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1 Introduction

Since the idea of impulses was brought in the Caputo fractional order system, there appeared a

lot of studies to focus on the subject of two kinds of impulsive fractional order systems (IFrOSs) (for

details see [7–30] and references therein)
C
t0D

α
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

z(t+k )− z(t−k ) = φk(z(t
−
k )), k = 1, 2, ...,K,

z(t0) = z0,

(1.1)

and 
C
t0D

α
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

z(t+k ) = ψk(z(t
−
k )), k = 1, 2, ...,K,

z(t0) = z0,

(1.2)
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where C
t0D

α
t (α ∈ (0, 1)) represents the left-sided Caputo fractional derivative, h : [t0, S] × R → R,

0 ≤ t0 < t1 < ... < tK < tK+1 = S, φk : R→ R and ψk : R→ R (k = 1, 2, ...,K).

For (1.1) and (1.2), the piecewise function

z(t) =


z0 +

∫ t

t0

(t− τ)α−1

Γ(α)
h(τ, z(τ))dτ for t ∈ [t0, t1],

z(t+k ) +

∫ t

tk

(t− τ)α−1

Γ(α)
h(τ, z(τ))dτ for t ∈ (tk, tk+1], k = 1, ...,K,

(1.3)

was often used to discuss their properties (such as existence of solution, numerical solution, stability

and controllability etc) in many existing papers. But, (1.3) does not satisfy the condition of fractional

derivative in (1.1) and (1.2), and its fractional derivative is

C
t0D

α
t z(t)

∣∣
t∈(tk,tk+1]

=

∫ t

t0

(t− s)−α

Γ(1− α)
z′(s)ds for t ∈ (tk, tk+1] (k = 1, 2, ...,K)

=

∫ t1

t0

(t− s)−α

Γ(1− α)
z′(s)ds+

∫ t2

t1

(t− s)−α

Γ(1− α)
z′(s)ds+ ...+

∫ t

tk

(t− s)−α

Γ(1− α)
z′(s)ds

=

∫ t1

t0

(t− s)−α

Γ(1− α)

[
z0 +

∫ s

t0

(s− τ)α−1

Γ(α)
hdτ

]′
ds

+

∫ t2

t1

(t− s)−α

Γ(1− α)

[
z(t+1 ) +

∫ s

t1

(s− τ)α−1

Γ(α)
hdτ

]′
ds

+ ...+

∫ t

tk

(t− s)−α

Γ(1− α)

[
z(t+k ) +

∫ s

tk

(s− τ)α−1

Γ(α)
hdτ

]′
ds

6= h(t, z(t)) for t ∈ (tk, tk+1] (k = 1, 2, ...,K).

(1.4)

In fact, it has always been the incorrect understanding for the piecewise function (1.3) in existing

studies. Let us reconsider another piecewise expression of (1.3):

z(t) =

 z0 +

∫ t

t0

(t− τ)α−1

Γ(α)
h(τ, z(τ))dτ, t ∈ [t0, t1],

0, t ∈ (t1, S],

+
K∑
k=1


0, t ∈ (t0, tk],

z(t+k ) +

∫ t

tk

(t− τ)α−1

Γ(α)
h(τ, z(τ))dτ, t ∈ (tk, tk+1],

0, t ∈ (tk+1, S],

(1.5)

which its fractional derivative is

C
t0D

α
t z(t) =

{
h(t, z(t)), t ∈ [t0, t1],

0, t ∈ (t1, S],
+

K∑
k=1


0, t ∈ (t0, tk],

h(t, z(t)), t ∈ (tk, tk+1],

0, t ∈ (tk+1, S],

= h(t, z(t)), t ∈
(
[t0, t1] ∪ ∪Kk=1(tk, tk+1]

)
.

(1.6)

Thus (1.5) meets the condition of fractional derivative in (1.1) and (1.2).

Remark 1.1. Although (1.5) and (1.3) in value are equal, (1.5) meets the fractional derivative in

(1.1) and (1.2) but (1.3) does not satisfy fractional derivative in (1.1) and (1.2).
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Moreover, the above incorrect understanding also appeared in studies of two impulsive Riemann-

Liouville fractional order systems [31, 32]:
RL
t0 D

α
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

RL
t0 I

1−α
t z(t)

∣∣
t=t+k
− RL

t0 I
1−α
t z(t)

∣∣
t=t−k

= φk(z(t
−
k )), k = 1, ...,K,

RL
t0 I

1−α
t z(t)

∣∣
t→t0+

= z0,

(1.7)

and 
RL
t0 D

α
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

RL
t0 I

1−α
t z(t)

∣∣
t=t+k

= ψk(z(t
−
k )), k = 1, 2, ...,K,

RL
t0 I

1−α
t z(t)

∣∣
t→t0+

= z0,

(1.8)

where RL
t0 D

α
t and RL

t0 I
1−α
t represents the left-sided Riemann-Liouville fractional derivative and the

Riemann-Liouville fractional integral respectively.

The above incorrect understanding for (1.3) caused that the equivalent integral equations of the

above four IFrOSs proposed in existing papers are incorrect. Motivated by the above discussion, we

integrate the above impulsive Caputo fractional order systems and impulsive Riemann-Liouville frac-

tional order systems by using the Hilfer generalized fractional derivative to reconsider the equivalent

integral equation of two IFrOSs:
HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

− RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−k

= φk(z(t
−
k )), k = 1, ...,K,

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0,

(1.9)

and 
HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk (k = 1, 2, ...,K),

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

= ψk(z(t
−
k )), k = 1, 2, ...,K,

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0,

(1.10)

where HR
t0 D

α,β
t (0 < α < 1 and 0 ≤ β ≤ 1) denotes the Hilfer generalized fractional derivative and

RL
t0 I

1−γ
t (γ = α + β − αβ) represents the Riemann-Liouville fractional integral, RL

t0 I
1−γ
t z(t)

∣∣∣
t=t+k

=

limε→0+
RL
t0 I

1−γ
tk+εz(tk + ε) and RL

t0 I
1−γ
t z(t)

∣∣∣
t=t−k

= limε→0−
RL
t0 I

1−γ
tk+εz(tk + ε).

Remark 1.2. (1.1) and (1.7) are two special cases of (1.9) when β = 1 and β = 0 respectively, and

(1.2) and (1.8) are two special cases of (1.10) when β = 1 and β = 0 respectively.

2 Preliminaries

Let −∞ < t0 < S < ∞, and give some notations: the spaces of Lebesgue integrable functions

Lp(t0, S) (p ≥ 1), the spaces of continuous C[t0, S], the spaces of absolute continuous AC[t0, S] and

the spaces of n-times continuously differentiable functions Cn[t0, S]. And let

Cγ [t0, S] = {z : (t0, S]→ R : (t− t0)γz(t) ∈ C[t0, S]} (0 ≤ γ < 1)
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and

Cnγ [t0, S] =
{
z ∈ Cn−1[t0, S] : z(n) ∈ Cγ [t0, S]

}
(n ∈ N) and C0

γ [t0, S] = Cγ [t0, S].

Definition 2.1([1–3]). Let z ∈ L1(t0, S). The Riemann-Liouville fractional integral RL
t0 I

α
t z(t) is

defined by

RL
t0 I

α
t z(t) =

∫ t

t0

(t− s)α−1x(s)

Γ(α)
ds (t > t0, α > 0).

Definition 2.2 ([1–3]). The expression

RL
t0 D

α
t z(t) = DRL

t0 I
1−α
t z(t) (t > t0, 0 < α < 1, D =

d

dt
),

provided DRL
t0 I

1−α
t z(t) exists, is called the Riemann-Liouville fractional derivative.

Definition 2.3 ([4, 5]). Let 0 < α < 1 and 0 ≤ β ≤ 1. The Hilfer generalized fractional derivative is

defined by
HR
t0 D

α,β
t = RL

t0 I
β(1−α)
t D

(
RL
t0 I

(1−β)(1−α)
t

)
,

which is the Riemann-Liouville fractional derivative and the Caputo fractional derivative

when β = 0 and β = 1, respectively.

Define

Cα,β1−γ [t0, S] =
{
z ∈ C1−γ [t0, S], HRt0 D

α,β
t z ∈ C1−γ [t0, S]

}
and

Cγ1−γ [t0, S] =
{
z ∈ C1−γ [t0, S], RLt0 D

γ
t z ∈ C1−γ [t0, S]

}
.

Theorem 2.4 ([6]). Let α ∈ (0, 1), β ∈ [0, 1] and γ = α + β − αβ. Let f : (t0, S] × R → R satisfy

f(·, z(·)) ∈ C1−γ [t0, S] for any z(·) ∈ C1−γ [t0, S]. If z(t) ∈ Cγ1−γ [t0, S] satisfies the fractional differential

equations 
HR
t0 D

α,β
t z(t) = f(t, z(t)), t ∈ (t0, S],

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0,

iff z(t) satisfies

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ, z(τ))dτ, t ∈ (t0, S].

Remark 2.5. In order to the existence of HRt0 D
α,β
t

[∫ t
t0

(t− τ)α−1f(τ, z(τ))dτ
]

in Theorem 2.4, we

need add an assumption that for function f : [t0, S]×R→ R there exist two positive constants L and

M such that

|f(t, y)− f(s, z)| ≤ L|t− s|+M |y − z| for ∀s, t ∈ [t0, S] and ∀y, z ∈ R.

3 The equivalent integral equations of two IFrOSs

For simplicity, let Jk = (tk, tk+1] (k = 0, 1, ...,K), h = h(τ, z(τ)),

Λ(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ (3.1)
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and

Υk(t) =
z0 +

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ, k = 1, ...,K. (3.2)

And for 0 ≤ γ < 1 further define some function spaces:

Ĉ1−γ [t0, S] :=
{
z : (t0, S]→ R : [t− ti]1−γ z(t) ∈ C[ti, ti+1], i = 0, 1, ...,K

}
,

Ĉγ1−γ [t0, S] :=
{
z ∈ Ĉ1−γ [t0, S], RLt0 D

γ
t z(t) ∈ Ĉ1−γ [t0, S]

}
,

IC([t0, S],R) :=
{
z ∈ Ĉγ1−γ [t0, S], RLt0 I

1−γ
t z(t) ∈ C1([t0, t1] ∪ ∪Kk=1(tk, tk+1]),

lim
t→t+k

[
d

dt
RL
t0 I

1−γ
t z(t)

]
<∞, lim

t→t−k

[
d

dt
RL
t0 I

1−γ
t z(t)

]
=

d

dt
RL
t0 I

1−γ
t z(t)

∣∣∣∣
t=tk

<∞

}
.

For (1.9) and (1.10), there are some hidden properties:

(a) lim
φk(z(t−k ))→0 for all k∈{1,2,...,K}

{system (1.9)}

=


HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S],

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

⇔ z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, S].

(b) lim
tk→tr for all k∈{1,2,...,K} and ∀r∈{1,2,...,K}

{system (1.9)}

=



HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tr,

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+r
− RL

t0 I
1−γ
t z(t)

∣∣∣
t=t−r

=

K∑
k=1

φk(z(t
−
r )),

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

(c) lim[
ψk(z(t−k ))−z0− 1

Γ(α−γ+1)

∫ tk
t0

(tk−τ)α−γhdτ
]
→0

for all k∈{1,2,...,K}

{system (1.10)}

=


HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S],

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

⇔ z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, S].

Remark 3.1. The property (c) of (1.10) is corresponding to the property (a) of (1.9), and no property

of (1.10) is corresponding to the property (b) of (1.9). In particular, (1.9) is equivalence with (1.10)

under K = 1 and φ1(z) = ψ1(z)− RL
t0 I

1−γ
t z.

To seek the integral solution of (1.9), we consider fractional derivative of (1.9) in each subinterval
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to find a piecewise function

z̃(t) =


z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ J0,

0, t ∈ (t1, S]

+
K∑
k=1



0, t ∈ (t0, tk],

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

Γ(γ)
(t− tk)γ−1 +

1

Γ(α)

∫ t

tk

(t− τ)α−1hdτ, t ∈ Jk,

0, t ∈ (tk+1, S],

(3.3)

with RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

= RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−k

+ φk(z(t
−
k )) and 1 ≤ k ≤ K.

Although z̃(t) meets these conditions of initial value, impulses and fractional derivative in (1.9),

but z̃(t) reject the property (a) to be only regarded as an approximate solution of (1.9).

And then we discover the equivalence between (1.9) and the Volterra integral equation of the

second kind by calculating the error between z̃(t) and the exact solution of (1.9).

Theorem 3.2. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ. And let function h(·, z(·)) satisfy

|h(t, x)− h(s, y)| ≤ L|t− s|+M |x− y| for ∀s, t ∈ [t0, S] and ∀x, y ∈ R,

where L and M are two positive constants.

If z(t) ∈ IC([t0, S],R) meets system (1.9) iff z(t) meets

z(t) =


Λ(t), t ∈ J0,

...

Λ(t), t ∈ JK ,

+
K∑
k=1


0, t ∈ (t0, tk],

φk(z(t
−
k ))

Γ(γ)
(t− tk)γ−1, t ∈ (tk, S],

+ ξφ1(z(t−1 ))


{

Λ(t), t ∈ J0,

0, t ∈ (t1, S],
+



0, t ∈ J0,

Υ1(t), t ∈ J1,

...

Υ1(t), t ∈ JK ,

−



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,

+ ...

+ ξφK(z(t−K))





Λ(t), t ∈ J0,

...

Λ(t), t ∈ JK−1,

0, t ∈ JK ,

+

{
0, t ∈ (t0, tK ],

ΥK(t), t ∈ JK ,
−



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,



(3.4)

where ξ is an arbitrary constant.

The proof of Theorem 3.2 will be given in the section of appendix.
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Remark 3.3. (3.4) in value is equal to

z(t) =



z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ, t ∈ J0,

z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

k∑
i=1

φi(z(t
−
i ))

Γ(γ)
(t− ti)γ−1

+ ξ

k∑
i=1

φi(z(t
−
i ))

z0 +
∫ ti
t0

(ti−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− ti)γ−1 +

∫ t

ti

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
, t ∈ Jk, k = 1, ...,K.

(3.5)

But (3.5) does not satisfy the condition of fractional derivative in (1.9).

Next we consider the integral solution of (1.10). Similarly, (3.1) with RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

= ψk(z(t
−
k ))

(here 1 ≤ k ≤ K)

ẑ(t) =


z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ J0,

0, t ∈ (t1, S],

+

K∑
k=1


0, t ∈ (t0, tk],

ψk(z(t
−
k ))

Γ(γ)
(t− tk)γ−1 +

1

Γ(α)

∫ t

tk

(t− τ)α−1hdτ, t ∈ Jk,

0, t ∈ (tk+1, S],

(3.6)

is an approximate solution of (1.10), which ẑ(t) satisfies these conditions of initial value, impulses

and fractional derivative in (1.10), but it dissatisfies the property (c).

On the other hand, we consider fractional derivative of (1.10) on whole interval (t0, S] to discover

a particular solution of (1.10):

z(t) =



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK

+
K∑
k=1


0, t ∈ (t0, tk],

ψk(z(t
−
k ))− z0 −

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1, t ∈ Jk,

0, t ∈ (tk+1, S].

(3.7)

The next theorem yields the equivalence between the Cauchy problem (1.10) and the Volterra

integral equation of the second kind.

Theorem 3.4. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ. And let function h(·, z(·)) satisfy

|h(t, x)− h(s, y)| ≤ L|t− s|+M |x− y| for ∀s, t ∈ [t0, S] and ∀x, y ∈ R,

where L and M are two positive constants.
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If z(t) ∈ IC([t0, S],R) satisfies (1.10) iff z(t) meets

z(t) =



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,

+

K∑
k=1


0, t ∈ (t0, tk],

ψk(z(t
−
k ))− z0 −

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1, t ∈ Jk,

0, t ∈ (tk+1, S],

+ η1

[
ψ1(z(t−1 ))− z0 −

∫ t1

t0

(t1 − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×


{

Λ(t), t ∈ J0,

0, t ∈ (t1, S],
+


0, t ∈ J0,

Υ1(t), t ∈ J1,

0, t ∈ (t2, S],

−


Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

0, t ∈ (t2, S],


+ ...+ ηK

[
ψK(z(t−K))− z0 −

∫ tK

t0

(tK − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×





Λ(t), t ∈ J0,

...

Λ(t), t ∈ JK−1,

0, t ∈ JK ,

+

{
0, t ∈ (t0, tK ],

ΥK(t), t ∈ JK ,
−



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,



(3.8)

where ηk (1 ≤ k ≤ K) are some arbitrary constants.

The proof of Theorem 3.4 will be given in the section of appendix.

Remark 3.5. (3.8) in value is equal with

z(t) =



z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ, t ∈ J0,

ψk(z(t
−
k ))− z0 −

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ + ηk

[
ψk(z(t

−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×

z0 +
∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ Jk, k = 1, ...,K,

(3.9)

but (3.9) does not satisfy the condition of fractional derivative in (1.10).

4 Applications

Let α = 1
2 , β ∈ [0, 1] and γ = 1

2(β + 1) in this section, and we provide two IFrOSs to expound

Theorems 3.2 and 3.4.

8



Example 4.1. Consider the following IFrOS

HR
0 D

1
2 ,β

t x(t) = t, t ∈ (0, 2] and t 6= 1,

RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t=1+

− RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t=1−

= 1,

RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t→0+

= 1.

(4.1)

By Theorem 3.2, we compute the solution of (4.1):

x(t) =

{
Λ(t), t ∈ (0, 1],

Λ(t), t ∈ (1, 2],
+


0, t ∈ (0, 1],

1

Γ(1
2(β + 1))

(t− 1)
1
2

(β−1), t ∈ (1, 2],

+ ξ

[{
Λ(t), t ∈ (0, 1],

0, t ∈ (1, 2],
+

{
0, t ∈ (0, 1],

Υ1(t), t ∈ (1, 2],
−

{
Λ(t), t ∈ (0, 1],

Λ(t), t ∈ (1, 2],

] (4.2)

where ξ is an arbitrary constant,

Λ(t) =
tγ−1

Γ(γ)
+

∫ t

0

(t− τ)α−1

Γ(α)
τdτ =

1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 (4.3)

and

Υ1(t) =
1 +

∫ 1
0

(1−τ)α−γ

Γ(α−γ+1)τdτ

Γ(γ)
(t− 1)γ−1 +

∫ t

1

(t− τ)α−1

Γ(α)
τdτ

=

1 + 1

Γ(3−1
2β)

Γ(1
2(β + 1))

(t− 1)
1
2 (β−1) +

1

Γ(5
2)

(t− 1)
3
2 +

1

Γ(3
2)

(t− 1)
1
2 .

(4.4)

Remark 4.2. (4.2) in value is equal to

x(t) =



1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 , t ∈ (0, 1],

1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 +

1

Γ(1
2(β + 1))

(t− 1)
1
2 (β−1)

+ ξ


1 + 1

Γ(3−1
2β)

Γ(1
2(β + 1))

(t− 1)
1
2 (β−1) +

1

Γ(5
2)

(t− 1)
3
2 +

1

Γ(3
2)

(t− 1)
1
2

− 1

Γ(1
2(β + 1))

t
1
2 (β−1) − 1

Γ(5
2)
t

3
2

}
, t ∈ (1, 2],

(4.5)

Moreover, (4.1) without impulses is presented by
HR
0 D

1
2 ,β

t x(t) = t, t ∈ (0, 2],

RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t→0+

= 1,
(4.6)
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and by Theorem 2.4 the solution of (4.6) is

x(t) =
1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 , t ∈ (0, 2]. (4.7)

We find that (4.1) has many solutions because its solution (4.2) is with an arbitrary constant ξ,

and we use the numerical simulation to show the non-uniqueness of solution of (4.1) and compare

some solution trajectories of (4.1) with the solution trajectory of (4.6). Fig.1-4 show the solution

trajectories of (4.1) and (4.6) with β = 0, 0.5, 0.8, 1 respectively. In each figure, ’No impulse’

denotes the solution trajectory of (4.6) with the corresponding β, and these curves ’ξ = 0’, ’ξ = 1’ and

’ξ = −1’ which are drawn by numerical simulation of (4.2) with ξ = 0, 1, −1 respectively, represent

three solution trajectories of (4.1) with the corresponding β.

Example 4.3. Consider another IFrOS

HR
0 D

1
2 ,β

t x(t) = t, t ∈ (0, 2] and t 6= 1,

RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t=1+

= 1,

RL
0 I

1
2 (1−β)

t x(t)

∣∣∣∣
t→0+

= 1.

(4.8)

By Theorem 3.4, we calculate the solution of (4.8):

x(t) =

{
Λ(t), t ∈ (0, 1],

Λ(t), t ∈ (1, 2],
+


0, t ∈ (0, 1],

−1

Γ(1
2(β + 1))Γ(3− 1

2β)
(t− 1)

1
2

(β−1), t ∈ (1, 2],

− η

Γ(3− 1
2β)

[{
Λ(t), t ∈ (0, 1],

0, t ∈ (1, 2],
+

{
0, t ∈ (0, 1],

Υ1(t), t ∈ (1, 2],
−

{
Λ(t), t ∈ (0, 1],

Λ(t), t ∈ (1, 2],

] (4.9)

where η is an arbitrary constant, and Λ(t) and Υ1(t) are defined by (4.3) and (4.4).

Remark 4.4. (4.9) in value is equal to

x(t) =



1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 , t ∈ (0, 1],

1

Γ(1
2(β + 1))

t
1
2 (β−1) +

1

Γ(5
2)
t

3
2 − 1

Γ(1
2(β + 1))Γ(3− 1

2β)
(t− 1)

1
2 (β−1)

− η

Γ(3− 1
2β)


1 + 1

Γ(3−1
2β)

Γ(1
2(β + 1))

(t− 1)
1
2 (β−1) +

1

Γ(5
2)

(t− 1)
3
2

+
1

Γ(3
2)

(t− 1)
1
2 − 1

Γ(1
2(β + 1))

t
1
2 (β−1) − 1

Γ(5
2)
t

3
2

}
, t ∈ (1, 2],

(4.10)

Similarly, (4.8) has many solutions owing to arbitrariness of η in (4.9). We also apply the numerical

simulation to show the non-uniqueness of solution of (4.8) and compare some solution trajectories of

(4.8) with the solution trajectory of (4.6). Fig. 5-8 represent the solution trajectories of (4.8) and
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ξ=0
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ξ=−1

Fig. 1: The solution trajectories of (4.1) with β = 0

(4.6) with β = 0, 0.5, 0.8, 1 respectively. In each figure, ’No impulse’ denotes the solution trajectory

of (4.6) with the corresponding β, and these curves ’η = 0’, ’η = 1’ and ’η = −1’ which are drawn by

the numerical simulation of (4.9) with η = 0, 1, −1 respectively, represent three solution trajectories

of (4.8) with the corresponding β.

5 Appendix

We first prove Theorem 4.2.

Proof. ’Sufficiency’ (it prove that the solution of (1.9) satisfies (3.4) by using mathematical induction).

By Theorem 2.4, the solution of (1.9) as t ∈ (t0, t1] satisfies

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, t1]. (A.1)

Therefore the solution of (1.9) satisfies (3.4) as t ∈ (t0, t1].

By (A.1) we have

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+1

= RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−1

+ φ1(z(t−1 ))

= z0 + φ1(z(t−1 )) +

∫ t1

t0

(t1 − τ)α−γ

Γ(α− γ + 1)
hdτ.

(A.2)
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Fig. 2: The solution trajectories of (4.1) with β = 0.5

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t

x(
t)

 

 
No impulse

ξ=0

ξ=1

ξ=−1

Fig. 3: The solution trajectories of (4.1) with β = 0.8
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Fig. 4: The solution trajectories of (4.1) with β = 1
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Fig. 5: The solution trajectories of (4.8) with β = 0
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Fig. 6: The solution trajectories of (4.8) with β = 0.5
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Fig. 7: The solution trajectories of (4.8) with β = 0.8
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Fig. 8: The solution trajectories of (4.8) with β = 1

We substitute (A.2) into (3.3) to obtain

z̃(t) =
z0 + φ1(z(t−1 )) +

∫ t1
t0

(t1−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− t1)γ−1 +

1

Γ(α)

∫ t

t1

(t− τ)α−1hdτ

for t ∈ (t1, t2].

(A.3)

Let ek(t) = z(t) − z̃(t) for t ∈ (tk, tk+1] (here 1 ≤ k ≤ K) denote the error between the approximate

solution z̃(t) and the exact solution of (1.9) as t ∈ (tk, tk+1].

By (A.1), the exact solution z(t) of (1.9) as t ∈ (t1, t2] satisfies

lim
φ1(z(t−1 ))→0

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t1, t2]. (A.4)

Applying (A.3) and (A.4), we obtain

lim
φ1(z(t−1 ))→0

e1(t) = lim
φ1(z(t−1 ))→0

{z(t)− z̃(t)}

= −

z0 +
∫ t1
t0

(t1−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− t1)γ−1 +

∫ t

t1

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ (t1, t2].

(A.5)
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By (A.5), we assume

e1(t) = $
(
φ1(z(t−1 ))

)
lim

φ1(z(t−1 ))→0
e1(t)

= −$
(
φ1(z(t−1 ))

)z0 +
∫ t1
t0

(t1−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− t1)γ−1 +

∫ t

t1

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ (t1, t2],

where $(·) is an undetermined function.

(A.6)

By (A.3) and (A.6), we have

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

φ1(z(t−1 ))

Γ(γ)
(t− t1)γ−1

+
[
1−$

(
φ1(z(t−1 ))

)]z0 +
∫ t1
t0

(t1−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− t1)γ−1 +

∫ t

t1

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ (t1, t2].

(A.7)

Letting β = 1 in (1.9) (HRt0 D
α,1
t is the Caputo fractional derivative), we get 1 − $(φ1(z(t−1 ))) =

ξφ1(z(t−1 )) (here ξ is an arbitrary constant) by using the method in Theorem 2.1 in [13]. Thus we

rewrite (A.7) into

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

φ1(z(t−1 ))

Γ(γ)
(t− t1)γ−1

+ ξφ1(z(t−1 ))

z0 +
∫ t1
t0

(t1−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− t1)γ−1 +

∫ t

t1

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ (t1, t2].

(A.8)

Thus the solution of (1.9) satisfies (3.4) as t ∈ (t1, t2].

16



Next suppose that the solution of (1.9) as t ∈ (tk, tk+1] (here 1 ≤ k ≤ m) satisfies

z(t) =


Λ(t), t ∈ J0,

...

Λ(t), t ∈ JK ,

+
k∑
i=1


0, t ∈ (t0, ti],

φi(z(t
−
i ))

Γ(γ)
(t− ti)γ−1, t ∈ (ti, S],

+ ξφ1(z(t−1 ))


{

Λ(t), t ∈ J0,

0, t ∈ (t1, S],
+



0, t ∈ J0,

Υ1(t), t ∈ J1,

...

Υ1(t), t ∈ JK ,

−



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,

+ ...

+ ξφk(z(t
−
k ))





Λ(t), t ∈ J0,

...

Λ(t), t ∈ Jk−1,

0, t ∈ (tk, S],

+



0, t ∈ (t0, tk],

Υk(t), t ∈ Jk,
...

Υk(t), t ∈ JK ,

−



Λ(t), t ∈ J0,

Λ(t), t ∈ J1,

...

Λ(t), t ∈ JK ,



(A.9)

By applying (A.9), we have

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k+1

= RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−k+1

+ φk+1(z(t−k+1))

= z0 +

∫ tk+1

t0

(tk+1 − τ)α−γ

Γ(α− γ + 1)
hdτ +

k+1∑
i=1

φi(z(t
−
i )) +

k∑
i=1

ξφi(z(t
−
i ))

Γ(α− γ + 1)

×
[∫ ti

t0

(ti − τ)α−γhdτ +

∫ tk+1

ti

(tk+1 − τ)α−γhdτ −
∫ tk+1

t0

(tk+1 − τ)α−γhdτ

]
.

(A.10)

Plugging (A.10) into (3.3), we obtain

z̃(t) =
(t− tk+1)γ−1

Γ(γ)

{
z0 +

∫ tk+1

t0

(tk+1 − τ)α−γ

Γ(α− γ + 1)
hdτ +

k+1∑
i=1

φi(x(t−i )) +
k∑
i=1

ξφi(z(t
−
i ))

Γ(α− γ + 1)

×
[∫ ti

t0

(ti − τ)α−γhdτ +

∫ tk+1

ti

(tk+1 − τ)α−γhdτ −
∫ tk+1

t0

(tk+1 − τ)α−γhdτ

]}
+

∫ t

tk+1

(t− τ)α−1

Γ(α)
hdτ, t ∈ (tk+1, tk+2].

(A.11)

On the other hand, by (A.9), the exact solution z(t) of (1.9) as t ∈ (tk+1, tk+2] satisfies

lim
φi(z(t

−
i ))→0 for all i∈{1,...,k+1}

x(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ, t ∈ (tk+1, tk+2], (A.12)
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and

lim
φj(z(t

−
j ))→0 for j∈{1,...,k+1}

z(t)

=
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

∑
1≤i≤k+1
and i 6=j

φi(z(t
−
i ))

Γ(γ)
(t− ti)γ−1

+ ξ
∑

1≤i≤k+1
and i 6=j

φi(z(t
−
i ))

z0 +
∫ ti
t0

(ti−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− ti)γ−1 +

∫ t

ti

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

}
, t ∈ (tk+1, tk+2].

(A.13)

Thus by (A.11)-(A.13), we have

lim
φj(z(t

−
j ))→0 for all j∈{1,...,k+1}

ek+1(t) = lim
φj(z(t

−
j ))→0 for all j∈{1,...,k+1}

{z(t)− z̃(t)}

= −
z0 +

∫ tk+1

t0

(tk+1−τ)α−γ

Γ(α−γ+1) hdτ

Γ(γ)
(t− tk+1)γ−1 −

∫ t

tk+1

(t− τ)α−1

Γ(α)
hdτ

+
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ, t ∈ (tk+1, tk+2],

(A.14)

and

lim
φj(z(t

−
j ))→0 for j∈{1,...,k+1}

ek+1(t) = lim
φj(z(t

−
j ))→0 for j∈{1,...,k+1}

{z(t)− z̃(t)}

= −
z0 +

∫ tk+1

t0

(tk+1−τ)α−γ

Γ(α−γ+1) hdτ

Γ(γ)
(t− tk+1)γ−1 −

∫ t

tk+1

(t− τ)α−1

Γ(α)
hdτ +

z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

∑
1≤i≤k+1
and i 6=j

ξφi(z(t
−
i ))

z0 +
∫ ti
t0

(ti−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− ti)γ−1

+

∫ t

ti

(t− τ)α−1

Γ(α)
hdτ − x0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
− (t− tk+1)γ−1

Γ(γ)

×
∑

1≤i≤k+1
and i 6=j

ξφi(z(t
−
i ))

Γ(α− γ + 1)

[∫ ti

t0

(ti − τ)α−γhdτ +

∫ tk+1

ti

(tk+1 − τ)α−γhdτ

−
∫ tk+1

t0

(tk+1 − τ)α−γhdτ

]
+

∑
1≤i≤k+1
and i 6=j

φi(z(t
−
i ))

Γ(γ)

[
(t− ti)γ−1 − (t− tk+1)γ−1

]
,

t ∈ (tk+1, tk+2].

(A.15)
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By (A.14) and (A.15), we get

ek+1(t) = −
z0 +

∫ tk+1

t0

(tk+1−τ)α−γ

Γ(α−γ+1) hdτ

Γ(γ)
(t− tk+1)γ−1 −

∫ t

tk+1

(t− τ)α−1

Γ(α)
hdτ +

z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

k+1∑
i=1

ξφi(z(t
−
i ))

z0 +
∫ ti
t0

(ti−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− ti)γ−1

+

∫ t

ti

(t− τ)α−1

Γ(α)
hdτ − x0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
− (t− tk+1)γ−1

Γ(γ)

×
k+1∑
i=1

ξφi(z(t
−
i ))

Γ(α− γ + 1)

[∫ ti

t0

(ti − τ)α−γhdτ +

∫ tk+1

ti

(tk+1 − τ)α−γhdτ

−
∫ tk+1

t0

(tk+1 − τ)α−γhdτ

]
+
k+1∑
i=1

φi(z(t
−
i ))

Γ(γ)

[
(t− ti)γ−1 − (t− tk+1)γ−1

]
,

t ∈ (tk+1, tk+2].

(A.16)

Using (A.11) and (A.16), we obtain

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

k+1∑
i=1

φi(z(t
−
i ))

Γ(γ)
(t− ti)γ−1

+ ξ

k+1∑
i=1

φi(z(t
−
i ))

z0 +
∫ ti
t0

(ti−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− ti)γ−1 +

∫ t

ti

(t− τ)α−1

Γ(α)
hdτ

− x0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
, t ∈ (tk+1, tk+2].

(A.17)

Therefore, the solution of (1.9) satisfies (3.4).

’Necessity’. We compute the fractional derivative and the fractional integral of (3.4):

HR
t0 D

α,β
t z(t) =


h(t, z(t)), t ∈ J0,

...

h(t, z(t)), t ∈ JK ,

+
K∑
k=1


0, t ∈ (t0, tk],

0, t ∈ Jk,

0, t ∈ (tk+1, S],

+ ξφ1(z(t−1 ))

×


{
h(t, z(t)), t ∈ J0,

0, t ∈ (t1, S],
+



0, t ∈ J0,

h(t, z(t)), t ∈ J1,

...

h(t, z(t)), t ∈ JK ,

−



h(t, z(t)), t ∈ J0,

h(t, z(t)), t ∈ J1,

...

h(t, z(t)), t ∈ JK ,


+ ...+ ξφK(z(t−K))

×





h(t, z(t)), t ∈ J0,

...

h(t, z(t)), t ∈ JK−1,

0, t ∈ JK ,

+

{
0, t ∈ (t0, tK ],

h(t, z(t)), t ∈ JK ,
−



h(t, z(t)), t ∈ J0,

h(t, z(t)), t ∈ J1,

...

h(t, z(t)), t ∈ JK ,


= h(t, z(t)), t ∈ Jk (k = 0, 1, ...K),

(A.18)
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and

RL
t0 I

1−γ
t z(t) =



z0 +

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ J0,

...

z0 +

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ JK ,

+

K∑
k=1


0, t ∈ (t0, tk],

φk(z(t
−
k )), t ∈ Jk,

0, t ∈ (tk+1, S],

+ ξφ1(z(t−1 ))

×



0, t ∈ J0,∫ t1

t0

(t1 − τ)α−γh

Γ(α− γ + 1)
dτ +

∫ t

t1

(t− τ)α−γh

Γ(α− γ + 1)
dτ −

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ,

t ∈ J1,

0, t ∈ (t2, S],

+ ...+ ξφK(z(t−K))

×


0, t ∈ (t0, tK ],∫ tK

t0

(tK − τ)α−γh

Γ(α− γ + 1)
dτ +

∫ t

tK

(t− τ)α−γh

Γ(α− γ + 1)
dτ −

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ,

t ∈ JK .

(A.19)

Thus RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

− RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−k

= φk(z(t
−
k )) (here 1 ≤ k ≤ K) and RL

t0 I
1−γ
t z(t)

∣∣∣
t→t0+

= z0.

Finally, we consider two limit cases of (3.4):

lim
φk(z(t−k ))→0 for all k∈{1,2,...,m}

{equation (3.4)}

⇔ z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, S].

⇔


HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S],

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

= lim
φk(z(t−k ))→0 for all k∈{1,2,...,K}

{system (1.9)}

(A.20)

and

lim
tk→tp for all k∈{1,2,...,K} and ∀p∈{1,2,...,K}

{equation (3.4)}

⇔ z(t) =

{
Λ(t), t ∈ (t0, tp],

Λ(t), t ∈ (tp, S],
+


0, t ∈ (t0, tp],∑K

k=1 φk(z(t
−
p ))

Γ(γ)
(t− tp)γ−1, t ∈ (tp, S],

+ ξ

K∑
k=1

φk(z(t
−
p ))

×

[{
Λ(t), t ∈ (t0, tp],

0, t ∈ (tp, S],
+

{
0, t ∈ (t0, tp],

Υp(t), t ∈ (tp, S],
−

{
Λ(t), t ∈ (t0, tp],

Λ(t), t ∈ (tp, S],

]
.

(A.21)
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Therefore, (3.4) satisfies all conditions of (1.9). The proof is completed. �

Now we prove Theorem 3.4.

Proof. ’Sufficiency’. By Theorem 2.4 the solution of (1.10) meets

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, t1]. (A.22)

Next we seek the solution of (1.10) for t ∈ (tk, tk+1] (1 ≤ k ≤ K). By (3.6), the approximate

solution ẑ(t) when t ∈ (tk, tk+1] is

ẑ(t) =
ψk(z(t

−
k ))

Γ(γ)
(t− tk)γ−1 +

1

Γ(α)

∫ t

tk

(t− τ)α−1hdτ, t ∈ (tk, tk+1], (A.23)

and êk(t) = z(t)− ẑ(t) as t ∈ (tk, tk+1] (here 1 ≤ k ≤ K) represents the piecewise error between ẑ(t)

and the exact solution z(t) of (1.10).

On the other hand, by the particular solution (3.7), the exact solution of (1.10) when t ∈ (tk, tk+1]

meets

lim[
ψk(z(t−k ))−z0−

∫ tk
t0

(tk−τ)α−γh
Γ(α−γ+1)

dτ

]
→0

z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

∫ t

t0

(t− τ)α−1h

Γ(α)
dτ, t ∈ (tk, tk+1]. (A.24)

By (A.23) and (A.24), we have

lim[
ψk(z(t−k ))−z0−

∫ tk
t0

(tk−τ)α−γh
Γ(α−γ+1)

dτ

]
→0

êk(t) = lim[
ψk(z(t−k ))−z0−

∫ tk
t0

(tk−τ)α−γh
Γ(α−γ+1)

dτ

]
→0

{z(t)− ẑ(t)}

= −

z0 +
∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
.

(A.25)

According to (A.25), we assume

êk(t) = κ

(
ψk(z(t

−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γh

Γ(α− γ + 1)
dτ

)
lim[

ψk(z(t−k ))−z0−
∫ tk
t0

(tk−τ)α−γh
Γ(α−γ+1)

dτ

]
→0

êk(t)

= κ

(
ψk(z(t

−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γ

Γ(α− γ + 1)
hdτ

)[
z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ −

z0 +
∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 −

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ

 ,
where κ(·) is an undetermined function.

(A.26)
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Using (A.23) and (A.26), we get

z(t) =
ψk(z(t

−
k ))− z0 −

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ +

[
1− κ

(
ψk(z(t

−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γ

Γ(α− γ + 1)
hdτ

)]

×

z0 +
∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
, t ∈ (tk, tk+1].

(A.27)

To get κ(·) in (A.27), we discuss a special case of (1.10) (only an impulse in (1.10)) as:
HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk,

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

= ψk(z(t
−
k )),

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

=



HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S] and t 6= tk,

RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

− RL
t0 I

1−γ
t z(t)

∣∣∣
t=t−k

= ψk(z(t
−
k ))− RL

t0 I
1−γ
t z(t)

∣∣∣
t=t−k

= ψk(z(t
−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γ

Γ(α− γ + 1)
hdτ,

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

(A.28)

By applying Theorem 3.2 and (A.27) to (A.28) respectively, we get 1−κ(y) = ηky for ∀y ∈ R where

ηk is an arbitrary constant. Therefore, (A.27) is rewritten as

z(t) =
ψk(z(t

−
k ))− z0 −

∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

z0

Γ(γ)
(t− t0)γ−1

+

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ + ηk

[
Φk(z(t

−
k ))− z0 −

∫ tk

t0

(tk − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×

z0 +
∫ tk
t0

(tk−τ)α−γ

Γ(α−γ+1)hdτ

Γ(γ)
(t− tk)γ−1 +

∫ t

tk

(t− τ)α−1

Γ(α)
hdτ

− z0

Γ(γ)
(t− t0)γ−1 −

∫ t

t0

(t− τ)α−1

Γ(α)
hdτ

]
, t ∈ (tk, tk+1],

(A.29)

which means that the solution of (1.10) satisfies (3.8) as t ∈ (tk, tk+1] (1 ≤ k ≤ K). Thus the solution

of (1.10) satisfies (3.8).
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Now we prove the necessity. We compute the fractional derivative and fractional integral of (3.8):

HR
t0 D

α,β
t z(t) =


h(t, z(t)), t ∈ J0,

...

h(t, z(t)), t ∈ JK ,

+
K∑
k=1


0, t ∈ (t0, tk],

0, t ∈ Jk,

0, t ∈ (tk+1, S],

+ η1

[
ψ1(z(t−1 ))− z0 −

∫ t1

t0

(t1 − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×


{
h(t, z(t)), t ∈ J0,

0, t ∈ (t1, S],
+


0, t ∈ J0,

h(t, z(t)), t ∈ J1,

0, t ∈ (t2, S],

−


h(t, z(t)), t ∈ J0,

h(t, z(t)), t ∈ J1,

0, t ∈ (t2, S],


+ ...+ ηK

[
ψK(z(t−K))− z0 −

∫ tK

t0

(tK − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×





h(t, z(t)), t ∈ J0,

...

h(t, z(t)), t ∈ JK−1,

0, t ∈ JK ,

+

{
0, t ∈ (t0, tK ],

h(t, z(t)), t ∈ JK ,
−



h(t, z(t)), t ∈ J0,

h(t, z(t)), t ∈ J1,

...

h(t, z(t)), t ∈ JK ,


= h(t, z(t)), t ∈ Jk (k = 0, 1, ...K),

(A.30)

and

RL
t0 I

1−γ
t z(t) =



z0 +

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ J0,

...

z0 +

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ JK ,

+
K∑
k=1



0, t ∈ (t0, tk],

− z0 −
∫ tk

t0

(tk − τ)α−γh

Γ(α− γ + 1)
dτ

+ ψk(z(t
−
k )), t ∈ Jk,

0, t ∈ (tk+1, S],

+ η1

[
ψ1(z(t−1 ))− z0 −

∫ t1

t0

(t1 − τ)α−γ

Γ(α− γ + 1)
hdτ

]

×


0, t ∈ J0,∫ t1

t0

(t1 − τ)α−γh

Γ(α− γ + 1)
dτ +

∫ t

t1

(t− τ)α−γh

Γ(α− γ + 1)
dτ −

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ J1,

0, t ∈ (t2, S],

+ ...+ ηK

[
ψK(z(t−K))− z0 −

∫ tK

t0

(tK − τ)α−γh

Γ(α− γ + 1)
dτ

]

×


0, t ∈ (t0, tK ],∫ tK

t0

(tK − τ)α−γh

Γ(α− γ + 1)
dτ +

∫ t

tK

(t− τ)α−γh

Γ(α− γ + 1)
dτ −

∫ t

t0

(t− τ)α−γh

Γ(α− γ + 1)
dτ, t ∈ JK .

(A.31)

Thus by (A.31) we have RL
t0 I

1−γ
t z(t)

∣∣∣
t=t+k

= ψk(z(t
−
k )) (here 1 ≤ k ≤ K) and RL

t0 I
1−γ
t z(t)

∣∣∣
t→t0+

= z0 .
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Finally, consider a limiting case of (3.8)

lim[
ψk(z(t−k ))−z0− 1

Γ(α−γ+1)

∫ tk
t0

(tk−τ)α−γhdτ
]
→0

for all k∈{1,2,...,K}

{equation (3.8)}

⇔ z(t) =
z0

Γ(γ)
(t− t0)γ−1 +

1

Γ(α)

∫ t

t0

(t− τ)α−1hdτ, t ∈ (t0, S].

⇔


HR
t0 D

α,β
t z(t) = h(t, z(t)), t ∈ (t0, S],

RL
t0 I

1−γ
t z(t)

∣∣∣
t→t0+

= z0.

= lim[
ψk(z(t−k ))−z0− 1

Γ(α−γ+1)

∫ tk
t0

(tk−τ)α−γhdτ
]
→0

for all k∈{1,2,...,K}

{system (1.10)}

(A.32)

Therefore (3.8) meets all conditions of (1.10). The proof is completed. �

6 Acknowledgements

Funding. The work described in this paper is financially supported by the National Natural

Science Foundation of China (Grant No. 21636004, 22078030).

Competing interests. The authors declare that they have no competing interests.

References

[1] I. Podlubny, Fractional Differential Equations. San Diego: Academic Press; 1999.

[2] A.A. Kilbas, H.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations. Amsterdam The Netherlands: Elsevier; 2006.

[3] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical

Methods, Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

[4] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)

[5] R. Hilfer, Y. Luchko, U. Tomovski, Operational method for the solution of fractional differential e-

quations with generalized Riemann-Liouville fractional derivatives, Fractional Calculus and Applied

Analysis, 12, 299-318 (2009)

[6] K.M. Furati, M.D. Kassim, N.e-. Tatar, Existence and uniqueness for a problem involving Hilfer

fractional derivative, Computers and Mathematics with Applications, 64, 1616-1626 (2012)

[7] M. Benchohra, S. Hamani, The method of upper and lower solutions and impulsive fractional

differential inclusions, Nonlinear Analysis: Hybrid Systems, 3, 4, 433-440 (2009)

[8] B. Ahmada, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value

problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3, 251-

258 (2009)

24



[9] M. Benchohra, F. Berhoun, Impulsive fractional differential equations with variable times, Com-

puters and Mathematics with Applications, 59, 3, 1245-1252 (2010)

[10] S. Abbas, M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic

differential equations with fractional order, Nonlinear Analysis: Hybrid Systems, 4, 406-413 (2010)

[11] G. Wang, B. Ahmad, L. Zhang, J.J. Nieto, Comments on the concept of existence of solution

for impulsive fractional differential equations, Communications in Nonlinear Science and Numerical

Simulation, 19, 3, 401-403 (2014)

[12] R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive

Caputo fractional differential equations, Fractional Calculus and Applied Analysis, 19, 290-318

(2016)

[13] M. Feckan, Y. Zhou, J.R. Wang, On the concept and existence of solution for impulsive fractional

differential equations, Communications in Nonlinear Science and Numerical Simulation, 17, 7, 3050-

3060 (2012)

[14] J.R. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems

for impulsive fractional differential equations, Computer and Mathematics with Applications, 64,

10, 3008-3020 (2012)

[15] J.R. Wang, X. Li, W. Wei, On the natural solution of an impulsive fractional differential equation

of order q ∈ (1, 2), Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4384-

4394 (2012)

[16] M. Feckan, Y. Zhou, J.R. Wang, Response to ”Comments on the concept of existence of solution

for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”,

Communications in Nonlinear Science and Numerical Simulation, 19,12, 4213-4215 (2014)

[17] T.L. Guo, K.J. Zhang, Impulsive fractional partial differential equations, Applied Mathematics

and Computation, 257, 581-590 (2015)

[18] J.R. Wang, M. Fekan, Y. Zhou, A survey on impulsive fractional differential equations, Fractional

Calculus and Applied Analysis, 19, 806-831 (2016)

[19] Y. Liu, On piecewise continuous solutions of higher order impulsive fractional differential equa-

tions and applications, Applied Mathematics and Computation, 287-288, 38-49 (2016)

[20] Y. Liu, Survey and new results on boundary-value problems of singular fractional differential

equations with impulse effects, Electronic Journal of Differential Equations, 2016, 296, 1-177 (2016)

[21] Z. Fan, A short note on the solvability of impulsive fractional differential equations with Caputo

derivatives, Applied Mathematics Letters, 38, 14-19 (2014)

[22] I. Stamova, G. Stamov, Stability analysis of impulsive functional systems of fractional order,

Communications in Nonlinear Science and Numerical Simulation, 19, 702-709 (2014)

25



[23] X. Zhang, X. Zhang, M. Zhang, On the concept of general solution for impulsive differential

equations of fractional order q ∈ (0, 1), Applied Mathematics and Computation, 247, 72-89 (2014)

[24] X. Zhang, On the concept of general solutions for impulsive differential equations of fractional

order q ∈ (1, 2), Applied Mathematics and Computation, 268,103-120 (2015)

[25] X. Zhang, On impulsive partial differential equations with Caputo-Hadamard fractional deriva-

tives, Advances in Difference Equations, vol. 2016, article 281, 21 pages (2016).

[26] L.M. Feng, Z.L. Han, Oscillation behavior of solution of impulsive fractional differential equation,

Journal of Applied analysis and Computation, 10, 1, 223-233 (2020)

[27] M.R. Xu, S.R. Sun, Z.L. Han, Solvability for impulsive fractional Langevin equaiton, Journal of

Applied analysis and Computation, 10,2, 486-494 (2020)

[28] J.Y. Cao, L.Z. Chen, Z.Q. Wang, A block-by-block method for the impulsive fractional ordinary

differential equations, Journal of Applied analysis and Computation, 10,3, 853-874 (2020)

[29] S. Heidarkhani, A Salari, Nontrivial solutions for impulsive fractional differential systems through

variational methods, Mathematical Methods in the Applied Sciences, 43, 10, 6529-6541 (2020)

[30] T.W. Zhang, L.L. Xiong, Periodic motion for impulsive fractional functional differential equations

with piecewise Caputo derivative, Applied Mathematics Letters,2020, 101 (2020)

[31] X. Zhang, W. Ding, H. Peng, Z. Liu, T. Shu, The general solution of impulsive systems with

Riemann-Liouville fractional derivatives, Open Mathematics, 14, 1125-1137 (2016)

[32] R.P. Agarwal, S. Hristova, D. O’Regan, Exact solutions of linear Riemann-Liouville fractional

differential equations with impulses, Rocky Mountain Journal of Mathematics, 50, 3, 779-791 (2020)

26


