Reference
Adeleye OA, Bamiro OA, Bakre LG,
Odeleye FO, Adebowale MN, Okunye OL, et al. (2022). Medicinal
Plants with Potential Inhibitory Bioactive Compounds against
Coronaviruses. Adv Pharm Bull 12: 7-16.
Aleem A, Akbar Samad AB, & Slenker AK
(2022). Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against
Coronavirus (COVID-19). In StatPearls. StatPearls Publishing
Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
Barrantes FJ (2022). The constellation
of cholesterol-dependent processes associated with SARS-CoV-2 infection.
Prog Lipid Res 87: 101166.
Bekliz M, Adea K, Vetter P, Eberhardt
CS, Hosszu-Fellous K, Vu DL, et al. (2022). Neutralization
capacity of antibodies elicited through homologous or heterologous
infection or vaccination against SARS-CoV-2 VOCs. Nat Commun
13: 3840.
Benarba B, & Pandiella A (2020).
Medicinal Plants as Sources of Active Molecules Against COVID-19. Front
Pharmacol 11: 1189.
Biswas S, Mahmud S, Mita MA, Afrose S,
Hasan MR, Paul GK, et al. (2022). The Emergence of SARS-CoV-2
Variants With a Lower Antibody Response: A Genomic and Clinical
Perspective. Front Med (Lausanne) 9: 825245.
Buchrieser J, Dufloo J, Hubert M,
Monel B, Planas D, Rajah MM, et al. (2020). Syncytia formation by
SARS-CoV-2-infected cells. EMBO J 39: e106267.
Buchrieser J, Dufloo J, Hubert M,
Monel B, Planas D, Rajah MM, et al. (2021). Syncytia formation by
SARS-CoV-2-infected cells. EMBO J 40: e107405.
Bussani R, Schneider E, Zentilin L,
Collesi C, Ali H, Braga L, et al. (2020). Persistence of viral
RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced
COVID-19 pathology. EBioMedicine 61: 103104.
Chen KK, Tsung-Ning Huang D, & Huang
LM (2022). SARS-CoV-2 variants - Evolution, spike protein, and vaccines.
Biomed J.
Choi JH, Hwang YP, Lee HS, & Jeong
HG (2009). Inhibitory effect of Platycodi Radix on ovalbumin-induced
airway inflammation in a murine model of asthma. Food Chem Toxicol
47: 1272-1279.
Crawford KHD, Eguia R, Dingens AS,
Loes AN, Malone KD, Wolf CR, et al. (2020). Protocol and Reagents
for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for
Neutralization Assays. Viruses 12.
de Vries RD, Schmitz KS, Bovier FT,
Predella C, Khao J, Noack D, et al. (2021). Intranasal fusion
inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission
in ferrets. Science 371: 1379-1382.
DeGrace MM, Ghedin E, Frieman MB,
Krammer F, Grifoni A, Alisoltani A, et al. (2022). Defining the
risk of SARS-CoV-2 variants on immune protection. Nature 605:640-652.
Diniz LRL, Perez-Castillo Y,
Elshabrawy HA, Filho C, & de Sousa DP (2021). Bioactive Terpenes and
Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from
Molecular Modeling Studies. Biomolecules 11.
Du YE, Lee JS, Kim HM, Ahn JH, Jung
IH, Ryu JH, et al. (2018). Chemical constituents of the roots of
Codonopsis lanceolata. Arch Pharm Res 41: 1082-1091.
Du Z, Hong H, Wang S, Ma L, Liu C,
Bai Y, et al. (2022). Reproduction Number of the Omicron Variant
Triples That of the Delta Variant. Viruses 14.
Ebob OT, Babiaka SB, & Ntie-Kang F
(2021). Natural Products as Potential Lead Compounds for Drug Discovery
Against SARS-CoV-2. Nat Prod Bioprospect 11: 611-628.
Falade VA, Adelusi TI, Adedotun IO,
Abdul-Hammed M, Lawal TA, & Agboluaje SA (2021). In silico
investigation of saponins and tannins as potential inhibitors of
SARS-CoV-2 main protease (M(pro)). In Silico Pharmacol 9: 9.
Gowrisankar A, Priyanka TMC, &
Banerjee S (2022). Omicron: a mysterious variant of concern. Eur Phys J
Plus 137: 100.
Hoffmann M, Kleine-Weber H, Schroeder
S, Krüger N, Herrler T, Erichsen S, et al. (2020). SARS-CoV-2
Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically
Proven Protease Inhibitor. Cell 181: 271-280.e278.
Hoffmann M, Krüger N, Schulz S,
Cossmann A, Rocha C, Kempf A, et al. (2022). The Omicron variant
is highly resistant against antibody-mediated neutralization:
Implications for control of the COVID-19 pandemic. Cell 185:447-456.e411.
Hooper P, Zaki S, Daniels P, &
Middleton D (2001). Comparative pathology of the diseases caused by
Hendra and Nipah viruses. Microbes Infect 3: 315-322.
Hossen MJ, Kim MY, Kim JH, & Cho JY
(2016). Codonopsis lanceolata: A Review of Its Therapeutic Potentials.
Phytother Res 30: 347-356.
Huang Y, Yang C, Xu XF, Xu W, & Liu
SW (2020). Structural and functional properties of SARS-CoV-2 spike
protein: potential antivirus drug development for COVID-19. Acta
Pharmacol Sin 41: 1141-1149.
Kim TY, Jeon S, Jang Y, Gotina L, Won
J, Ju YH, et al. (2021). Platycodin D, a natural component of
Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven
SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med
53: 956-972.
Lee M, Park J, & Cho IH (2022).
Target-Specific Drug Discovery of Natural Products against SARS-CoV-2
Life Cycle and Cytokine Storm in COVID-19. Am J Chin Med 50:927-959.
Lee S, Han EH, Lim MK, Lee SH, Yu HJ,
Lim YH, et al. (2020). Fermented Platycodon grandiflorum Extracts
Relieve Airway Inflammation and Cough Reflex Sensitivity In Vivo. J Med
Food 23: 1060-1069.
Li H, Cheng C, Shi S, Wu Y, Gao Y,
Liu Z, et al. (2022). Identification, optimization, and
biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as
novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of
spike protein. Eur J Med Chem 238: 114426.
Liu S, Xiao G, Chen Y, He Y, Niu J,
Escalante CR, et al. (2004). Interaction between heptad repeat 1
and 2 regions in spike protein of SARS-associated coronavirus:
implications for virus fusogenic mechanism and identification of fusion
inhibitors. Lancet 363: 938-947.
Lu L, Liu Q, Zhu Y, Chan KH, Qin L,
Li Y, et al. (2014). Structure-based discovery of Middle East
respiratory syndrome coronavirus fusion inhibitor. Nat Commun
5: 3067.
Marcello A, Civra A, Milan Bonotto R,
Nascimento Alves L, Rajasekharan S, Giacobone C, et al. (2020).
The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and
is markedly decreased in COVID-19 patients. Redox Biol 36:101682.
Mou H, Raj VS, van Kuppeveld FJ,
Rottier PJ, Haagmans BL, & Bosch BJ (2013). The receptor binding domain
of the new Middle East respiratory syndrome coronavirus maps to a
231-residue region in the spike protein that efficiently elicits
neutralizing antibodies. J Virol 87: 9379-9383.
Nardacci R, Perfettini JL, Grieco L,
Thieffry D, Kroemer G, & Piacentini M (2015). Syncytial apoptosis
signaling network induced by the HIV-1 envelope glycoprotein complex: an
overview. Cell Death Dis 6: e1846.
Newman DJ, & Cragg GM (2020).
Natural Products as Sources of New Drugs over the Nearly Four Decades
from 01/1981 to 09/2019. J Nat Prod 83: 770-803.
Ozono S, Zhang Y, Ode H, Sano K, Tan
TS, Imai K, et al. (2021). SARS-CoV-2 D614G spike mutation
increases entry efficiency with enhanced ACE2-binding affinity. Nat
Commun 12: 848.
Palacios-Rápalo SN, De Jesús-González
LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier
G, et al. (2021). Cholesterol-Rich Lipid Rafts as Platforms for
SARS-CoV-2 Entry. Front Immunol 12: 796855.
Rahmani S, & Rezaei N (2022).
Omicron (B.1.1.529) variant: Development, dissemination, and dominance.
J Med Virol 94: 1787-1788.
Rajah MM, Bernier A, Buchrieser J, &
Schwartz O (2021). The Mechanism and Consequences of SARS-CoV-2
Spike-Mediated Fusion and Syncytia Formation. J Mol Biol:167280.
Rihn SJ, Merits A, Bakshi S, Turnbull
ML, Wickenhagen A, Alexander AJT, et al. (2021). A plasmid
DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit
for COVID-19 research. PLoS Biol 19: e3001091.
Sanders DW, Jumper CC, Ackerman PJ,
Bracha D, Donlic A, Kim H, et al. (2021). SARS-CoV-2 requires
cholesterol for viral entry and pathological syncytia formation. Elife
10.
Santana MF, Pinto RAA, Marcon BH,
Medeiros L, Morais T, Dias LC, et al. (2021). Pathological
findings and morphologic correlation of the lungs of autopsied patients
with SARS-CoV-2 infection in the Brazilian Amazon using transmission
electron microscopy. Rev Soc Bras Med Trop 54: e0850.
Schrors B, Riesgo-Ferreiro P, Sorn P,
Gudimella R, Bukur T, Rosler T, et al. (2021). Large-scale
analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need
for continuous screening of virus isolates. PLoS One 16:e0249254.
Scovino AM, Dahab EC, Vieira GF,
Freire-de-Lima L, Freire-de-Lima CG, & Morrot A (2022). SARS-CoV-2’s
Variants of Concern: A Brief Characterization. Front Immunol
13: 834098.
Seo YS, Kim HS, Lee AY, Chun JM, Kim
SB, Moon BC, et al. (2019). Codonopsis lanceolata attenuates
allergic lung inflammation by inhibiting Th2 cell activation and
augmenting mitochondrial ROS dismutase (SOD2) expression. Sci Rep
9: 2312.
Sinha SK, Shakya A, Prasad SK, Singh
S, Gurav NS, Prasad RS, et al. (2021). An in-silico evaluation of
different Saikosaponins for their potency against SARS-CoV-2 using NSP15
and fusion spike glycoprotein as targets. J Biomol Struct Dyn
39: 3244-3255.
Takashita E, Kinoshita N, Yamayoshi
S, Sakai-Tagawa Y, Fujisaki S, Ito M, et al. (2022). Efficacy of
Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl
J Med 386: 995-998.
Tang T, Bidon M, Jaimes JA, Whittaker
GR, & Daniel S (2020). Coronavirus membrane fusion mechanism offers a
potential target for antiviral development. Antiviral Res 178:104792.
Wang S, Li W, Hui H, Tiwari SK, Zhang
Q, Croker BA, et al. (2020). Cholesterol 25-Hydroxylase inhibits
SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol.
Embo j 39: e106057.
Xia S, Liu M, Wang C, Xu W, Lan Q,
Feng S, et al. (2020). Inhibition of SARS-CoV-2 (previously
2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor
targeting its spike protein that harbors a high capacity to mediate
membrane fusion. Cell Res 30: 343-355.
Xia S, Yan L, Xu W, Agrawal AS,
Algaissi A, Tseng CK, et al. (2019). A pan-coronavirus fusion
inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv
5: eaav4580.
Yang R, Liu H, Bai C, Wang Y, Zhang
X, Guo R, et al. (2020). Chemical composition and pharmacological
mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction
against Coronavirus Disease 2019 (COVID-19): In silico and experimental
study. Pharmacol Res 157: 104820.
Yi Y, Li J, Lai X, Zhang M, Kuang Y,
Bao YO, et al. (2022). Natural triterpenoids from licorice
potently inhibit SARS-CoV-2 infection. J Adv Res 36: 201-210.
Zaman R, Orakzai SA, & Yunus A
(1987). Effect of pyrazinamide on serum and urinary uric acid levels. J
Pak Med Assoc 37: 76-78.
Zang R, Case JB, Yutuc E, Ma X, Shen
S, Gomez Castro MF, et al. (2020). Cholesterol 25-hydroxylase
suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl
Acad Sci U S A 117: 32105-32113.
Zeng C, Evans JP, King T, Zheng YM,
Oltz EM, Whelan SPJ, et al. (2022). SARS-CoV-2 spreads through
cell-to-cell transmission. Proc Natl Acad Sci U S A 119.
Zhang L, Jackson CB, Mou H, Ojha A,
Peng H, Quinlan BD, et al. (2020). SARS-CoV-2 spike-protein D614G
mutation increases virion spike density and infectivity. Nat Commun
11: 6013.
Zu S, Deng YQ, Zhou C, Li J, Li L,
Chen Q, et al. (2020). 25-Hydroxycholesterol is a potent
SARS-CoV-2 inhibitor. Cell Res 30: 1043-1045.