Reference
Adeleye OA, Bamiro OA, Bakre LG, Odeleye FO, Adebowale MN, Okunye OL, et al. (2022). Medicinal Plants with Potential Inhibitory Bioactive Compounds against Coronaviruses. Adv Pharm Bull 12: 7-16.
Aleem A, Akbar Samad AB, & Slenker AK (2022). Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). In StatPearls. StatPearls Publishing
Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
Barrantes FJ (2022). The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res 87: 101166.
Bekliz M, Adea K, Vetter P, Eberhardt CS, Hosszu-Fellous K, Vu DL, et al. (2022). Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs. Nat Commun 13: 3840.
Benarba B, & Pandiella A (2020). Medicinal Plants as Sources of Active Molecules Against COVID-19. Front Pharmacol 11: 1189.
Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Paul GK, et al. (2022). The Emergence of SARS-CoV-2 Variants With a Lower Antibody Response: A Genomic and Clinical Perspective. Front Med (Lausanne) 9: 825245.
Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, et al. (2020). Syncytia formation by SARS-CoV-2-infected cells. EMBO J 39: e106267.
Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, et al. (2021). Syncytia formation by SARS-CoV-2-infected cells. EMBO J 40: e107405.
Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, et al. (2020). Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 61: 103104.
Chen KK, Tsung-Ning Huang D, & Huang LM (2022). SARS-CoV-2 variants - Evolution, spike protein, and vaccines. Biomed J.
Choi JH, Hwang YP, Lee HS, & Jeong HG (2009). Inhibitory effect of Platycodi Radix on ovalbumin-induced airway inflammation in a murine model of asthma. Food Chem Toxicol 47: 1272-1279.
Crawford KHD, Eguia R, Dingens AS, Loes AN, Malone KD, Wolf CR, et al. (2020). Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses 12.
de Vries RD, Schmitz KS, Bovier FT, Predella C, Khao J, Noack D, et al. (2021). Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 371: 1379-1382.
DeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, et al. (2022). Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605:640-652.
Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho C, & de Sousa DP (2021). Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Biomolecules 11.
Du YE, Lee JS, Kim HM, Ahn JH, Jung IH, Ryu JH, et al. (2018). Chemical constituents of the roots of Codonopsis lanceolata. Arch Pharm Res 41: 1082-1091.
Du Z, Hong H, Wang S, Ma L, Liu C, Bai Y, et al. (2022). Reproduction Number of the Omicron Variant Triples That of the Delta Variant. Viruses 14.
Ebob OT, Babiaka SB, & Ntie-Kang F (2021). Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Nat Prod Bioprospect 11: 611-628.
Falade VA, Adelusi TI, Adedotun IO, Abdul-Hammed M, Lawal TA, & Agboluaje SA (2021). In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (M(pro)). In Silico Pharmacol 9: 9.
Gowrisankar A, Priyanka TMC, & Banerjee S (2022). Omicron: a mysterious variant of concern. Eur Phys J Plus 137: 100.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271-280.e278.
Hoffmann M, Krüger N, Schulz S, Cossmann A, Rocha C, Kempf A, et al. (2022). The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 185:447-456.e411.
Hooper P, Zaki S, Daniels P, & Middleton D (2001). Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3: 315-322.
Hossen MJ, Kim MY, Kim JH, & Cho JY (2016). Codonopsis lanceolata: A Review of Its Therapeutic Potentials. Phytother Res 30: 347-356.
Huang Y, Yang C, Xu XF, Xu W, & Liu SW (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41: 1141-1149.
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, et al. (2021). Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 53: 956-972.
Lee M, Park J, & Cho IH (2022). Target-Specific Drug Discovery of Natural Products against SARS-CoV-2 Life Cycle and Cytokine Storm in COVID-19. Am J Chin Med 50:927-959.
Lee S, Han EH, Lim MK, Lee SH, Yu HJ, Lim YH, et al. (2020). Fermented Platycodon grandiflorum Extracts Relieve Airway Inflammation and Cough Reflex Sensitivity In Vivo. J Med Food 23: 1060-1069.
Li H, Cheng C, Shi S, Wu Y, Gao Y, Liu Z, et al. (2022). Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur J Med Chem 238: 114426.
Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, et al. (2004). Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363: 938-947.
Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, et al. (2014). Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 5: 3067.
Marcello A, Civra A, Milan Bonotto R, Nascimento Alves L, Rajasekharan S, Giacobone C, et al. (2020). The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biol 36:101682.
Mou H, Raj VS, van Kuppeveld FJ, Rottier PJ, Haagmans BL, & Bosch BJ (2013). The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol 87: 9379-9383.
Nardacci R, Perfettini JL, Grieco L, Thieffry D, Kroemer G, & Piacentini M (2015). Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death Dis 6: e1846.
Newman DJ, & Cragg GM (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 83: 770-803.
Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, et al. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 12: 848.
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, et al. (2021). Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 12: 796855.
Rahmani S, & Rezaei N (2022). Omicron (B.1.1.529) variant: Development, dissemination, and dominance. J Med Virol 94: 1787-1788.
Rajah MM, Bernier A, Buchrieser J, & Schwartz O (2021). The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol:167280.
Rihn SJ, Merits A, Bakshi S, Turnbull ML, Wickenhagen A, Alexander AJT, et al. (2021). A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biol 19: e3001091.
Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, et al. (2021). SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. Elife 10.
Santana MF, Pinto RAA, Marcon BH, Medeiros L, Morais T, Dias LC, et al. (2021). Pathological findings and morphologic correlation of the lungs of autopsied patients with SARS-CoV-2 infection in the Brazilian Amazon using transmission electron microscopy. Rev Soc Bras Med Trop 54: e0850.
Schrors B, Riesgo-Ferreiro P, Sorn P, Gudimella R, Bukur T, Rosler T, et al. (2021). Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS One 16:e0249254.
Scovino AM, Dahab EC, Vieira GF, Freire-de-Lima L, Freire-de-Lima CG, & Morrot A (2022). SARS-CoV-2’s Variants of Concern: A Brief Characterization. Front Immunol 13: 834098.
Seo YS, Kim HS, Lee AY, Chun JM, Kim SB, Moon BC, et al. (2019). Codonopsis lanceolata attenuates allergic lung inflammation by inhibiting Th2 cell activation and augmenting mitochondrial ROS dismutase (SOD2) expression. Sci Rep 9: 2312.
Sinha SK, Shakya A, Prasad SK, Singh S, Gurav NS, Prasad RS, et al. (2021). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. J Biomol Struct Dyn 39: 3244-3255.
Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, et al. (2022). Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl J Med 386: 995-998.
Tang T, Bidon M, Jaimes JA, Whittaker GR, & Daniel S (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178:104792.
Wang S, Li W, Hui H, Tiwari SK, Zhang Q, Croker BA, et al. (2020). Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. Embo j 39: e106057.
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30: 343-355.
Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CK, et al. (2019). A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 5: eaav4580.
Yang R, Liu H, Bai C, Wang Y, Zhang X, Guo R, et al. (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol Res 157: 104820.
Yi Y, Li J, Lai X, Zhang M, Kuang Y, Bao YO, et al. (2022). Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J Adv Res 36: 201-210.
Zaman R, Orakzai SA, & Yunus A (1987). Effect of pyrazinamide on serum and urinary uric acid levels. J Pak Med Assoc 37: 76-78.
Zang R, Case JB, Yutuc E, Ma X, Shen S, Gomez Castro MF, et al. (2020). Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A 117: 32105-32113.
Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, et al. (2022). SARS-CoV-2 spreads through cell-to-cell transmission. Proc Natl Acad Sci U S A 119.
Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. (2020). SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11: 6013.
Zu S, Deng YQ, Zhou C, Li J, Li L, Chen Q, et al. (2020). 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Res 30: 1043-1045.