ2)]
1
4

exp

[
− i

2
arctan τ

]
× exp

[
− x20

2σ2

]
exp

[
i
x20 τ

2σ2

]
.

(52)

which is precisely Eq. (41). Then the IT equations
Eq. (42) and Eq. (44) follow also.

Also a further interpretation of the Gouy phase, which
has the simple form 1

2 arctan (τ) has emerged. On the
one hand it appears as the adiabatic energy integral
Eq. (40). On the other hand it provides exactly the trans-
formation to a frame coinciding with the Bohm trajectory
through the definition of a new time t̄ ≡ T arctan (t/T ).

The connection between quantum wave mechanics and
Optics is the subject of the next Section. In particular,
the two-dimensional TDSE is shown to be identical to
the paraxial wave equation of optics. Hence the results
obtained for the propagation of quantum wave packets
apply equally to the propagation of laser light beams.

IV. THE SPREADING OF WAVE PACKETS

The question of the spreading of wave packets turns
out to be a prime example of the difference between the
single-particle (SP) interpretation of the wave function
and the “ensemble” view that the wave function applies
only to the statistical properties of many particles and
cannot be assigned to a single particle [27, 28].

The SP picture is presented in very many quantum
text books. Since, in assigning the wave function to a
single particle, the spreading of the wave function does
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not correspond to a localised particle, then the spreading
is seen as non-classical i.e. a purely quantum effect .

We consider the quantum to classical transition on the
basis of gaussian wave packet propagation and spreading
represented by the Bohmian trajectories of Fig. 1. Impor-
tant is that the condition t < T delineates the “quantum”
region where the quantum potential is non-zero and the
opposite t > T region is where the quantum potential
tends to zero and the trajectories become classical.

In the SP picture, the suppression of “quantum”
spreading is seen as essential to the localisation of a single
classical particle. For example, in Ref. [29], macroscopic
values of mass 1 gram and size σ = 1µm are assumed
to show that, for times t � mσ2/~ = T which are of
the order of 1035a.u. (greater than the age of the uni-
verse), a single particle has a wave packet which retains
its width. Hence, since the wave packet centre obeys
Ehrenfest’s theorem, it is assumed that an observation
would conclude that the particle moves classically.

With reference to Fig. 1 one sees that for τ � 1.0
or t � T the particles move on trajectories almost par-
allel to the time axis. Since the width in real space is
macroscopic, the width in momentum space is very small,
in the example ≈ 10−5 a.u.. However, this extremely
small width in momentum space confines particles to a
Bohmian trajectory with almost zero velocity in the x
direction i.e. a trajectory x(t) ≈ 0. This one particular
Bohm trajectory coincides with the straight-line classical
trajectory. Since it is the trajectory of the centre of the
wave packet, this single trajectory is straight-line classi-
cal as dictated by the Ehrenfest theorem for free motion.

For convenience we have chosen a wave packet whose
centre does not move in the x direction. Were one to
choose a centre with momentum p0 then the classical SP
limit would have particles confined to the straight-line
trajectory x(t) = p0t/m. The SP classical criterion is
valid for all t in the limit T →∞. Note however that the
region t < T is precisely the quantum wave region.

By contrast, in the ensemble interpretation adopted
here, the spreading is viewed as a simple consequence
of the initial distribution of momenta in the x direction.
The spreading simply mirrors the fact that an ensem-
ble of classical particles with different velocities spreads
in time.Then the classical transition is more general in
that every trajectory, independent of the particle mass,
becomes classical for some t > T . On an atomic scale,
the large time t implies large distance x where the action
function has values much in excess of ~. In this region
the IT wave function is valid and describes a classical en-
semble of trajectories with different velocities emanating
from x = 0, as shown in Fig. 1. Hence in the ensemble
picture the condition t > T for the quantum to classi-
cal transition is precisely the opposite of the condition
assumed in the SP picture.

To put it simply, in the SP picture the wave packet
spreading in seen as non-classical as it delocalises the
wave function assigned to a single particle. In the en-
semble picture the spreading is seen as the epitome of the

classical dynamics of an ensemble of particles with differ-
ent momenta, embedded within the delocalised quantum
wave function.

A general condition for the transition to classical mo-
tion is that the action function S assumes values every-
where greater than ~. For a gaussian wave packet one can
show that, for the SP picture “classical condition” t < T ,
the action is approximately ~ t/T which does not fulfil the
classical requirement. For the ensemble picture criterion,
t > T , the action becomes S ≈ (1/2)mv2 t which is larger
than ~ everywhere (except along the centroid Ehrenfest
trajectory v = 0 !). Hence the accepted text-book SP
explanation of the quantum to classical transition would
appear questionable.

V. WAVE, RAY AND PARTICLE PICTURES

It is interesting that the mathematics of the quantum
to classical transition of particle wave mechanics is iden-
tical to that of the wave to beam transition in electro-
dynamics. In electrodynamics the transition from wave
to beam or ray picture begins with the eikonal approx-
imation to the Helmholtz equation. For a single field
component Ψ(r), the Helmholtz equation reads

[∇2 + k2(r)] Ψ(r) = 0, (53)

where k = k0 n = Ωn/c with refractive index n(r), ve-
locity of light c and light frequency Ω. The TISE has
the same form but with k2 = 2m(E − V (r))/(~2), with
total energy E and potential V (r). The analogy be-
comes an identity if one defines, for light, the free mo-
mentum p = ~Ω/c. For particles, the asymptotic free
momentum is p = (2mE)1/2. Then in both cases one
has k(r) = p n(r)/~ where for particles the dimension-
less “refractive index” is n(r) ≡ (1 − V (r)/E)1/2. Also
in both cases the wavelength is λ(r) = 2π/k(r).

Substitution of the polar expression

Ψ(r, t) = R(r, t) eiS
′(r,t) (54)

into the Helmholtz Eq. (53), where R and the dimension-
less phase S′ are real functions, and taking the real part
gives, for both particles and light, the simple equation

(∇S′)2 = k2(r) +
∇2R

R
. (55)

One recognises the emergence of the term of equivalent
form to the “quantum potential” on the right side of this
equation.

For light it is customary to define a phase S = S′/k0
to give the exact equation

(∇S)2 = n(r)2 +
1

k20

∇2R

R
(56)

For particles it is usual to define an action phase as S =
~S′ to give the analogous equation

(∇S)2 = 2m(E − V (r)) + ~2
∇2R

R
, (57)
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the time-independent form of Eq. (26).
For light, the transition to ray optics is made by ne-

glect of the second term on the right in Eq. (56). This
”eikonal” approximation is often justified by saying that
k0 →∞ or correspondingly the wavelength goes to zero.
Of course k0 is fixed, more accurate is to say that R is

slowly varying so that ∇
2R
R is small. Alternatively n2 is

everywhere much bigger than the term 1
k20

∇2R
R which can

be dropped.
In complete analogy, for particles the transition to a

classical trajectory is made by neglect of the quantum po-
tential in Eq. (57) to give the classical Hamilton-Jacobi
equation. For particles, the classical limit is often ex-
pressed as ~ → 0, although ~ is a fixed constant. Again
more accurate is to say that the slowly varying function
R implies that the quantum potential is everywhere small
and can be neglected. Alternatively the classical limit is
where the kinetic energy (E−V ) everywhere far exceeds

the quantum potential ~2

2m
∇2R
R .

The eikonal approximation for light is synonymous
with Fermat’s principle of least path for light rays. The
Hamilton-Jacobi equation for particles is synonymous
with Hamilton’s principle of least action for particle tra-
jectories. The analogy between light and particle dynam-
ics becomes even more striking when one recognises that
the IT of quantum mechanics gives the result that the
asymptotic space wavefunction of Eq. (6) is proportional
to the initial momentum wavefunction. For light, the
Fraunhofer diffraction pattern at large distance from a
slit is proportional to the Fourier transform to wave num-
ber (momentum) space of the slit function, see Ref. [30].

It should be remarked that traditionally in Optics, the
ray picture is used only where the eikonal approximation
to Eq. (56) is justified, just as here the classical action to
define a classical trajectory is used only when the quan-
tum potential can be neglected. In this asymptotic zone
the Hamiltonian formulation of ray propagation is well-
developed [31]. When the full equation Eq. (56) is ap-
plicable one speaks of the wave regime. The analogue of
defining Bohmian trajectories in the wave regime is rarely
used in Optics, rather wave fronts are drawn. However,
an extension of the trajectory picture to describe elec-
tromagnetic waves in all of space, equivalent to Bohmian
mechanics for the Schrödinger equation, has been sug-
gested [32].

In the next section the similarity of light and particle
dynamics is extended further by showing the equivalence
of the paraxial approximation of the Helmholtz equation
to the TDSE of quantum mechanics.

A. The paraxial approximation of Optics

In the paraxial approximation one considers light trav-
elling in the z direction as a plane wave to give

Ψ(r) = ψ(r) eikz, (58)

where ψ is a slowly varying function of z and we con-
sider for the moment a constant k. Substitution in the
Helmholtz equation Eq. (53) and neglect of the second
derivative with respect to z, gives the paraxial equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2ik

∂ψ

∂z
= 0. (59)

In the particle case, one takes Eq. (53) as the TISE of
quantum mechanics. Then the paraxial equation follows
from the same approximation of slowly-varying ψ(r) in
the z direction. For particles we multiply Eq. (59) by
−~2/(2m) to write the paraxial equation in the form,

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
− i~

2k

m

∂ψ

∂z
= 0 (60)

The key step in deriving a TDSE is when the variable z
can be treated as a classical variable z(t) with a corre-
sponding classical velocity ż(t) ≡ vz. Then in Eq. (60)
one puts ~k/m = pz/m = vz = ∂z/∂t, so that the parax-
ial equation becomes

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
− i~ ∂ψ

∂t
= 0 (61)

which is the TDSE for motion in two dimensions.
This is simply an example of the general derivation

of the TDSE from the TISE in higher dimension, see
Ref. [33], when one or more of the quantum variables can
be treated classically. Here, the z coordinate becomes the
time i.e. the classical longitudinal motion of the particle
in the z direction provides its own clock for the quantum
motion in the transverse direction.

In this connection one notes that the plane wave
exp (ikz) = exp (ipz/~) is already of SC form since
∂S/∂z = p, the classical HJ condition. Interestingly, the
paraxial form of the two-dimensional Helmholtz equation
is seen clearly as an approximation in Optics. However,
the equivalent two-dimensional TDSE is viewed as exact
in quantum mechanics, although it is stressed in Ref. [33]
that, because of the classical nature of time, the TDSE of
Eq. (61) is an approximation to the full TISE in a higher
number of space dimensions.

B. Equivalence of the Paraxial Equation and the
TDSE.

The IT limit is asymptotic and the time T is the nat-
ural limit defining the edge of the quantum wave zone.
The Bohmian trajectories are defined where the quantum
potential is still non-negligible. In terms of wave fronts,
the Bohmian trajectories describe the change in the di-
rection of the normal to the instantaneous wave front.
The asymptotic classical constant velocity corresponds
to the wave fronts becoming locally almost plane, as for
a plane wave.

We have shown already that the paraxial equation of
Optics (60) and the TDSE of quantum mechanics are
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FIG. 2: The wave fronts of a gaussian light beam focussed at
z = 0. The dashed lines follow the beam waist i.e. the path of
equal intensity at 1/e2 of the maximum. Figure reproduced
courtesy of Prof. E. Glytsis.

equivalent mathematically. The gaussian beam in optics
is much studied as the typical output of a laser. The
wave fronts of such a beam are shown in Fig. 2. One
notes the macroscopic scale of distance compared to the
atomic units of Fig. 1. In laser gaussian beams one con-
siders two transverse dimensions x, y. Here for purposes
of illustration it is simpler to restrict to one x dimension.
The corresponding scalar electric field with wave number
k can be written [18],

E ∝
(

W0

W (z)

)1/2

exp

(
− x2

W 2(z)

)
× exp

(
−i kx

2

2R(z)
+
i

2
arctan (

z

z0
)

)
.

(62)

Here, z0 is called the Rayleigh range and is the distance
after which the asymptotic straight-line ray approxima-
tion begins to become valid. The width of the beam is
given by W (z) with

W (z) = W0

(
1 +

z2

z20

)1/2

(63)

where W0 is the minimum width of the beam, see the
dashed lines on Fig. 2. It is usual to define this“waist”
of the beam corresponding to the locus of the amplitude
being (1/e) of its maximum.

By comparison of Eq. (62) with Eq. (29) one has the
equivalence between optics and quantum mechanics in
the correspondences z0 → T and

W 2
0 → 2σ2, τ → z/z0,

and W 2(z)→ 2σ2(1 + τ2).
(64)

Furthermore, the Rayleigh range can be written z0 =
kσ2, the analogue of T = (m/~)σ2 in quantum mechanics

The phase arctan (z/z0) in Eq. (62), which is the
Gouy phase, appears in the quantum time-dependent

wavefunction in the equivalent form as arctan(t/T ) ≡
arctan(τ), see Eq. (29).

The function

R(z) =
z20
z

(
1 +

(
z

z0

)2
)

(65)

gives the radius of curvature of the beam fronts. The
action phase function from Eq. (62), neglecting the x-
independent Gouy phase, is given as S = kx2/(2R(z)).

Then the analogue of the Bohm velocity dx/dt is de-
fined as

dx

dz
≡ 1

k

∂S

∂x
= x

z

(z2 + z20)
. (66)

This can be integrated to give the trajectory

x(z) = x0

(
1 +

(
z

z0

)2
)1/2

(67)

which is identical to the quantum Bohm trajectory
Eq. (33) with z/z0 replacing τ = t/T .

Asymptotically, the wave fronts become essentially
spherical but locally almost planar. This is the region
where in Optics the eikonal approximation becomes valid
allowing the definition of a straight-line ray of light. The
equation of this straight line is x = (kx/k) z, where kx
is the wave number in the x transverse direction. Hence,
from the asymptotic z � z0 limit of Eq. (67) one has
x0 = kxσ

2.
If one plots the optics Bohm trajectories or stream

lines, as in Fig. 1 for particles, each trajectory inter-
cepts the z = 0 axis at x0. The beam waist shown in
Fig. 2 is just one example of a Bohm trajectory with
x0 =

√
2σ ≡W0. That the Bohm trajectories can be de-

fined for the paraxial Helmholtz equation has been shown
already in Ref. [32], where the trajectories were calcu-
lated numerically. In Optics the equivalence of Bohm
trajectories are not drawn usually, rather in books on
wave optics e.g. Ref. [18], it is customary to depict wave
fronts (lines of constant phase) spreading in the z direc-
tion, as shown in Fig. 2.

Clearly however, were one to connect the normals to
the wave fronts, one would reproduce the Bohm trajec-
tories. Exactly as in the quantum case, it is shown in
appendix C that the wave function along a Bohm trajec-
tory is of the IT form, i.e. is proportional to the invariant
FT of the x wave function to kx space. Asymptotically
the IT t � T result of quantum mechanics is just the
well-known Fraunhofer diffraction z � z0 limit of Op-
tics. Along a Bohm trajectory in the quantum case, the
probability is conserved. Along a Bohm trajectory in
Optics the intensity is conserved.

Some authors [19, 20] have argued that the Gouy
phase is a topological or geometric phase. In the TDSE,
here a different interpretation of the Gouy phase as the
adiabatic-energy phase of the fixed-time quantised gaus-
sian state has been derived. This extends also to the
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paraxial optics equation. Then it can be shown that, for
fixed z, the eigenvalue of the transverse gaussian “cavity”
is simply given by the expectation value of the transverse
wave number

< k2x(z) > =
1

σ2
(

1 + ( zz0 )2
) (68)

Then the Gouy phase is obtained as the integral of this
adiabatic eigenvalue

φ =
1

z0

∫ z dz′(
1 + ( z

′

z0
)2
) = arctan

(
z

z0

)
(69)

since z0 = kσ2 = kW 2
0 /2. This corresponds to the result

of Ref. [34] who showed that the Gouy phase is the inte-
gral of the expectation value of k2x. For a gaussian this
expectation value is simply proportional to the eigen-
value.

The aspect that the Gouy phase of gaussian beams has
its origin in the finite extent of the wave packet at the
focus has been pointed out in Optics already [35, 36].
In Ref. [36] it is shown to be related to the difference
between the wave-front path (in quantum mechanics the
Bohm trajectory) and the straight-line ray motion (in
quantum mechanics the classical trajectory) as light tra-
verses the focus, see Fig. 2. In Ref. [35] and Ref. [34]
the Gouy phase is attributed to the transverse spatial
confinement of the wave profile.

This establishes the one-to-one correspondence be-
tween the TDSE and the paraxial equation of Optics
for the propagation of a gaussian beam. It has been
suggested that Bohm trajectories can be identified as
the paths of photons in an interference experiment [37].
From the demonstrated equivalence of paraxial equation
and TDSE, the paths of constant high intensity for light
will indeed mirror the Bohm trajectories of constant high
probability for particles. Hence the tracks seen [37] are
the single-photon onset of near-field ”Talbot carpet” pat-
terns well-known in grating diffraction. An illustration
of such interference patterns and associated Bohm tra-
jectories for massive particles is given in Ref. [38].

VI. PROPAGATION FROM NEGATIVE TIMES;
BEAM FOCUSSING FOR MASSIVE PARTICLES.

In Fig. 3 the time reversal invariance of the wave packet
propagation has been used to plot also the Bohm trajec-
tories beginning at large negative times and converging
to the fixed gaussian at zero time. Then the trajectories
diverge to positive times as shown. This is the quantum
version of the gaussian beam focussing which is shown
in Fig. 2. It is readily achieved as the gaussian beam
output of a laser in Optics [18] as has been presented in
the previous section. Sadly, such a focussing free particle
wave packet would be difficult to achieve. Apart from
the preparation, unlike photons which hardly interact,

FIG. 3: The Bohmian trajectories x(t) representing the fo-
cussing in one dimension (vertical axis) of a gaussian wave
function with time increasing from left to right. The time
constant is T = 1.0. The axes are in atomic units (a.u.).

material particles compressed to microscopic separations
always interact.

The difference between classical and quantum be-
haviour is illustrated in Fig. 4. There only a pair of
classical and Bohmian trajectories for the asymptotic ve-
locities ±v = 1.0 is shown. The classical trajectories are
the straight-line classical trajectories passing through the
origin and crossing there. By contrast, the correspond-
ing pair of Bohmian trajectories do not cross and simply
diverge from each other for |t| < T .

This figure illustrates also the scaling of the time (and
hence the distance z) by the constant T = mσ2/~. If
T becomes smaller by the extent σ becoming smaller,
then the classical trajectory is valid over more of time
and space. Were the gaussian that of nuclei, rather than
atoms, then the semi-classical IT wave function would be
valid after distance of the order of tens of femto-metres.

The trajectories of Fig. 4 look remarkably like Landau-
Zener avoided crossings between the ”diabatic” classical
trajectories x(t) = ±vt, which cross at t = 0, x = 0
and the ”adiabatic” Bohmian trajectories x(t) = ±v(t2+
T 2)1/2, which have an avoided crossing of magnitude 2vT
there. For free motion the classical trajectories have
fixed velocity ±v which is preserved through the crossing.
However, the Bohmian trajectories change their charac-
ter from ±vt to ∓vt as they traverse the avoided crossing.

The non-crossing can be explained from the single-
valued nature of the wavefunction, preventing the nor-
mals to the wave front having two values at the same
point. In the Bohmian interpretation it is attributed to
the quantum force becoming relevant as the wave packet
shrinks to atomic dimensions. This acts to repel the clas-
sical trajectories to prevent them crossing at x = 0. In-
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FIG. 4: Two Bohmian trajectories x(t) representing the fo-
cussing in one dimension (vertical axis) of a gaussian wave-
function with time proceeding from left to right. The straight
lines are the asymptotic classical trajectories for ±v = ±1.0
a.u.. The upper panel is for T = 2 a.u. The lower panel is for
T = 0.3 a.u.. The axes are in atomic units (a.u.).

deed, it is simple to show that the quantum force, defined
as F = −∂Q/∂x, when integrated over all time gives ex-
actly the momentum change of 2mv. One can view the
change of momentum as indicating a quantum “pressure”
preventing the compression of the wave function to zero
extent.

The sole physical parameter deciding quantum or clas-
sical character is T = mσ2/~. That is, apart from
the mass, it is the spatial extent σ of the wavepacket
at t = 0 which decides when the classical trajectories
emerge. This is in line with the semi-classical IT approx-
imation where the x ≈ 0 assumption clearly corresponds
to the σ → 0 limit.

Hence, the quantum to classical transition is illumi-
nated by considering the limit that the initial position
wave function shrinks to a point. This is the limit that
σ → 0 and correspondingly that T → 0, i.e. the extent of
the quantum wave function goes to zero. The limit of the
gaussian of Eq. (17) is, up to a normalisation constant,
a delta function. Substituting a delta function δ(x′) in

Eq. (A1) gives simply

Ψ(x, t) = K(x, t; 0, 0) =

(
1

2π~

)1/2 (m
it

)1/2
e
i
~
m
2tx

2

.

(70)
If one recognises that the Fourier transform of the initial
delta function gives the momentum wavefunction equal

to a constant i.e. Ψ̃(p, 0) =
(

1
2π~
)1/2

then one has, valid
for all x, t,

Ψ(x, t) =
(m
it

)1/2
e
i
~
m
2tx

2

Ψ̃(p, 0). (71)

Furthermore, one sees that, with the phase S = mx2/(2t)
one has the classical condition p = dS/dx = mx/t. Then

writing the phase factor as i
~
m
2tx

2 = i
~
p2

2m t exactly the
IT result of Eq. (21) is obtained. Thus as the spatial
wavefunction shrinks to a point, as one might expect,
the asymptotic IT result is valid everywhere. Up to a
normalisation constant, the space and momentum wave-
functions (see Eq. (12)) are identical in form. For T → 0
the trajectories for all times t > T are the classical ones
of the lower panel of Fig. 4.

What happens as T grows from zero is that it cor-
responds simply to the introduction of a complex time
t → t − iT . That is the exact space wave function be-
comes, now restoring the correct normalisation

Ψ(x, t) =

(
1

πσ2

)1/4
iT 1/2

(t− iT )1/2
exp

(
i

~
m

2(t− iT )
x2
)
.

(72)
This is of the same form as the wavefunction propagating
from a delta function Eq. (70) but now with complex
time. Putting T = mσ2/~ and τ = t/T it is readily
confirmed that this form corresponds to Eq. (18) and the
polar form Eq. (29).

Hence, the departure of the wavefunction from its
asymptotic semi-classical form and definition of a clas-
sical trajectory, can be viewed as a transformation from
time t to an extended time (t2 + T 2)1/2, the passage of
time slows. Its mathematical realisation is in the time
scaling of position as given in section III D.

VII. CONCLUSIONS

The free motion of a normalisable wave packet, exem-
plary of gaussian form, has been analysed. In standard
quantum mechanics, only the expectation values, aver-
ages over the wave packet components, of the observables
energy, momentum and position are defined. For spread-
ing wave packets, these mean values have little signifi-
cance. Hence, particularly for the constant momentum
components of a free wave packet, it is tempting to assign
physical meaning to the individual components. This is
achieved by the stationary phase approximation of the
IT for asymptotic propagation. Then it emerges that the
constant p value in the momentum wave function can
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be put equal to the classical momentum p = mx/t in
the space wave function. A classical trajectory is defined
within the quantum wave function.

The classical trajectory is the locus of the normal to the
constant action wave fronts. The probability of detection
is constant along these trajectories. The extrapolation of
these properties into the non-asymptotic near-field re-
gion has been shown to give loci synonymous with the
proposed particle trajectories of Bohmian mechanics.

Behaving as a classical ensemble, each p component of
the wave function corresponds to a different trajectory
and at a given fixed time these different p trajectories all
cross at the origin, at a single point in space. The essence
of quantum mechanics is that the ensemble spatial wave
function is of finite extent and the necessity of quantisa-
tion leads to an effective non-compressibility of space to
a point.

The precise equivalence of the TDSE to the parax-
ial equation of Optics has been shown with concomitant
equivalence of time or space propagation of light waves.
Hence the Bohm trajectories are equivalent to the well-
known near-field patterns of light diffraction.

The main results of this study of the free propagation
of a gaussian quantum wave function can be summarised
as follows:

A) There is a one-to-one correspondence with the prop-
agation of gaussian light beams in Optics. The photon
tracks along lines of constant light intensity, both in near
and far field zones, are just the particle Bohm trajecto-
ries of the equivalent TDSE. All the results listed below
apply equally well, suitably translated, to the space and
momentum (wave number) gaussian wave functions of
the paraxial equation of Optics.

B) The Bohmian and classical trajectories are defined
solely by the constant asymptotic velocity v and the time
parameter T = mσ2/~, where σ is the t = 0 width of
the wave function. Unique classical trajectories begin at
x = 0 at time zero. Unique Bohm trajectories begin at
finite x0 = vT at time zero.

C) The semi-classical wave function of the Imaging
Theorem (IT) justifies defining a classical trajectory for
t � T . The Bohmian trajectories connect smoothly to
these asymptotic trajectories.

D) The exact wave function in momentum space prop-
agates with constant amplitude and a classical action
phase. We have shown that the exact spatial wave
function along the Bohmian trajectory is proportional
to this invariant momentum function with the relation
p = mx(t)/(t2 + T 2)1/2 = mv. Asymptotically this
becomes the IT wave function with the interpretation
p = mx/t = mv. Along the whole trajectory, the propor-
tionality factor is the square root of the classical density
of states (Van Vleck) factor.

E) The invariance of the wave function along the Bohm
trajectory and its classical extension arises from a time-
scaling of the position coordinate i.e. a transition to the
co-moving frame. For a gaussian the Gouy phase pro-
vides the dimensionless time scaling function. The “time

dilation” of space coordinates represents the difference
between the finite extent of the wave function and the
point convergence of the classical trajectories.

F) The Bohmian trajectory, and its extension the clas-
sical trajectory, comprise the locus of points of equal mea-
surement probability. In Optics these are the stream lines
of constant intensity.

G) The time propagation of the gaussian can be viewed
as the adiabatic propagation of the HO eigenstate. At
any fixed time, the quantum potential function Q(x, t)
arises from the kinetic energy as the difference between
the fictitious potential function, mω2(t)/2, and the in-
stantaneous quantised energy, ~ω(t)/2, of the localised
wave packet.

H) The Gouy phase corresponds to the adiabatic en-
ergy phase of the instantaneous HO ground state energy
E(t) = ~ω(t)/2, i.e.

exp

(
i

~

∫ t

E(t′)dt′
)

= exp

(
i

2

∫ t

ω(t′)dt′
)
.

This gives rise to the position-independent contribution
to the quantum potential.

Points G) and H) refer to the HO ground state wave
packet but, suitably generalised, apply equally to the
higher (Hermite-Gauss) eigenstates. Indeed they should
apply to any normalisable packet of finite spatial extent.

In conclusion, an analysis of the oldest problem of
quantum continuum dynamics, the free propagation of
a gaussian wave packet, has been given. The asymptotic
SC form of the wave function, as emerging from the IT
approximation justifies the introduction of a classical tra-
jectory. The Bohmian trajectory, defined over all space
and time, merges smoothly into the IT classical asymp-
tote.

The Bohmian trajectory is here viewed as the locus
of wave front normals, as in Optics. That the spatial
wave function is proportional to the constant momentum
wave function along a trajectory re-habilitates momen-
tum space in the discussion of trajectories for the case
of gaussians. However, in the sense that the quantum
potential can be viewed as a fictitious potential function
arising from the kinetic energy, the Bohm picture is ap-
pealing in that our understanding and language of clas-
sical motion can be translated into quantum mechanics.
Then the well-known concepts of velocity, force, trajec-
tory etc. can be applied in the quantum domain.

The departure of the wave function from its asymptotic
semi-classical form and definition of a classical trajectory,
can be viewed as a transformation from time t to an ex-
tended time (t2 + T 2)1/2, the passage of time slows. Its
mathematical realisation is in the time scaling of position
as given in section III D. The classical ensemble has all
particles crossing at a point. Since it is maintained here
that time arises from a space coordinate, the quantum
behaviour can be seen as the finite incompressibility of
space to a point. It is tempting to view this incompress-
ibility as arising from the fictitious quantum potential,
shown to be of instantaneous harmonic form.
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The analysis of the classical limit has made plain that
the wave function belongs to an ensemble of particles and
should not be be taken as describing the deterministic
motion of a single particle.

It should be made clear also as to what is implied here
by the asymptotic quantum to classical transition. Clas-
sical variation of position and momentum variables ap-
pear always within the shroud of the semi-classical wave
function. Hence, whether an observer perceives classi-
cal or quantum motion depends upon the resolution of
the measurement. The spatial wave function oscillates
in space and time due to the action phase. In low reso-
lution one measures trajectories, in high resolution wave
patterns. This is again in direct analogy to light. In
low resolution one observes rays and sharp boundaries of
obstacles, in high resolution wave diffraction patterns.

In this sense, the world is always quantum. Even
without external de-cohering interactions which inter-
rupt phase propagation, our perception of it through
imprecise observation leads to the validity of a classical
description. A more extensive defence of this point of
view is to be found in Ref. [28].
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Appendix A: Free Propagators in Coordinate and
Momentum Space

Taking initial time as zero, the time-dependent propa-
gating wave function is given by

Ψ(x, t) =

∫
K(x, t;x′, 0)Ψ(x′, 0) dx′, (A1)

where the position coordinate x(t = 0) ≡ x′. For free
propagation to point (x, t) the kernel is given by

K(x, t;x′, 0) =

(
1

2π~

)1/2 (m
it

)1/2
e
i
~
m
2t (x−x

′)2 . (A2)

One can also consider time propagation of the initial
wavefunction in momentum space, to a final position
(x, t). This gives the alternative form

Ψ(x, t) =

∫
K̄(x, t; p′, 0)Ψ̃(p′, 0) dp′, (A3)

with mixed kernel

K̄(x, t; p′, 0) =

(
1

2π~

)1/2

e
i
~ (p′x−p′2 t

2m ). (A4)

Finally, one can calculate the time-dependent momen-
tum wave function

Ψ̃(p, t) =

∫
K̃(p, t; p′, 0)Ψ̃(p′, 0) dp′, (A5)

with momentum-space kernel

K̃(p, t; p′, 0) =

(
1

2π~

)1/2

e−
i
~
p′2
2m t δ(p− p′). (A6)

Since for free propagation, the phase in the expressions
for the kernels is the classical action (in units of ~) we
have, from Eq. (A2), the classical definition

∂S

∂x
= m(x− x′)/t ≡ p. (A7)

Similarly, from Eq. (A4), we have

∂S̄

∂x
= p′ = p and

∂S̄

∂p′
= x− p′t/m = x′ (A8)

and from Eq. (A6),

∂S̃

∂p
=
∂S̃

∂p′
= p′t/m. (A9)

These are the expected classical relations for free propa-
gation, although the wave functions resulting from the
semi-classical propagators are still fully quantum me-
chanical.

Appendix B: Properties along a Bohmian Trajectory

Consider a transition from a fixed origin r to an in-
stantaneous origin r(t) with velocity ṙ(t). Defining the
probability

P (r, t) = |Ψ(r, t)|2 dr = |Ψ(r(t))|2 dr(t) (B1)

along the trajectory, one has

∂P

∂t
=

(
∂

∂t
|Ψ(r(t))|2

)
dr + |Ψ(r(t))|2 ṙ

≡
(
∂ρ

∂t

)
dr + ρv.

(B2)

From the continuity equation Eq. (28), with ρ = R2,

∂ρ

∂t
+∇.ρ∇S

m
= 0 (B3)

Hence, if we choose the Bohmian trajectory with ṙ = v =
∇S/m, we obtain by substitution in Eq. (B2),

dP

dt
= −∇.ρv dr + ρv = 0, (B4)

so that the probability is constant along a Bohmian tra-
jectory.
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The time derivative of the action of Eq. (30) taken
along the trajectory is

dS

dt
=
∂S

∂t
+
∂S

∂x
ẋ. (B5)

This gives,

dS

dt
=

~x2

2Tσ2

1− τ2

(1 + τ2)2
+

~x2

Tσ2

τ2

(1 + τ2)2
− 1

2
~ω(t)

=
~x2

2Tσ2

1

(1 + τ2)
− 1

2
~ω(t)

=
~x20

2Tσ2
− 1

2
~ω(t) =

1

2
mv2 − 1

2
~ω(t).

(B6)

The second term, the eigenenergy of the HO, comes from
the time derivative of the Gouy phase. One can also
show, as must be, that dS/dt = −Q(x, t) along the tra-
jectory. Then the energy along the Bohm trajectory is
just that of the classical free particle minus the instanta-
neous eigenenergy from the Gouy phase.

Appendix C: Wave Function along a Bohmian
Trajectory in Optics

For convenience here the notation of Ref. [39] is fol-
lowed, except that the gaussian width W0 is replaced by
the equivalent

√
2σ. The wave function in wave num-

ber variable kx is given in Ref. [39] (only one transverse
dimension is considered here) as,

ψ̃(kx) =
√

2σ exp

(
−σ

2

2
k2x

)
. (C1)

Note that the normalisation assumed here is different
from the equivalent quantum momentum wave function
of Eq. (13). The space wave function is given by the FT
from the wave number wave function,

ψ(x, z) = (2π)−1/2
∫
ψ̃(kx) exp

(
ikxx− i

k2x
2k

z

)
dkx

= 2π
σ1/2

(σ2 + i(z/k))1/2
exp

[
− x2

2(σ2 + i(z/k))

]
.

(C2)

Note that the factor (σ2+i(z/k)) = σ2(1+(z/z0)), when
Eq. (C2) can be seen as the optics equivalent of the quan-
tum Eq. (18). Indeed if now the definition τ ≡ z/z0 of a
dimensionless “distance” is made, up to an insignificant
constant normalisation, these two wave functions become
identical. Then all results of section III C for the wave
function along a Bohm trajectory apply equally to the
Optics case.

In particular Eq. (41) is valid in the form

ψ(x(z)) =π1/2 1

[σ2(1 + τ2)]
1
4

exp

[
− i

2
arctan τ

]
× exp

[
− x20

2σ2

]
exp

[
i
x20 τ

2σ2

]
.

(C3)

but now with τ = z/z0 and x0 = kxσ
2. Performing this

substitution one obtains

ψ(x(z)) =π1/2 1

[σ2(1 + (z/z0)2)]
1
4

exp

[
− i

2
arctan (z/z0)

]
× exp

[
−σ

2

2
k2x

]
exp

[
i
k2x
2k
z

]
,

(C4)

with kx = (x(z)/σ2) (1 + τ2)−1/2 along the trajec-
tory. That is, as in the quantum case, the form of the
wave number (momentum) wave function propagates un-
changed along a Bohmian “stream line”. Hence, the in-
tensity of the wave within the cone dx(z) is constant,
corresponding to conservation of probability, Eq. (45), of
the quantum case. The asymptotic z � z0 form can be
obtained by evaluation of the FT Eq. (C2) in SPA. The
point of stationary phase is seen to be the straight ray
condition kx = (k/z)x. The result, the asymptotic form
of Eq. (C4), is the well-known Fraunhofer diffraction limit
corresponding to the IT approximation Eq. (21) in the
quantum case.

[1] E. Schrödinger, Naturwiss. 14, 664, 1926.
[2] W. Heisenberg, Zeit. f. Phys. 43 172 (1927)
[3] E.H. Kennard, Zeit. f. Phys. 44 326 (1927)
[4] E. C. Kemble, Fundamental Principles of Quantum Me-

chanics with Elementary Applications, (McGraw Hill,
1937).

[5] D. Bohm Phys. Rev. 85, 166 (1952), 85 180 (1952).
[6] Peter R. Holland The Quantum Theory of Motion (Cam-

bridge University Press, Cambridge,U.K. 1993).
[7] R. E. Wyatt Quantum dynamics with trajectories : in-

troduction to quantum hydrodynamics (Interdisciplinary
Applied Mathematics vol. 28, Springer, N.Y. 2005).
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