References:
Abdalkader M., Lampinen R., Kanninen K. M., Malm T. M. and Liddell J. R. (2018). Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial Dysfunction in Neurodegeneration. Front Neurosci, 12,466. doi: 10.3389/fnins.2018.00466.
Baliga R., Zhang Z., Baliga M., Ueda N. and Shah S. V. (1998). In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int, 53,394-401. doi: 10.1046/j.1523-1755.1998.00767.x.
Chen P., Chen F. and Zhou B. H. (2019). Leonurine ameliorates D-galactose-induced aging in mice through activation of the Nrf2 signalling pathway. Aging (Albany NY), 11,7339-7356. doi: 10.18632/aging.101733.
Cheng H., Bo Y., Shen W., Tan J., Jia Z., Xu C. and Li F. (2015). Leonurine ameliorates kidney fibrosis via suppressing TGF-beta and NF-kappaB signaling pathway in UUO mice. Int Immunopharmacol,25,406-415. doi: 10.1016/j.intimp.2015.02.023.
Deng F., Sharma I., Dai Y., Yang M. and Kanwar Y. S. (2019). Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Invest,129,5033-5049. doi: 10.1172/JCI129903.
Deng F., Zheng X., Sharma I., Dai Y., Wang Y. and Kanwar Y. S. (2021). Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol, 320,F578-F595. doi: 10.1152/ajprenal.00016.2021.
Dixon S. J. and Stockwell B. R. (2014). The role of iron and reactive oxygen species in cell death. Nat Chem Biol, 10,9-17. doi: 10.1038/nchembio.1416.
Dodson M., Castro-Portuguez R. and Zhang D. D. (2019). NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol, 23,101107. doi: 10.1016/j.redox.2019.101107.
Fan X., Wei W., Huang J., Peng L. and Ci X. (2020). Daphnetin Attenuated Cisplatin-Induced Acute Nephrotoxicity With Enhancing Antitumor Activity of Cisplatin by Upregulating SIRT1/SIRT6-Nrf2 Pathway. Front Pharmacol, 11,579178. doi: 10.3389/fphar.2020.579178.
Friedmann Angeli J. P., Schneider M., Proneth B., Tyurina Y. Y., Tyurin V. A., Hammond V. J., Herbach N., Aichler M., Walch A., Eggenhofer E., Basavarajappa D., Radmark O., Kobayashi S., Seibt T., Beck H., Neff F., Esposito I., Wanke R., Forster H., Yefremova O., Heinrichmeyer M., Bornkamm G. W., Geissler E. K., Thomas S. B., Stockwell B. R., O’Donnell V. B., Kagan V. E., Schick J. A. and Conrad M. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat Cell Biol, 16,1180-1191. doi: 10.1038/ncb3064.
Herzog C., Yang C., Holmes A. and Kaushal G. P. (2012). zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol, 303,F1239-1250. doi: 10.1152/ajprenal.00659.2011.
Hoste E. A. J., Kellum J. A., Selby N. M., Zarbock A., Palevsky P. M., Bagshaw S. M., Goldstein S. L., Cerda J. and Chawla L. S. (2018). Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol, 14,607-625. doi: 10.1038/s41581-018-0052-0.
Hu Z., Zhang H., Yi B., Yang S., Liu J., Hu J., Wang J., Cao K. and Zhang W. (2020). VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis, 11,73. doi: 10.1038/s41419-020-2256-z.
Ikeda Y., Hamano H., Horinouchi Y., Miyamoto L., Hirayama T., Nagasawa H., Tamaki T. and Tsuchiya K. (2021). Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J Trace Elem Med Biol, 67,126798. doi: 10.1016/j.jtemb.2021.126798.
La Rosa P., Petrillo S., Turchi R., Berardinelli F., Schirinzi T., Vasco G., Lettieri-Barbato D., Fiorenza M. T., Bertini E. S., Aquilano K. and Piemonte F. (2021). The Nrf2 induction prevents ferroptosis in Friedreich’s Ataxia. Redox Biol, 38,101791. doi: 10.1016/j.redox.2020.101791.
Li Y. Y., Lin Y. K., Liu X. H., Wang L., Yu M., Li D. J., Zhu Y. Z. and Du M. R. (2020). Leonurine: From Gynecologic Medicine to Pleiotropic Agent. Chin J Integr Med, 26,152-160. doi: 10.1007/s11655-019-3453-0.
Linkermann A., Chen G., Dong G., Kunzendorf U., Krautwald S. and Dong Z. (2014). Regulated cell death in AKI. J Am Soc Nephrol,25,2689-2701. doi: 10.1681/ASN.2014030262.
Maiorino M., Conrad M. and Ursini F. (2018). GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues.Antioxid Redox Signal, 29,61-74. doi: 10.1089/ars.2017.7115.
Park E. and Chung S. W. (2019). ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis, 10,822. doi: 10.1038/s41419-019-2064-5.
Seibt T. M., Proneth B. and Conrad M. (2019). Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 133,144-152. doi: 10.1016/j.freeradbiomed.2018.09.014.
Shelton L. M., Park B. K. and Copple I. M. (2013). Role of Nrf2 in protection against acute kidney injury. Kidney Int, 84,1090-1095. doi: 10.1038/ki.2013.248.
Stockwell B. R., Friedmann Angeli J. P., Bayir H., Bush A. I., Conrad M., Dixon S. J., Fulda S., Gascon S., Hatzios S. K., Kagan V. E., Noel K., Jiang X., Linkermann A., Murphy M. E., Overholtzer M., Oyagi A., Pagnussat G. C., Park J., Ran Q., Rosenfeld C. S., Salnikow K., Tang D., Torti F. M., Torti S. V., Toyokuni S., Woerpel K. A. and Zhang D. D. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171,273-285. doi: 10.1016/j.cell.2017.09.021.
Stoyanovsky D. A., Tyurina Y. Y., Shrivastava I., Bahar I., Tyurin V. A., Protchenko O., Jadhav S., Bolevich S. B., Kozlov A. V., Vladimirov Y. A., Shvedova A. A., Philpott C. C., Bayir H. and Kagan V. E. (2019). Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med,133,153-161. doi: 10.1016/j.freeradbiomed.2018.09.008.
Torti S. V. and Torti F. M. (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13,342-355. doi: 10.1038/nrc3495.
Tristao V. R., Goncalves P. F., Dalboni M. A., Batista M. C., Durao Mde S., Jr. and Monte J. C. (2012). Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail, 34,373-377. doi: 10.3109/0886022X.2011.647343.
Wang L., Liu Y., Du T., Yang H., Lei L., Guo M., Ding H. F., Zhang J., Wang H., Chen X. and Yan C. (2020). ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(.). Cell Death Differ,27,662-675. doi: 10.1038/s41418-019-0380-z.
Xie Y. Z., Zhang X. J., Zhang C., Yang Y., He J. N. and Chen Y. X. (2019). Protective effects of leonurine against ischemic stroke in mice by activating nuclear factor erythroid 2-related factor 2 pathway.CNS Neurosci Ther, 25,1006-1017. doi: 10.1111/cns.13146.
Xu D., Chen M., Ren X., Ren X. and Wu Y. (2014). Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB signaling pathway. Fitoterapia, 97,148-155. doi: 10.1016/j.fitote.2014.06.005.
Yang Y., Adebali O., Wu G., Selby C. P., Chiou Y. Y., Rashid N., Hu J., Hogenesch J. B. and Sancar A. (2018). Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. Proc Natl Acad Sci U S A, 115,E4777-E4785. doi: 10.1073/pnas.1804493115.