References
Arnold, T.W., 2010. Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. J. Wildl. Manage. 74, 1175–1178. https://doi.org/10.2193/2009-367
Bang, C., Faeth, S.H., 2011. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landsc. Urban Plan. 103, 383–399. https://doi.org/10.1016/j.landurbplan.2011.08.013
Barr, A.E., van Dijk, L.J.A., Hylander, K., Tack, A.J.M., 2021. Local habitat factors and spatial connectivity jointly shape an urban insect community. Landsc. Urban Plan. 214. https://doi.org/10.1016/j.landurbplan.2021.104177
Bartoń, K., 2020. MuMIn: Multi-Model Inference. R package version 1.43. 17.
Bates, D., Maechler, M., Bolker, B., Walker, S., 2018. lme4: Linear Mixed-Effects Models using “Eigen” and S4.
Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel interference, a practical information-Theoretic approach. 2nd ed. Springer, New York, 2. https://doi.org/10.1017/CBO9781107415324.004
Calfapietra, C., Peñuelas, J., Niinemets, Ü., 2015. Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 20, 72–75. https://doi.org/10.1016/j.tplants.2014.11.001
Castagneyrol, B., Valdés-Correcher, E., Kaennel Dobbertin, M., Gossner, M.M., 2019. Predation assessment on fake caterpillars and leaf sampling: Protocol for partner schools. protocols.io. https://doi.org/DOI: https://doi.org/10.17504/protocols.io.42pgydn.
Chai, L., Huang, M., Fan, H., Wang, J., Jiang, D., Zhang, M., Huang, Y., 2019. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere 220, 249–258. https://doi.org/10.1016/j.chemosphere.2018.12.132
Chávez-Pesqueira, M., Carmona, D., Suárez-Montes, P., Núñez-Farfán, J., Aguilar, R., 2015. Synthesizing habitat fragmentation effects on plant-antagonist interactions in a phylogenetic context. Biol. Conserv. 192, 304–314. https://doi.org/10.1016/j.biocon.2015.10.002
Christie, F.J., Cassis, G., Hochuli, D.F., 2010. Urbanization affects the trophic structure of arboreal arthropod communities. Urban Ecosyst. 13, 169–180. https://doi.org/10.1007/s11252-009-0115-x
Christie, F.J., Hochuli, D.F., 2005. Elevated levels of herbivory in urban landscapes: Are declines in tree health more than an edge effect? Ecol. Soc. 10. https://doi.org/10.5751/ES-00704-100110
Coley, P.., Barone, J.., 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335.
Cuevas-Reyes, P., Gilberti, L., González-Rodríguez, A., Fernandes, G.W., 2013. Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecol. Indic. 24, 557–561. https://doi.org/10.1016/j.ecolind.2012.08.011
Dale, A.G., Frank, S.D., 2014. Urban warming trumps natural enemy regulation of herbivorous pests. Ecol. Appl. 24, 1596–1607. https://doi.org/10.1890/13-1961.1
de Andrade, A.C., Rivkin, L.R., 2020. Road to ruin: Herbivory in a common tropical weed (Turnera subulata ) along a rural-urban gradient. bioRxiv 1–15. https://doi.org/10.1101/2020.09.26.314765
De La Vega, X., Grez, A.A., Simonetti, J.A., 2012. Is top-down control by predators driving insect abundance and herbivory rates in fragmented forests? Austral Ecol. 37, 836–844. https://doi.org/10.1111/j.1442-9993.2011.02345.x
DeMars, C.A., Rosenberg, D.K., Fontaine, J.B., 2010. Multi-scale factors affecting bird use of isolated remnant oak trees in agro-ecosystems. Biol. Conserv. 143, 1485–1492. https://doi.org/10.1016/j.biocon.2010.03.029
Dobrosavljević, J., Marković, Č., Marjanović, M., Milanović, S., 2020. Pedunculate oak leaf miners’ community: Urban vs. rural habitat. Forests 11, 1–15. https://doi.org/10.3390/f11121300
Dreistadt, S.H., Dahlsten, D.L., Frankie, G.W., 1990. Urban Forests and Insect Ecology. Bioscience 40, 192–198. https://doi.org/10.2307/1311364
Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Quercus robur and Quercus petraea. Eur. Atlas For. Tree Species 160–163. https://doi.org/10.2788/038466
Fenoglio, M.S., Rossetti, M.R., Videla, M., 2020. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107
Fischer, J., Stott, J., Law, B.S., 2010. The disproportionate value of scattered trees. Biol. Conserv. 143, 1564–1567. https://doi.org/10.1016/j.biocon.2010.03.030
Gaston, K.J., Genney, D.R., Thurlow, M., Hartley, S.E., 2004. The geographical range structure of the holly leaf-miner. IV. Effects of variation in host-plant quality. J. Anim. Ecol. 73, 911–924. https://doi.org/10.1111/j.0021-8790.2004.00866.x
Herrmann, D.L., Pearse, I.S., Baty, J.H., 2012. Drivers of specialist herbivore diversity across 10 cities. Landsc. Urban Plan. 108, 123–130. https://doi.org/10.1016/j.landurbplan.2012.08.007
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276
James Barth, B., Ian FitzGibbon, S., Stuart Wilson, R., 2015. New urban developments that retain more remnant trees have greater bird diversity. Landsc. Urban Plan. 136, 122–129. https://doi.org/10.1016/j.landurbplan.2014.11.003
Jamieson, M.A., Trowbridge, A.M., Raffa, K.F., Lindroth, R.L., 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727. https://doi.org/10.1104/pp.112.206524
Kaartinen, R., Roslin, T., 2011. Shrinking by numbers: Landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631. https://doi.org/10.1111/j.1365-2656.2011.01811.x
Kalnay, E., Cai, M., 2003. Impact of urbanization and land-use. Nature 425, 102–102. https://doi.org/10.1038/nature01649.1.
Koricheva, J., Larsson, S., Haukioja, E., 1998. Insect performance on experimentally stressed woody plants: A meta-analysis. Annu. Rev. Entomol. 43, 195–216. https://doi.org/10.1146/annurev.ento.43.1.195
Kozlov, M. V., Lanta, V., Zverev, V., Rainio, K., Kunavin, M.A., Zvereva, E.L., 2017. Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Glob. Chang. Biol. 23, 4354–4364. https://doi.org/10.1111/gcb.13692
Kozlov, M. V., Lanta, V., Zverev, V., Zvereva, E.L., 2015. Global patterns in background losses of woody plant foliage to insects. Glob. Ecol. Biogeogr. 24, 1126–1135. https://doi.org/10.1111/geb.12347
Kozlov, M. V., Skoracka, A., Zverev, V., Lewandowski, M., Zvereva, E.L., 2016. Two birch species demonstrate opposite latitudinal patterns in infestation by gall-making mites in northern Europe. PLoS One 11, 1–15. https://doi.org/10.1371/journal.pone.0166641
Lambert, M.R., Giller, G.S.J., Barber, L.B., Fitzgerald, K.C., Skelly, D.K., 2015. Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations. Proc. Natl. Acad. Sci. U. S. A. 112, 11881–11886. https://doi.org/10.1073/pnas.1501065112
Le Roux, D.S., Ikin, K., Lindenmayer, D.B., Manning, A.D., Gibbons, P., 2018. The value of scattered trees for wildlife: Contrasting effects of landscape context and tree size. Divers. Distrib. 24, 69–81. https://doi.org/10.1111/ddi.12658
Long, L.C., D’Amico, V., Frank, S.D., 2019. Urban forest fragments buffer trees from warming and pests. Sci. Total Environ. 658, 1523–1530. https://doi.org/10.1016/j.scitotenv.2018.12.293
Long, L.C., Frank, S.D., 2020. Risk of bird predation and defoliating insect abundance are greater in urban forest fragments than street trees. Urban Ecosyst. 23, 519–531. https://doi.org/10.1007/s11252-020-00939-x
Loughner, C.P., Allen, D.J., Zhang, D.L., Pickering, K.E., Dickerson, R.R., Landry, L., 2012. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol. 51, 1775–1793. https://doi.org/10.1175/JAMC-D-11-0228.1
Magura, T., Lövei, G.L., Tóthmérész, B., 2010. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 19, 16–26. https://doi.org/10.1111/j.1466-8238.2009.00499.x
Marković, C., Stojanović, A., 2011. Phloemophagous and xylophagous insects, their parasitoids, predators and inquilines in the branches of the most important oak species in Serbia. Biologia (Bratisl). 66, 509–517.
McDonnell, M.J., Hahs, A.K., 2015. Adaptation and Adaptedness of Organisms to Urban Environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280. https://doi.org/10.1146/annurev-ecolsys-112414-054258
Meineke, E.K., Frank, S.D., 2018. Water availability drives urban tree growth responses to herbivory and warming. J. Appl. Ecol. 55, 1701–1713. https://doi.org/10.1111/1365-2664.13130
Meyer, S., Rusterholz, H.P., Baur, B., 2020. Urbanisation and forest size affect the infestation rates of plant-galling arthropods and damage by herbivorous insects. Eur. J. Entomol. 117, 34–48. https://doi.org/10.14411/EJE.2020.004
Moreira, X., Abdala-Roberts, L., Berny Mier y Teran, J.C., Covelo, F., de la Mata, R., Francisco, M., Hardwick, B., Pires, R.M., Roslin, T., Schigel, D.S., ten Hoopen, J.P.J.G., Timmermans, B.G.H., van Dijk, L.J.A., Castagneyrol, B., Tack, A.J.M., 2019. Impacts of urbanization on insect herbivory and plant defences in oak trees. Oikos 128, 113–123. https://doi.org/10.1111/oik.05497
Moreira, X., Abdala-Roberts, L., Berny Mier y Teran, J.C., Covelo, F., de la Mata, R., Francisco, M., Hardwick, B., Pires, R.M., Roslin, T., Schigel, D.S., ten Hoopen, J.P.J.G., Timmermans, B.G.H., van Dijk, L.J.A., Castagneyrol, B., Tack, A.J.M., 2018. Impacts of urbanization on insect herbivory and plant defences in oak trees. Oikos 128, 113–123. https://doi.org/10.1111/oik.05497
Nuruzzaman, M., 2015. Urban heat island: causes, effects and mitigation measures. Int. J. Environ. Monit. Anal. 3, 67. https://doi.org/10.11648/j.ijema.20150302.15
Parker, D.E., 2010. Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev. Clim. Chang. 1, 123–133. https://doi.org/10.1002/wcc.21
Parsons, S.E., Frank, S.D., 2019. Urban tree pests and natural enemies respond to habitat at different spatial scales. J. Urban Ecol. 5, 1–15. https://doi.org/10.1093/jue/juz010
Pickett, S.T.A., Cadenasso, M.L., Grove, J.M., Nilon, C.H., Pouyat, R. V., Zipperer, W.C., Costanza, R., 2001. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157. https://doi.org/10.1007/978-0-387-73412-5_7
Planillo, A., Kramer-Schadt, S., Buchholz, S., Gras, P., von der Lippe, M., Radchuk, V., 2021. Arthropod abundance modulates bird community responses to urbanization. Divers. Distrib. 27, 34–49. https://doi.org/10.1111/ddi.13169
R Core Team, 2020. R: A Language and environment for statistical computing.
Raupp, M.J., Shrewsbury, P.M., Herms, D.A., 2010. Ecology of herbivorous arthropods in urban landscapes. Annu. Rev. Entomol. 55, 19–38. https://doi.org/10.1146/annurev-ento-112408-085351
Rossetti, M.R., Tscharntke, T., Aguilar, R., Batáry, P., 2017. Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol. Lett. 20, 264–272. https://doi.org/10.1111/ele.12723
Roth, M., Oke, T.R., Emery, W.J., 1989. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 10.11.
Savilaakso, S., Koivisto, J., Veteli, T.O., Roininen, H., 2009. Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers. Distrib. 15, 356–365. https://doi.org/10.1111/j.1472-4642.2008.00542.x
Schaefer, C.W., Panizzi, A.R., 2000. Heteroptera of Economic Importance, CRC Press. ed.
Shrewsbury, P.M., Raupp, M.J., 2000. Evaluation of components of vegetational texture for predicting azalea lace bug, Stephanitis pyrioides (Heteroptera: Tingidae), abundance in managed landscapes. Environ. Entomol. 29, 919–926. https://doi.org/10.1603/0046-225X-29.5.919
Simonetti, J.A., Grez, A.A., Celis-Diez, J.L., Bustamante, R.O., 2007. Herbivory and seedling performance in a fragmented temperate forest of Chile. Acta Oecologica 32, 312–318. https://doi.org/10.1016/j.actao.2007.06.001
Southwood, T.R.E., Wint, W.G.R., Kennedy, C.E.J., Greenwood, S.R., 2005. Composition of arthropod fauna in some species of Quercus . Eur. J. Entomol. 102, 65–72.
Stam, J.M., Kroes, A., Li, Y., Gols, R., Van Loon, J.J.A., Poelman, E.H., Dicke, M., 2014. Plant interactions with multiple insect herbivores: From community to genes. Annu. Rev. Plant Biol. 65, 689–713. https://doi.org/10.1146/annurev-arplant-050213-035937
Stemmelen, A., Paquette, A., Benot, M.L., Kadiri, Y., Jactel, H., Castagneyrol, B., 2020. Insect herbivory on urban trees: Complementary effects of tree neighbours and predation. bioRxiv 1–16. https://doi.org/10.1101/2020.04.15.042317
Taha, H., 1997. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25, 99–103. https://doi.org/10.1016/s0378-7788(96)00999-1
Thompson, K.A., Renaudin, M., Johnson, M.T.J., 2016. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B Biol. Sci. 283. https://doi.org/10.1098/rspb.2016.2180
Turrini, T., Sanders, D., Knop, E., 2016. Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 26, 664–675.
Valdés-Correcher, E., Moreira, X., Augusto, L., Barbaro, L., Bouget, C., Bouriaud, O., Branco, M., Centenaro, G., Csóka, G., Damestoy, T., Dobrosavljević, J., Duduman, M.L., Dulaurent, A.M., Eötvös, C.B., Faticov, M., Ferrante, M., Fürjes-Mikó, Á., Galmán, A., Gossner, M.M., Hampe, A., Harvey, D., Gordon Howe, A., Kadiri, Y., Kaennel-Dobbertin, M., Koricheva, J., Kozel, A., Kozlov, M. V., Lövei, G.L., Lupaștean, D., Milanović, S., Mrazova, A., Opgennoorth, L., Pitkänen, J.M., Popova, A., Popović, M., Prinzing, A., Queloz, V., Roslin, T., Sallé, A., Sam, K., Scherer-Lorenzen, M., Schuldt, A., Selikhovkin, A., Suominen, L., Tack, A.J.M., Tahadlova, M., Thomas, R., Castagneyrol, B., 2021. Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe. Glob. Ecol. Biogeogr. 30, 651–665. https://doi.org/10.1111/geb.13244
Valdés-Correcher, E., van Halder, I., Barbaro, L., Castagneyrol, B., Hampe, A., 2019. Insect herbivory and avian insectivory in novel native oak forests: Divergent effects of stand size and connectivity. For. Ecol. Manage. 445, 146–153. https://doi.org/10.1016/j.foreco.2019.05.018
Van Der Putten, W.H., Macel, M., Visser, M.E., 2010. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B Biol. Sci. 365, 2025–2034. https://doi.org/10.1098/rstb.2010.0037
Wang, H., Marshall, C.W., Cheng, M., Xu, H., Li, H., Yang, X., Zheng, T., 2017. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Sci. Rep. 7, 1–12. https://doi.org/10.1038/srep44049
Yamasaki, M., Kikuzawa, K., 2003. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata . Oecologia 137, 226–232. https://doi.org/10.1007/s00442-003-1337-x
Zipperer, W.C., Wu, J., Pouyat, R. V., Pickett, S.T., 2000. The application of ecological principles to urban and urbanizing landscapes. Ecol. Appl. 10, 685–688. https://doi.org/10.1890/1051-0761(2000)010[0676:SRFNAE]2.0.CO;2
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R, Springer. ed. New York.