Bibliography
Aashaq, S, Batool, A, Andrabi, KI. 2019. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 24: 3–20.
Baban, A, Magliozzi, M, Loeys, B, Adorisio, R, Alesi, V, Secinaro, A, Corica, B, Vricella, L, Dietz, HC, Drago, F, Novelli, A, Amodeo, A. 2018. First evidence of maternally inherited mosaicism in TGFBR1 and subtle primary myocardial changes in Loeys-Dietz syndrome: a case report. BMC Med. Genet. 19: 170–7.
Basart, H, van de Kar, A, Adès, L, Cho, T-J, Carter, E, Maas, SM, Wilson, LC, van der Horst, CMAM, Wade, EM, Robertson, SP, Hennekam, RC. 2015. Frontometaphyseal dysplasia and keloid formation without FLNA mutations. Am. J. Med. Genet. 167: 1215–1222.
Costantini, A, Wallgren-Pettersson, C, Mäkitie, O. 2018. Expansion of the clinical spectrum of frontometaphyseal dysplasia 2 caused by the recurrent mutation p.Pro485Leu in MAP3K7. European Journal of Medical Genetics 61: 612–615.
Dai, L, Aye Thu, C, Liu, X-Y, Xi, J, Cheung, PCF. 2012. TAK1, more than just innate immunity. IUBMB Life 64: 825–834.
Forney, WR, Robinson, SJ, Pascoe, DJ. 1966. Congenital heart disease, deafness, and skeletal malformations: a new syndrome? J Pediatr 68: 14–26.
Gelb, BD, Roberts, AE, Tartaglia, M. 2015. Cardiomyopathies in Noonan syndrome and the other RASopathies. Prog Pediatr Cardiol 39: 13–19.
Giuliano, F, Collignon, P, Paquis-Flucklinger, V, Bardot, J, Philip, N. 2005. A new three-generational family with frontometaphyseal dysplasia, male-to-female transmission, and a previously reported FLNA mutation. Am. J. Med. Genet. 132A: 222–222.
Jorge, AAL, Malaquias, AC, Arnhold, IJP, Mendonca, BB. 2009. Noonan syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm Res 71: 185–193.
Le Goff, C, Rogers, C, Le Goff, W, Pinto, G, Bonnet, D, Chrabieh, M, Alibeu, O, Nistchke, P, Munnich, A, Picard, C, Cormier-Daire, V. 2016. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome. Am. J. Hum. Genet. 99: 407–413.
Micale, L, Morlino, S, Biagini, T, Carbone, A, Fusco, C, Ritelli, M, Giambra, V, Zoppi, N, Nardella, G, Notarangelo, A, Schirizzi, A, Mazzoccoli, G, Grammatico, P, Wade, EM, Mazza, T, Colombi, M, Castori, M. 2020. Insights into the molecular pathogenesis of cardiospondylocarpofacial syndrome: MAP3K7 c.737-7A > G variant alters the TGFβ-mediated α-SMA cytoskeleton assembly and autophagy. Biochim Biophys Acta Mol Basis Dis 1866: 165742.
Morlino, S, Castori, M, Dordoni, C, Cinquina, V, Santoro, G, Grammatico, P, Venturini, M, Colombi, M, Ritelli, M. 2018. A novel MAP3K7 splice mutation causes cardiospondylocarpofacial syndrome with features of hereditary connective tissue disorder. Eur J Hum Genet: 1–5.
Pierpont, ME, Digilio, MC. 2018. Cardiovascular disease in Noonan syndrome. Current Opinion in Pediatrics 30: 601–608.
Proietti Onori, M, Koopal, B, Everman, DB, Worthington, JD, Jones, JR, Ploeg, MA, Mientjes, E, van Bon, BW, Kleefstra, T, Schulman, H, Kushner, SA, Küry, S, Elgersma, Y, van Woerden, GM. 2018. The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function. Hum. Mutat. 39: 2008–2024.
Robertson, SP. 2004. Molecular pathology of filamin A: diverse phenotypes, many functions. Clinical Dysmorphology 13: 123–131.
Sakurai, H, Miyoshi, H, Mizukami, J, Sugita, T. 2000. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett. 474: 141–145.
Sobreira, N, Schiettecatte, F, Valle, D, Hamosh, A. 2015. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36: 928–930.
Sousa, SB, Baujat, G, Abadie, V, Bonnet, D, Sidi, D, Munnich, A, Krakow, D, Cormier-Daire, V. 2010. Postnatal growth retardation, facial dysmorphism, spondylocarpal synostosis, cardiac defect, and inner ear malformation (cardiospondylocarpofacial syndrome?)–a distinct syndrome? Am. J. Med. Genet. 152A: 539–546.
van der Burgt, I. 2007. Noonan syndrome. Orphanet Journal of Rare Diseases 2: 4–6.
Wade, EM, Daniel, PB, Jenkins, ZA, McInerney-Leo, A, Leo, P, Morgan, T, Addor, MC, Adès, LC, Bertola, D, Bohring, A, Carter, E, Cho, T-J, Duba, H-C, Fletcher, E, Kim, CA, Krakow, D, Morava, E, Neuhann, T, Superti-Furga, A, Veenstra-Knol, I, Wieczorek, D, Wilson, LC, Hennekam, RCM, Sutherland-Smith, AJ, Strom, TM, Wilkie, AOM, Brown, MA, Duncan, EL, Markie, DM, Robertson, SP. 2016. Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia. Am. J. Hum. Genet. 99: 392–406.
Wade, EM, Jenkins, ZA, Daniel, PB, Morgan, T, Addor, MC, Adès, LC, Bertola, D, Bohring, A, Carter, E, Cho, T-J, de Geus, CM, Duba, H-C, Fletcher, E, Hadzsiev, K, Hennekam, RCM, Kim, CA, Krakow, D, Morava, E, Neuhann, T, Sillence, D, Superti-Furga, A, Veenstra-Knol, HE, Wieczorek, D, Wilson, LC, Markie, DM, Robertson, SP. 2017. Autosomal dominant frontometaphyseal dysplasia: Delineation of the clinical phenotype. Am. J. Med. Genet.
Xu, Y-R, Lei, C-Q. 2020. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 11: 608976.
Yu, J, Zhang, F, Wang, S, Zhang, Y, Fan, M, Xu, Z. 2014. TAK1 is activated by TGF-β signaling and controls axonal growth during brain development. J Mol Cell Biol 6: 349–351.