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Abstract. We proved the existence and uniqueness of comporessible subsonic impinging

jet flow in the work [27]. As a continuation, in this paper, we investigate the shape of free

boundary to the impinging jet flow established in [27]. More specifically, if the nozzle wall is

concave to the fluid, then the free boundary of flow will be convex to the fluid. On another

hand, the higher regularity of free boundary at separation point is obtained, provided that

the nozzle satisfies corresponding hypotheses.
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1. Introduction and main Theorems

We first give a symmetric semi-infinitely long nozzle and a plate, which are assumed to

be impermeable. Define the upper nozzle wall as

N : y = g(x) > 0, g(x) ∈ C2,α(−∞,−a] with a > 0 for some α ∈ (0, 1). (1.1)

Assume that

lim
x→−∞

g(x) = H, and g(−a) = 1. (1.2)

Denote the plate N0 = {(0, y) | y ≥ 0}. The symmetric axis T = {(x, 0) | −∞ < x ≤ 0} and

A = (−a, 1) (see Figure 1).

In this paper, we investigate the convexity of free boundary to the steady isentropic

inviscid subsonic impinging jet flow in two dimensions, which can be represented by

∂x(ρu) + ∂y(ρv) = 0,

∂x(ρu2) + ∂y(ρuv) + ∂xp = 0,

∂x(ρuv) + ∂y(ρv
2) + ∂yp = 0,

(1.3)
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Figure 1. The symmetric nozzle and plate

with

vx − uy = 0, (1.4)

that is, the flow is irrotational, where (x, y) ∈ R2, (u, v) and ρ denotes the velocity field and

density of flow, respectively. Pressure satisfies the γ-law

p = p(ρ) = Aργ , (1.5)

here A > 0, and γ > 1 is the so-called adiabatic exponent. Defined c(ρ) =
√
p′(ρ) as the

sound speed, M =
q

c(ρ)
as the Mach number, here q =

√
u2 + v2 is the fluid speed. The

compressible flow is subsonic as M < 1, sonic as M = 1 and supersonic as M > 1.

Since N and N0 are impermeable, and T is the axis of symmetry, then the flow satisfies

the boundary conditions

(u, v) · ~n = 0 on N ∪ T, and u = 0 on N0, (1.6)

where ~n is the outer normal of N∪T . It follows from (1.3)1 and (1.6) that for any x = x0 < −a
the mass flux

m0 =

ˆ g(x0)

0
(ρu)(x0, y)dy > 0. (1.7)

It is not difficult to find that q and ρ satisfy the Bernoulli’s law

q2

2
+
Aγ
γ − 1

ργ−1 = B, (1.8)

where B is the Bernoulli’s constant.

There is a long history of research on the free streamline problems in fluid mechanics,

which are very interesting and have attracted the attention of many mathematicians and

hydrodynamicist in recent years. We first recall some classical results on the incompressible

free streamline problems as follows. In 1952, P. Garabedian, H. Lewy and M. Schiffer [21]

proved the existence of axisymmetric incompressible cavity flows in three dimensions. In the

mid-20th century, G. Birkhoff and E. Zarantonello [8], D. Gilbarg [24], and M. Gurevich [25]

reviewed the research progress of free boundary problems, such as the incompressible jets,
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cavities and wakes. In 1980’s, combined variational approach and geometric measure theory,

H. Alt, L. Caffarelli and A. Friedman studied the free boundary problems of linear elliptic

equation [1], and established the regularity theory of free boundary. On the basis of this, the

authors obtained many meaningful well-posedness results about the incompressible jet flows,

such as asymmetrical jets in two dimensions [2], three-dimensional axisymmetric jets [4] and

jets with gravity [3]. The impinging jet problem was first introduced by A. Friedman in the

outstanding work [20]. J. Cheng, L. Du and Y. Wang investigated the plane asymmetry [11]

and three-dimensional axisymmetric impinging jet flows [12] for incompressible case.

Later on, the regularity theory of free boundary for quasilinear elliptic equation was

established by H. Alt, L. Caffarelli and A. Friedman in [5]. With the aid of the regularity

theory of free boundary, the existence and uniqueness of compressible subsonic jets and

cavities were proved in [6]. Recently, J. Cheng, L. Du and W. Xiang etc. also studied the

subsonic impinging jet flow for the two-dimensional asymmetry case (the nozzle is concave

to the fluid) in [13] and the three-dimensional axisymmetric case in [14]. We also obtained

the existence and uniqueness of subsonic impinging jet flows in an arbitrary semi-infinitely

long nozzle [27]. In addition, please refer to literatures [9, 10], [16]-[19] and [28]-[30] for the

compressible flows in the infinitely long nozzle, and [26] in the finitely long nozzle. However,

so far most of the results are focus on the well-posedness of the jet flows. There are relatively

few results concerning the geometric properties of free boundary. We will investigate the

shape of free boundary in this paper.

Figure 2. The impinging jet flow

For the plane symmetric subsonic impinging jet flow with the free boundary Γ, which

initiates smoothly from A to infinity in y-direction (see Figure 2), we only need to study

the fluid in the upper half plane. Since the free boundary Γ is a streamline, the boundary

condition (1.6) holds on Γ. The pressure satisfies

p = patm on Γ, (1.9)

here patm > 0 is atmospheric pressure. The γ-law (1.5) indicates that ρ = ρcon =
(patm
A

) 1
γ

is a constant on Γ.
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In addition, we assume

y = g(x) is star-shaped with respect to O = (0, 0). (1.10)

We would like to mention that the assumption (1.10) is to establish the uniqueness of flow.

According to the arguments in Theorem 1.1 in [27], we can obtain the well-posedness of

the compressible impinging jet flow in the following theorem.

Theorem A. If the nozzle wall N satisfies the conditions (1.1), (1.2) and (1.10), then

for some appropriate incoming mass flux m0 > 0, there exist a unique two-dimensional

symmetric subsonic impinging jet flow (u, v, ρ,Γ) and a unique p0, such that the free boundary

Γ: y = f(x) ∈ C1([−a,−b)) (with f(x) → +∞ as x → (−b)−) initiates smoothly from A,

goes to infinity in y-direction, and the pressure balances to patm on Γ. Moreover, the flow

satisfies

(1) (u, v, ρ) ∈
(
C1,α(G) ∩ C(G)

)3
solves the Euler system (1.3) inG, bounded byN, N0, T

and Γ.

(2) the horizontal velocity u > 0 in G \N0.

(3) The asymptotic behavior at upstream satisfies

(u(x, y), v(x, y), ρ(x, y))→
(
m0

ρ0H
, 0, ρ0

)
, and ∇(u, v, ρ)→ 0 as x→ −∞

uniformly in any compact subset of (0, H), where ρ0 =
(p0

A

) 1
γ
. We have at down-

stream,

(u(x, y), v(x, y), ρ(x, y))→
(

0,
m0

ρconb
, ρcon

)
, and ∇(u, v, ρ)→ 0 as y → +∞

uniformly in any compact subset of (−b, 0), where b is the asymptotic width of flow

at downstream.

The main purpose of this paper is to show that the free boundary of the flow obtained

in Theorem A is convex to the fluid, provided that the nozzle wall N : y = g(x) satisfies the

following condition,

g′′(x) ≤ 0 in (−∞,−a], and H > a, (1.11)

that is, the nozzle wall is concave to the fluid.

Now, we state the main results of this paper as follows.

Theorem 1.1. Under the assumptions of Theorem A hold, if the nozzle wall N satisfies

the additional condition (1.11), then the free boundary of the subsonic impinging jet flow

established in Theorem A is convex to the fluid (see Figure 3), that is,

f ′′(x) > 0 for any x ∈ (−a,−b).

On the other hand, we will show the optimal regularity of free boundary at the separation

point A in the following theorem.
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Figure 3. The convexity of free boundary

Theorem 1.2. Under the assumptions of Theorem 1.1 hold, if the function g(x) satisfies

g(x) ∈ C3,α[−a− ε,−a] and g′′(−a− 0) < 0,

for some small enough ε > 0, then N ∪ Γ is C1, 1
2 at A and f ′′(−a+ 0) = +∞.

2. The convexity of free boundary

In this section, based on the existence and uniqueness of the solution to subsonic impinging

jet flow in Theorem A, the convexity of free boundary will be obtained by using the maximum

principle in [22, 23].

2.1. Free boundary value problem. The equation (1.3)1 yields that there exists a stream

function ψ(x, y), such that

ρu =
∂ψ

∂y
and ρv = −∂ψ

∂x
. (2.1)

It follows from the condition (1.6) that ψ is an invariant along the boundaries. Let us

just assume that

ψ = 0 on T ∪N0, and ψ = m0 on N ∪ Γ. (2.2)

Then the free boundary of impinging jet flow can be defined as

Γ = Ω ∩ {x > −a} ∩ ∂{ψ < m0}, (2.3)

where the domain Ω is bounded by N , N0, T and I = {(−a, y) | y ≥ 1}.
According to the Bernoulli’s law (1.8), we have that ψ satisfies

|∇ψ|2

2ρ2
+
Aγ
γ − 1

ργ−1 = B in G.

It follows that the momentum is a constant on Γ, denoted this constant as λ, namely,

|∇ψ| = ∂ψ

∂ν
= λ on Γ, (2.4)

where ν is the outer normal to Γ. It is easy to verify that there exist the critical quantities

with respect to λ,

%cr(λ) =

(
2B(λ2)

Aγ
γ − 1

γ + 1

) 1
γ−1

, %max(λ) =

(
B(λ2)(γ − 1)

Aγ

) 1
γ−1

, qcr(λ) =

(
2B(λ2)

γ − 1

γ + 1

) 1
2

,
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such that the fluid is subsonic if and only if q < qcr(λ) or %cr(λ) < ρ ≤ %max(λ).

Denote zλ = %cr(λ)qcr(λ) as the critical value of momentum. Along the arguments similar

to those in [15], for any λ < λcr =
(
Aγργ+1

con

) 1
2 , we have

λ < zλ, λcr = zλcr ,

and

ρ is a decreasing function of |∇ψ|2 ∈ [0,z2
λ). (2.5)

Then ρ can be denoted as ρ = ρλ(|∇ψ|2) for any λ < λcr. Denote

Hλ(s) = ρλ(s) and H′λ(s) =
∂ρλ(s)

∂s
for any s ∈

(
0,z2

λ

)
.

In view of (1.4), the system (1.3) is reduced to a single quasilinear equation

Qλψ = Aλij(∇ψ)∂ijψ = 0 in G, (2.6)

where Aλij(∇ψ) = Hλ(|∇ψ|2)δij−2H′λ(|∇ψ|2)∂iψ∂jψ. Therefore, we can restate the subsonic

impinging jet flow problem into the following free boundary problem.

The free boundary problem: For any given m0 > 0 and λ < zλ, find a pair (ψ,Γ),

such that 

Qλψ = 0 in Ω ∩ {ψ < m0},

ψ = 0 on T ∪N0, ψ = m0 on N ∪ Γ,

∂ψ

∂ν
= λ on Γ,

(2.7)

with sup
X∈Ω∩{ψ<m0}

|∇ψ(X)| < zλ.

It follows from Theorem 3.1 in [27] that the problem (2.7) has a unique subsonic solution

(ψ,Γ), and the free boundary Γ = Ω ∩ ∂{ψ < m0}.

2.2. The convexity of free boundary. In order to prove the conclusion of Theorem 1.1,

we first introduce the following lemma.

Lemma 2.1. On the boundaries T ∪N0 and N ∪ Γ, we have

∂q

∂ν
+ κq = 0, (2.8)

where ν is the outer normal to T ∪ N0 and N ∪ Γ, and κ is the curvature of boundaries.

Moreover, if the streamline is concave to the fluid, then κ ≥ 0.

Remark 2.1. The proof of Lemma 2.1 is similar to Lemma 7.2 in [6], and we omit it here.

It follows from Lemma 2.1 that κ = − g′′(x)

(1 + g′(x)2)
3
2

≥ 0 on N . We will obtain that the free

boundary Γ is strictly convex to the fluid, provided that we can show

κ = − f ′′(x)

(1 + f ′(x)2)
3
2

< 0 on Γ.
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Next, by using the conclusion in Lemma 2.1 and the geometric properties of the nozzle

wall N , we will establish the convexity of free boundary in the following proposition.

Proposition 2.2. If the nozzle wall N satisfies the assumptions (1.11), then the free boundary

Γ is convex to the fluid, namely,

f ′′(x) > 0 for any x ∈ (−a,−b).

Proof. According to (2.5) and the relationship q = |∇φ|2 =
|∇ψ|2

ρ2
(φ is the velocity potential

of flow), it is easy to check that

|∇ψ| attains maximum at a point X0

if and only if q attains maximum at X0.

(2.9)

Based on the arguments in [6], one has

Qq2 = Di

(
eβq

2
aλij(X)Djq

2
)
≥ 0 in G,

for some β > 0, where

aλij(X) = Hλ(|∇φ|2)δij + 2H′λ(|∇φ|2)Diφ(X)Djφ(X).

Therefore, q2 is a subsolution of the quasilinear elliptic equation Qq2 = 0, and the maximum

principle in [23] gives that q cannot take its maximum in G. Then q takes the maximum on

N ∪N0 ∪ T ∪ Γ or at the far fields.

Next, we claim that

q takes its maximum on Γ. (2.10)

We will show the claim (2.10) by excluding the following four cases.

Case 1. q takes the maximum at a point X1 of the nozzle wall N . By the maximum

principle, one has
∂q

∂ν
> 0 at X1,

where ν is the outer normal vector. Therefore, it follows from Lemma 2.1 that

κ = −1

q

∂q

∂ν
< 0 at X1,

which contracts the fact that κ ≥ 0 on N .

Case 2. q takes the maximum at a point X2 of N0 ∪ T \ O. The maximum principle

implies that
∂q

∂ν
> 0 at X2,

where ν is the outer normal vector. Therefore, it follows from Lemma 2.1 that

κ = −1

q

∂q

∂ν
< 0 at X2,

which is impossible, since both T and N0 are straight lines, κ = 0 on N0 ∪ T \O.
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Case 3. q takes the maximum at point O. Denote θ0 as the angle formed by T and N0,

it is easy to see that θ0 =
π

2
< π − 3σ for some sufficiently small σ > 0. Now let’s set up a

polar coordinate system, and think of O as the pole, the polar axis is the ray issuing from O

along the negative direction of x-axis, and the clockwise is defined as positive direction. Let

GO,η = {(r, θ) ∈ G : r =
√
x2 + y2 < η},

for small η > 0. It is easy to see that GO,η ⊂ {x : |x| < η, −σ < θ < θ0 + σ}. Similar to the

arguments in [18], for sufficiently small β > 0, we have

0 ≤ ψ(x, y) ≤ Cr1+β in GO,η,

and therefore, ψ is C1,β-smooth at O, which implies that

|∇ψ| = 0 at O.

Case 4. q takes the maximum at upstream. As x → −∞, 0 < y < H. It follows from

the asymptotic behavior of flow at upstream (see Theorem A) that

∇ψ → ∇ψ0 =
(

0,
m0

H

)
uniformly in any compact subset of (0, H) as x→ −∞

It follows that

λ0 = |∇ψ| = m0

H
<
m0

a
<
m0

b
= λ.

As y → +∞, −b < x < 0. By using the asymptotic behavior of flow at downstream (see

Theorem A), we have

ψ(x, y)→ −λx for any x ∈ (−b, 0). (2.11)

Then

|∇ψ(x, y)| → λ.

Recalling that |∇ψ| = λ on Γ. It follows from the above arguments that

max
G
|∇ψ| = λ. (2.12)

Combine the above, we obtain the claim (2.10), i.e., q takes its maximum on the free

boundary Γ. According to Hopf’s lemma, one has

∂q

∂ν
> 0 on Γ,

where ν is the outer normal. Then it follows from Lemma 2.1 that

κ = −1

q

∂q

∂ν
< 0 on Γ,

which implies that the free boundary Γ is convex to the fluid. Therefore, we complete the

proof of Theorem 1.1. �
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3. The optimal regularity of free boundary at A

Based on the outstanding work [7] by H. Alt, L. Caffarelli and A. Friedman, the higher

regularity of free boundary near the separation point A will be obtained, provided that the

nozzle wall N satisfies corresponding hypothesis. We first introduce Theorem 1.1 in [7] in

the following lemma, and omit the proof for simplicity.

Lemma 3.1. If N is C3,α near the end point A, then either

(1) N ∪ Γ is C2 at A, or

(2) The optimal regularity of N ∪Γ at A is only C1, 1
2 and the curvature of Γ goes to ±∞

as x→ (−a)+.

Since g′′(x) ≤ 0 in (−∞,−a) and g′′(−a− 0) < 0, we claim that

the statement (1) in Lemma 3.1 is not true. (3.1)

We assume that the claim (3.1) is not true, then N ∪ Γ is C2 at A, it follows that

f ′′(−a+ 0) = g′′(−a− 0) < 0. (3.2)

In view of (3.2) and the analyticity of the free boundary Γ, one has

f ′′(x) < 0 in (−a,−a+ ε),

for some small enough ε > 0, which leads to a contradiction with f ′′(x) > 0 in (−a,−b).
Therefore, we proved the claim (3.1), the statement (2) in Lemma 3.1 gives that the optimal

regularity of N0 ∪ Γ at A is C1, 1
2 and f ′′(0 + 0) = +∞. Consequently, Theorem 1.2 is

established.
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