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Abstract. We discuss the existence and nonexistence of a local and global-
in-time solution to the fractional problem

∂α
t u = ∆u+ f(u) x ∈ Ω, 0 < t < T,

u = 0 x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x) x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with C2 boundary, 0 < T ≤
∞, u0 ∈ Lr(Ω) (1 ≤ r < ∞) and ∂α

t (0 < α < 1) is the Caputo fractional
derivative. We assume that f(u) is a continuous function such that for some
p > 1 one has |f(ξ) − f(η)| ≤ C(1 + |ξ| + |η|)p−1|ξ − η| for all ξ, η ∈ R.
Particular attention is paid to the doubly critical case (p, r) = (1+2/N, 1).

1. Introduction and main results

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with C2 boundary and 0 < α <
1. We are interested in existence and nonexistence of a solution of the time
fractional spatially homogeneous parabolic problem

(1.1)


∂α
t u = ∆u+ f(u) x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x) x ∈ Ω,

where 0 < T ≤ ∞. The operator ∂α
t denotes the Caputo fractional derivative

defined by

∂α
t u(t) =

d

dt

∫ t

0

1

Γ(1− α)

u(s)− u(0)

(t− s)α
ds,

where Γ is the usual Gamma function. If u(t) is smooth enough, then the
above derivative can be written as

∂α
t u(t) =

1

Γ(1− α)

∫ t

0

∂su(s)

(t− s)α
ds.

In the last two decades various models involving fractional time derivatives
have been devised to discuss real life phenomena ranging from hydrology [3]
and earth sciences [29] to medical image enhancemen [18] and biosciences [20].
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From mathematical point of view, the Caputo fractional derivative has been re-
cently discussed in the frame of diffusion equation [2,8], Hamilton-Jacobi equa-
tion [6], predator-prey models [11], transport equation [19], acoustic wave equa-
tions [14], porous medium equation [26] and Ginzburg-Landau equation [27].
A maximum principle for differential equations involving Caputo fractional
derivative is studied in [15].

In the present work we investigate the influence of the Caputo fractional
derivative in the parabolic problem (1.1). We assume that f : R → R is a
continuous function that fulfils:

(F1) there is C > 0 such that

|f(ξ)− f(η)| ≤ C(1 + |ξ|+ |η|)p−1|ξ − η| for ξ, η ∈ R.

When we discuss the existence of a global-in-time solution, we replace (F1)
above with the slightly stronger condition, namely

(F1’) f(0) = 0 and there is C > 0 such that

|f(ξ)− f(η)| ≤ C(|ξ|+ |η|)p−1|ξ − η| for ξ, η ∈ R.

In defining the notion of a solution to (1.1) we follow [10, Section 3]. We
consider the following Wright type function

Φα(z) =
∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
, z ∈ C.

It is known that Φα(t) satsifies

Φα(t) ≥ 0 for t ≥ 0 and

∫ ∞

0

Φα(t)dt = 1,

and hence Φα(t) is a probability density function. Moreover,∫ ∞

0

tpΦα(t)dt =
Γ(p+ 1)

Γ(αp+ 1)
, p > −1, 0 < α < 1.

Let ∆ be the Dirichlet Laplacian on Ω in the Lebesgue Lr(Ω), 1 ≤ r < ∞,
equipped with the norm ∥ · ∥r whose domain is {u ∈ W 2,r(Ω); u = 0 in ∂Ω}.
Then ∆ generates a strongly continuous semigroup {S(t)}t≥0 on Lr(Ω). For
t > 0 we define

Sα(t), Pα(t) : L
r(Ω) → Lr(Ω)

by

(1.2)


Sα(t)v =

∫ ∞

0

Φα(τ)S(τt
α)vdτ,

Pα(t)v = αtα−1

∫ ∞

0

τΦα(τ)S(τt
α)vdτ,

for all v ∈ Lr(Ω).
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Let us consider the nonhomogeneous problem

(1.3)


∂α
t u = ∆u+ f(x, t, u), x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,

where f : Ω× [0,∞)× R → R is a measurable function that satisfies, instead
of (F1) and (F1’) above, the nonhomogeneous conditions:

(i) there exists c : Ω× [0,∞) → (0,∞) and p ≥ 1 such that for all ξ ∈ R
and a.e (x, t) ∈ Ω× (0, T ) there holds

(1.4) |f(x, t, ξ)| ≤ c(x, t)(1 + |ξ|p);
(ii) For all ξ, η ∈ R and a.e. (x, t) ∈ Ω× (0, T ) there holds

(1.5) |f(x, t, ξ)− f(x, t, η)| ≤ c(x, t)(1 + |ξ|+ |η|)p−1|ξ − η|.
Here,

(1.6)

(∫ T

0

∥c( · , t)∥q2Lq1 (Ω) dt

)1/q2

< ∞,

for q1, q2 ∈ [1,∞), with the obvious modifications when q1 = ∞ and q2 = ∞.
We adopt the following definition of a mild solution of (1.3) from [10, Defi-

nition 3.1.1].

Definition 1.1. We say that a measurable function u a solution of (1.3) if
there exists T ∈ (0,∞] such that the following conditions (a)–(e) hold:

(a) u( · , t) ∈ L1(Ω) for all 0 < t < T ;

(b) f( · , t, u( · , t)) ∈ L1(Ω) for a.e. 0 < t < T ;

(c)

∫ t

0

∥f( · , s, u( · , s))∥1 ds < ∞ for 0 < t < T ;

(d) u( · , t) satisfies

u( · , t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f( · , s, u( · , s))ds for 0 < t < T,

where the integral in the above equality is an absolutely converging
Bochner integral in L1(Ω);

(e) The initial condition holds in the following sense:

∥u( · , t)− u0∥r → 0 as t → 0

for u0 ∈ Lr(Ω) if 1 ≤ r < ∞.

It follows from [10, Remark 3.1.2] that the property (e) in the Definition 1.1
holds if and only if

(1.7) ∥u( · , t)− Sα(t)u0∥r → 0 as t → 0,

which is equivalent to the convergence to zero in the norms of the integral term
in Definition 1.1 (d).
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The aim of the paper is to develop an Lr-theory for the Cauchy-Dirichlet
problem (1.1), 1 ≤ r < ∞ with a particular focus on the case r = 1. A solution
u of (1.1) is defined similarly to Definition 1.1 above where f(x, t, u) = f(t, u).
The homogeneous version of [10, Theorem 3.1.4] that applies to (1.1) reads as
follows:

Proposition 1.2 (Local existence in Lr(Ω)). Let N ≥ 1 and 0 < α < 1.
Assume that f ∈ C(R) satisfies (F1) and that one of the following holds:

(i) (Subcritical case) 1 ≤ r < ∞ and 1 ≤ p < 1 + 2r/N ,

(ii) (Critical case) 1 < r < ∞ and 1 < p = 1 + 2r/N .

Then, for each initial function u0 ∈ Lr(Ω), (1.1) has a local-in-time solution
in the sense of Definition 1.1.

On the other hand, the nonexistence of a solution to (1.1) is not completely
understood, apart from the case of pure-power nonlinearities f(u) (see [23]).
The first main result of this work discusses the nonexistence of a nonnegative
solution of (1.1) which shows the sharpness of the two conditions (i), (ii) in
Proposition 1.2.

Theorem 1.3 (Nonexistence in Lr(Ω), 1 ≤ r < ∞). Let N ≥ 1 and 0 < α < 1.
Suppose that f : R → R is nonnegative and nondecreasing. If 1 ≤ r < ∞ and

(1.8) lim sup
s→∞

f(s)

s1+2r/N
= ∞,

then there exists a nonnegative u0 ∈ Lr(Ω) such that (1.1) has no nonnegative
solution in the sense of Definition 1.1.

For

(1.9) f(x, t, u) = c(x, t)|u|p−1u (x, t, u) ∈ Ω× [0,∞)× R,

the nonexistence of a local-in-time solution to (1.3) was obtained in [23]. To
the best of our knowledge, Theorem 1.3 is new for general nonlinearities f(u).
For nonlinearities f(x, t, u) given by (1.9), the nonexistence of a solution to

(1.3) with a general partial differential operator A instead of ∆ is conjectured
in [10, Problem 2 in p.154]. In the Laplacian case the conjecture reads as
follows: Let q1, q2 ∈ [1,∞] be given in (1.6). If

(1.10)
N

2q1
+

1

αq2
+

N(p− 1)

2r
> 1,

then (1.3) does not have a solution for some initial data u0 ∈ Lr(Ω). When
q1 = q2 = ∞, (1.10) becomes p > 1+ 2r/N . By (1.8) we see that Theorem 1.3
gives an affirmative answer for the homogeneous nonlinearity f = f(u).
Let us consider the case f(u) = |u|p−1u. For each r ∈ (1,∞), Theorem 1.3

indicates that Proposition 1.2 is sharp in this case, i.e., if 1 < p ≤ 1 + 2r/N ,
then (1.1) with u0 ∈ Lr(Ω) has a solution. On the other hand, if p > 1+2r/N ,
there is a nonnegative initial function u0 ∈ Lr(Ω) such that (1.1) has no
nonnegative solution. The semilinear case α = 1 is discussed in Weissler [25].
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Let us next comment on the case r = 1 in the setting of pure power non-
linearities f(u) = |u|p−1u. By Proposition 1.2 and Theorem 1.3 we see the
following:

• If 1 ≤ p < 1 + 2/N , then (1.1) with u0 ∈ L1(Ω) has a solution;
• If p > 1 + 2/N , then (1.1) with u0 ∈ L1(Ω) does not always have a
nonnegative solution.

The doubly critical case (p, r) = (1 + 2/N, 1) is not covered by neither the
above Proposition 1.2 and Theorem 1.3. This requires a more delicate analysis
as both exponents reach the critical threshold.

In the semilinear case α = 1 and (p, r) = (1+2/N, 1), it is known that there
is a nonnegative initial function u0 ∈ L1(Ω) such that (1.1) has no nonnegative
solution; see [5, 7] for a nonexistence result in the case Ω = RN and [7, 17] in
the case where Ω is bounded.

In the recent paper [21] it is shown that the problem{
∂tu = ∆u+ |u|2/Nu x ∈ RN , 0 < t < T,

u(·, 0) = u0 ∈ L1(RN) x ∈ RN ,

has solutions if and only if∫
RN

|u0| (log(|u0|+ e))N/2 dx < ∞.

Local existence of a solution to (1.1) is studied in an abstract setting in
[1, 12, 24]. However, those methods are not applicable to our present setting,
since a local Lipschitz (or Hölder) condition in a function space is assumed.

Our second main result concerns the existence of a local-in-time solution to
(1.1) in the critical case (p, r) = (1 + 2/N, 1).

Theorem 1.4 (Local solution in L1(Ω)). Let N ≥ 1, 0 < α < 1 and p =
1 + 2/N . Suppose that f ∈ C(R) satisfies (F1).

Then, for each initial function u0 ∈ L1(Ω), (1.1) has a local-in-time solution
in the sense of Definition 1.1.

Theorem 1.4 shows a sharp contrast in terms of existence of local-in-time
solutions to (1.1) in comparison to the semilinear case α = 1.

Our third main result discusses the existence of a global-in-time solution to
(1.1) in the critical case (p, r) = (1 + 2/N, 1). This time we require f satisfies
(F1’) instead (F1).

Theorem 1.5 (Global solution in L1(Ω)). Let N ≥ 1, 0 < α < 1 and p =
1 + 2/N . Suppose that f ∈ C(R) satisfies (F1’).

Then, there exists ε > 0 such that for all u0 ∈ L1(Ω) with ∥u0∥1 ≤ ε there
exists a global-in-time solution u of (1.1) in the sense of Definition 1.1 with
T = ∞.
Moreover, if u0 is nontrivial and nonnegative and ∥u0∥1 ≤ ε, then (1.1) has

a nontrivial nonnegative global-in-time solution.

When α = 1, f(u) = up and Ω = RN , Fujita [9] showed the following: If
1 < p < 1 + 2/N , then (1.1) with a nontrivial nonnegative initial data blows
up in finite time. If p > 1 + 2/N , then there is a small nontrivial nonnegative
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initial function u0 such that (1.1) has a global-in-time solution. It is proved
in [13,16] that a nontrivial nonnegative solution blows up in the threshold case
p = 1 + 2/N .
This shows again a sharp contrast with the fractional case 0 < α < 1. For

f(u) = up and Ω = RN it is shown in [28] that (1.1) may have a nontrivial
nonnegative global-in-time solution. Our Theorem 1.5 is in line with the result
in [28] in the sense that the existence of a global-in-time solution still holds
for small L1 data in the case of bounded smooth domains Ω.

Theorem 1.6 (Uniqueness of solution). Let N ≥ 1, 0 < α < 1, p = 1 + 2/N
and β = α/p. Suppose that f ∈ C(R) satisfies (F1).

Then, (1.1) has a unique solution in the class

K :=

{
u(t) ∈ C([0, T ), L1(Ω)) for some 0 < T ≤ ∞ and sup

0<t<T1

tβ ∥u(t)∥p < ∞
}
,

in the sense that if u(t) ∈ C([0, T1), L
1(Ω)) and v(t) ∈ C([0, T2), L

1(Ω)) are
two solutions in the above class K then

u(t) = v(t) in L1(Ω) for 0 ≤ t < min{T1, T2}.

The remaining of the paper is organised as follows. In Section 2 we recall
the Lr-theory (1 < r < ∞) for (1.3) and a monotone iterative method. A
supersolution to (1.1) is constructed by using a solution of (1.3). Then, a
monotone iterative method enables us to construct a nonnegative solution of
(1.1) under a mild condition on f . In Section 3 we describe the Lp-Lq estimates
for Sα(t), Pα(t) and construct a local-in-time solution of (1.1) in L1(Ω). We
also construct a nonnegative solution of (1.1) in L1(Ω) under a mild condition
on f using a monotone iterative method. In Section 4 an existence of a global-
in-time solution of (1.1) for a small initial data in L1(Ω) is proved. In Section 5
we establish a nonexistence theorem in Lr(Ω), 1 ≤ r < ∞. The method used in
Section 5 is based on the approach developped in [17,23]. Combining existence
and nonexistence results, we obtain a necessarily and sufficient condition on
the growth of f for the existence of a nonnegative solution to (1.1) in Lr(Ω).
Finally, in Section 6 we prove the uniqueness of a solution of (1.1) in the set
K given in Theorem 1.6.

2. Exsitence of a solution in Lr(Ω), 1 < r < ∞

Let us start with a quick overview on the monotone iteration techniques in
the fractional setting. Consider the problem

(2.1)


∂α
t u = ∆u+ f0(x, t, u), x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary and
f0 : Ω× [0,∞)× R → R is a continuous function such that:

(F2) f0(x, t, ξ) is nonnegative and it is nondecreasing in ξ.

Definition 2.1. We sat that a measurable function u a solution of (2.1) if
there exists T ∈ (0,∞] such that the following conditions (a)–(e) hold:
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(a) u( · , t) ∈ L1(Ω) for all 0 < t < T ;

(b) f0( · , t, u( · , t)) ∈ L1(Ω) for a.e. 0 < t < T ;

(c)

∫ t

0

∥f0( · , s, u( · , s))∥1 ds < ∞ for 0 < t < T ;

(d) u( · , t) satisfies

u( · , t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f0( · , s, u( · , s))ds for 0 < t < T,

where the integral in the above equality is an absolutely converging
Bochner integral in L1(Ω);

(e) The initial condition holds in the following sense:

∥u( · , t)− u0∥r → 0 as t → 0

for u0 ∈ Lr(Ω) if 1 ≤ r < ∞.

We call ū a supersolution of (2.1) if ū satisfies Definition 2.1 (a)–(c) and the
following (d’) and (e’) hold:

(d’) ū satisfies the inequality:

ū( · , t) ≥ Sα(t)u0 +

∫ t

0

Pα(t− s)f0( · , s, ū( · , s))ds for 0 < t < T,

(e’) ū satisfies∥∥∥∥∫ t

0

Pα(t− s)f0( · , s, ū( · , s))ds
∥∥∥∥
r

→ 0 as t → 0,

where u0 ∈ Lr(Ω) for some 1 ≤ r < ∞.

Proposition 2.2. Let 0 < T ≤ ∞. Suppose that the function f0(x, t, ξ)
satisfies (F2).

If (2.1) has a nonnegative supersolution ū(t) on 0 < t < T , then (2.1)
has a solution u(t) in the sense of Definition 1.1 on 0 < t < T such that
0 ≤ u(t) ≤ ū(t).

For the reader’s convenience we provide a quick proof (see [22, Theorem 2.1]
for details).

Proof. Let ū be a nonnegative supersolution of (2.1) for 0 < t < T . Set
u1 = S(t)u0 and for n ≥ 2 define un by

un = F(un−1),

where

F(u) = Sα(t)u0 +

∫ t

0

Pα(t− s)f0( · , s, u( · , s))ds.

Then, an induction argument yields

0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ ū < ∞ for a.e. x ∈ RN , 0 < t < T.
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This indicates that the limit u(x, t) := limn→∞ un(x, t) exists for almost all
x ∈ RN and 0 < t < T . By the monotone convergence theorem we see that

lim
n→∞

F(un−1) = F(u),

and hence u = F(u). It is clear that

(2.2) 0 ≤ u(t) ≤ ū(t) for a.e x ∈ RN , 0 < t < T.

We check that u(t) satisfies the conditions in Definition 1.1. Since ū satisfies
Definition 1.1 (a)–(c), by (F2) and (2.2) we see that u also satisfies (a)–(c).
Since u = F(u), u satisfies (d). By (F2) and (2.2) we obtain

∥u(t)− Sα(t)u0∥r =
∥∥∥∥∫ t

0

Pα(t− s)f0( · , s, u( · , s))ds
∥∥∥∥
r

≤
∥∥∥∥∫ t

0

Pα(t− s)f0( · , s, ū( · , s))ds
∥∥∥∥
r

.

Since ū satisfies (e’), we have

∥u(t)− Sα(t)u0∥r → 0 as t → 0,

and hence (e) holds. Thus, u satisfies Definition 1.1 (a)–(e), and hence u is a
solution of (2.1). □
Theorem 2.3. Suppose that f0(x, t, ξ) satisfies (F2). Suppose that there exists
a function f1(x, t, ξ) such that f1 satisfies (1.4) and (1.5) with

p ∈ [1,∞), q1 ∈ [1,∞] ∩ (
N

2
,∞], q2 ∈ (

1

α
,∞]

and

(2.3) f0(x, t, ξ) ≤ f1(x, t, ξ) for x ∈ Ω, t ≥ 0 and ξ ≥ 0.

Then, for each nonnegative initial function u0 ∈ Lr(Ω), (2.1) has a nonnegative
local-in-time solution if one of the following holds:

(i) p ∈ (1,∞), r ∈ (1,∞) and

(2.4)
N

2q1
+

1

αq2
+

(p− 1)N

2r
≤ 1.

(ii) p ∈ [1,∞), r ∈ [1,∞) and

N

2q1
+

1

αq2
+

(p− 1)N

2r
< 1.

Proof. Since all the assumptions in [10, Theorem 3.1.4] are satisfied in both
of the above cases (i) and (ii), it follows from [10, Theorem 3.1.4] that the
problem

(2.5)


∂α
t u = ∆u+ f1(x, t, u), x ∈ Ω, 0 < t < T,

u = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω

has a local-in-time solution, which is denoted by ū(t), in the sense of Defini-
tion 1.1. By (F2) and (2.3) we see that f1(x, t, ξ) ≥ 0 for ξ ≥ 0. Since u0 ≥ 0,
it is clear from Definition 1.1 (d) that the solution ū(t) is nonnegative. We
show that ū is a supersolution of (2.1). Since ū is a solution of (2.5), it is clear
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that ū satisfies Definition 1.1 (a)–(c) with f0. Because of (2.3), (d’) clearly
holds. Using the equivalence of (e) and (1.7), we have∥∥∥∥∫ t

0

Pα(t− s)f0( · , s, ū( · , s))ds
∥∥∥∥
r

≤
∥∥∥∥∫ t

0

Pα(t− s)f1( · , s, ū( · , s))ds
∥∥∥∥
r

= ∥ū(t)− Sα(t)u0∥r → 0.

Therefore, (e’) holds, and hence ū is a supersolution. Since ū(t) is a superso-
lution of (2.1), by Proposition 2.2 we see that (2.1) has a nonnegative solu-
tion. □

Theorem 2.4. Suppose that f ∈ C(R) is nonnegative and nondecreasing.
Then, for each nonnegative initial function u0 ∈ Lr(Ω), (1.1) has a nonnegative
local-in-time solution if one of the following holds:

(i) 1 < r < ∞ and

(2.6) lim sup
s→∞

f(s)

s1+2r/N
< ∞.

(ii) r = 1 and there exists p ∈ (0, 1 + 2r/N) such that

lim sup
s→∞

f(s)

sp
< ∞.

Proof. First, we prove the case (i). Let p = 1+ 2r/N . We define f0(x, t, ξ) =
f(u). Because of (2.6), there exists A > 0 such that f(ξ) ≤ A(1 + |ξ|p) for
ξ ≥ 0. We define f1(x, t, ξ) = A(1 + |ξ|p). It is clear that f1(x, t, ξ), which
is defined on Ω × [0,∞) × R, satisfies (1.4) and (1.5). Because f1 does not
depend on (x, t), c(x, t)’s in (1.4) and (1.5) are constants, and hence q1 = ∞
and q2 = ∞. Then, p, q1, q2, r satisfy all assumptions in Theorem 2.3 (i),
including (2.4). Then, (2.1) has a nonnegative local-in-time solution for every
nonnegative initial u0 ∈ Lr(Ω). The proof of the case (i) is complete.
Using Theorem 2.3 (ii), one can prove the case (ii) in a similar way. We

omit the details. The proof of the theorem is complete. □

In Section 3 we show that Theorem 2.4 holds for r = 1 and p = 1 + 2/N .

3. Existence of a solution in L1(Ω)

We recall the following estimates on Sα(t) and Pα(t).

Proposition 3.1. (i) Let N ≥ 1 and 1 ≤ p ≤ q ≤ ∞. Then, for each
φ ∈ Lp(Ω),

∥S(t)φ∥q ≤ t−
N
2 (

1
p
− 1

q ) ∥φ∥p for t > 0.

(ii) Let N ≥ 1 and 1 ≤ p < q ≤ ∞. Then, for each C∗ > 0 and φ ∈ Lp(Ω),
there is t0 = t0(C∗, φ0) such that

∥S(t)φ∥q ≤ C∗t
−N

2 (
1
p
− 1

q ) for 0 < t < t0.

The multiplicative constant in (i) can be taken to be 1 (see [5, Lemma
7]). The constant C∗ in (ii) can be taken arbitrarily small. The proof of
Proposition 3.1 (ii) can be found in [5, Lemma 8].
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Proposition 3.2. (see [10, Lemma 2.2.2])
Let N ≥ 1 and 1 ≤ p ≤ q ≤ ∞. Then the following hold:

(i) If N
2

(
1
p
− 1

q

)
< 1, then there exists C > 0 such that, for each φ ∈ Lp(Ω),

∥Sα(t)φ∥q ≤ Ct−
Nα
2 ( 1

p
− 1

q ) ∥φ∥p for t > 0.

(ii) If N
2

(
1
p
− 1

q

)
< 2, then there exists C > 0 such that, for each φ ∈ Lp(Ω),∥∥t1−αPα(t)φ

∥∥
q
≤ Ct−

Nα
2 ( 1

p
− 1

q ) ∥φ∥p for t > 0.

A similar result to Proposition 3.2 (ii) holds for Sα(t).

Lemma 3.3. Let N ≥ 1 and 1 ≤ p < q ≤ ∞ such that N
2

(
1
p
− 1

q

)
< 1. Then,

for each C∗ > 0 and φ ∈ Lp(Ω), there is t0 = t0(C∗, φ) such that

∥Sα(t)φ∥q ≤ C∗t
−Nα

2 ( 1
p
− 1

q ) for 0 < t < t0.

We can take an arbitrarily small C∗ > 0.

Proof. Let ε > 0 be fixed. By Proposition 3.1 (ii) we see that there is t1 > 0
such that

∥S(t)φ∥q ≤ εt−
N
2 (

1
p
− 1

q ) for 0 < t < t1.

Then, if 0 < τtα < t1, then

∥S(τtα)φ∥q ≤ ετ−
N
2 (

1
p
− 1

q )t−
Nα
2 ( 1

p
− 1

q ) for 0 < τtα < t1,

and hence

(3.1)

∫ t1t−α

0

Φα(τ) ∥S(τtα)φ∥q dτ ≤ εt−
Nα
2 ( 1

p
− 1

q )
∫ t1t−α

0

Φα(τ)τ
−N

2 (
1
p
− 1

q )dτ

≤ εt−
Nα
2 ( 1

p
− 1

q )
Γ
(
1− N

2

(
1
p
− 1

q

))
Γ
(
1− Nα

2

(
1
p
− 1

q

)) .
Note that (3.1) holds for all t > 0. On the other hand, there is t2 > 0 such
that if 0 < t < t2, then

(3.2)

∫ ∞

t1t−α

Φα(τ) ∥S(τtα)φ∥q dτ ≤ ∥φ∥p t
−Nα

2 ( 1
p
− 1

q )
∫ ∞

t1t−α

Φα(τ)τ
−N

2 (
1
p
− 1

q )dτ

≤ εt−
Nα
2 ( 1

p
− 1

q ) ∥φ∥p ,
since ∫ ∞

0

Φα(τ)τ
−N

2 (
1
p
− 1

q )dτ < ∞.

By (3.1) and (3.2) we have

∥Sα(t)φ∥q ≤ εC1t
−Nα

2 ( 1
p
− 1

q ) for all 0 < t < t1,

where

C1 =
Γ
(
1− N

2

(
1
p
− 1

q

))
Γ
(
1− Nα

2

(
1
p
− 1

q

)) + ∥φ∥p .
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We can take an arbitrarily small ε > 0 if t1 > 0 is small enough. Therefore,
we can take ε > 0 such that C∗ = C1ε, and hence the conclusion holds. □
Proof of Theorem 1.4. Let
(3.3)
E = L∞((0, T ), L1(Ω)) ∩

{
u ∈ L∞

loc((0, T ), L
p(Ω)); tβu ∈ L∞((0, T ), Lp(Ω))

}
,

where β = Nα
2

(
1− 1

p

)
= α

p
< 1 and T will determined later.

We define the metric d : E × E → [0,∞) by

(3.4) d(u, v) = sup
0<t<T

tβ ∥u(t)− v(t)∥p for all u, v ∈ E.

Let M ≥ ∥u0∥1 and

K =
{
u ∈ E : ∥u(t)∥1 ≤ C1M + 1 and tβ ∥u(t)∥p ≤ δ for 0 < t < T

}
,

where C1 > 0 and δ > 0 are chosen later. Then, (K, d) is a nonempty complete
metric space. We define F : K → E by

(3.5) F(u)(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(u(s))ds for all t ≥ 0.

Because of (F1), the following holds:

(3.6) There exists C > 0 such that |f(ξ)| ≤ C(1 + |ξ|p) for ξ ∈ R.
By (3.6) it follows that

(3.7) ∥f(u(s))∥1 ≤ C(1 + ∥u(s)∥pp).
Using the estimate (3.7) together with Proposition 3.2(ii) (for p = q = 1) we
have

∥F(u)(t)∥1 ≤ C1 ∥u0∥1 + C2

∫ t

0

(t− s)−1+α
(
1 + ∥u(s)∥pp

)
ds

≤ C1 ∥u0∥1 +
C2

α
tα + C2

∫ t

0

(t− s)−1+αs−α
(
sβ ∥u(s)∥p

)p

ds

≤ C1 ∥u0∥1 +
C2

α
tα + C2

(
sup

0<t<T
tβ ∥u(t)∥p

)p ∫ 1

0

(1− τ)−1+ατ−αdτ

≤ C1 ∥u0∥1 +
C2

α
tα + C ′

2δ
p.(3.8)

Here, we used pβ = α and the fact that with the change of variable s = τt one
has ∫ t

0

(t− s)−1+αs−αds =

∫ 1

0

(1− τ)−1+ατ−αdτ < ∞.

Therefore,

(3.9) ∥F(u)(t)∥1 < C1M + 1

if

(3.10) C ′
2δ

p <
1

2
and

(3.11) C1α
−1T α <

1

2
.
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Next, by Proposition3.2(ii) (with q = 1) and (3.7) we have

tβ ∥F(u)(t)∥p ≤ sup
0<t<T

tβ ∥Sα(t)u0∥p + C3t
β

∫ t

0

(t− s)−1+α−β
(
1 + ∥u(s)∥pp

)
ds

≤ sup
0<t<T

tβ ∥Sα(t)u0∥p +
C3

α− β
tα

+ C3t
β

(
sup

0<t<T
tβ ∥u(t)∥p

)p ∫ t

0

(t− s)−1+α−βs−pβds

≤ sup
0<t<T

tβ ∥Sα(t)u0∥p +
C3

α− β
tα + C3δ

p

∫ 1

0

(1− τ)−1+α−βτ−αdτ

≤ sup
0<t<T

tβ ∥Sα(t)u0∥p +
C3

α− β
tα + C ′

3δ
p.(3.12)

In the above sequence of estimates we used the change of variable s = τt so
that ∫ t

0

(t− s)−1+α−βs−pβds = t−β

∫ 1

0

(1− τ)−1+α−βτ−αdτ ≤ Ct−β.

Therefore,

(3.13) sup
0<t<T

tβ ∥F(u)(t)∥p ≤ sup
0<t<T

tβ ∥Sα(t)u0∥p +
δ

2

if

(3.14) C ′
3δ

p−1 <
1

4

and

(3.15)
C3

α− β
T α <

δ

4
.

Since∫
Ω

|f(u(s))− f(v(s))|dx ≤ C4

∫
Ω

(1 + |u(s)|+ |v(s)|)p−1 |u(s)− v(s)|dx

≤ C ′
4

∫
Ω

(
1 + |u(s)|p−1 + |v(s)|p−1

)
|u(s)− v(s)|dx

≤ C ′′
4 ∥u(s)− v(s)∥p

+ C ′
4

(
∥u(s)∥p−1

p + ∥v(s)∥p−1
p

)
∥u(s)− v(s)∥p ,

we have

tβ ∥F(u)(t)−F(v)(t)∥p ≤ C3t
β

∫ t

0

(t− s)−1+α−β ∥f(u(s))− f(v(s))∥1 ds

≤ C3t
β

(
C ′′

4

∫ t

0

(t− s)−1+α−βs−βds

+2δp−1C ′
4

∫ t

0

(t− s)−1+α−βs−pβds

)
sup

0<t<T
tβ ∥u(t)− v(t)∥p

≤ C3

(
C ′′

4C5t
α−β + 2C ′

4C6δ
p−1

)
sup

0<t<T
tβ ∥u(t)− v(t)∥p ,(3.16)
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where

C5 =

∫ 1

0

(1− τ)−1+α−βτ−βdτ and C6 =

∫ 1

0

(1− τ)−1+α−βτ−αdτ.

Therefore,

(3.17) sup
0<t<T

tβ ∥F(u)(t)−F(v)(t)∥p ≤
1

2
d(u, v)

if

(3.18) 2C3C
′
4C6δ

p−1 <
1

4

and

(3.19) C3C
′′
4C5T

α−β <
1

4
.

We fix any small δ > 0 such that (3.18), (3.14) and (3.10) hold. Because of
Lemma 3.3, we can choose T > 0 such that (3.19), (3.15) and (3.11) hold and

(3.20) sup
0<t<T

tβ ∥Sα(t)u0∥p ≤
δ

2
.

Then, by (3.20), (3.13) and (3.9) we see that F : K → K. Moreover, it follows
from (3.17) that F is a contraction mapping on K. Thus, F : K → K has a
unique fixed point in K which is denoted by u(t).

We check that u(t) satisfies Definition 1.1 (a)–(e). Since u(t) ∈ K, (a) holds.
Since tβ ∥u(t)∥p ≤ δ and pβ = α, by (3.6) we have

(3.21) ∥f(u(t))∥1 ≤ C(1 + ∥u(t)∥pp) ≤ C(1 + δt−α) < ∞ for 0 < t < T.

Thus, (b) holds. Let t ∈ (0, T ). Integrating (3.21) over (0, t), we see that (c)

holds. We can easily check that
∫ t

0
∥Pα(t− s)f(u(s))∥1 ds < ∞ for 0 < t < T

which indicates that u(t) ∈ C((0, T ), L1(Ω)). Therefore, u(t) = F(u)(t) for
a.e. x ∈ Ω and 0 < t < T . Hence, (d) holds. As in (3.8) we have

∥u(t)− Sα(t)u0∥1 ≤ C1α
−1tα + C ′

2δ
p.

Since δ > 0 and t > 0 can be chosen arbitrarily small, by the local uniqueness
of the fixed point we have

∥u(t)− Sα(t)u0∥1 → 0,

which indicates that (e) holds. Thus, u(t) is a solution of (1.1) in the sense of
Definition 1.1. □
Corollary 3.4. Suppose that f ∈ C(R) is nonnegative and nondecreasing.
Then, for each nonnegative initial function u0 ∈ L1(Ω), (1.1) has a nonnegative
solution if

(3.22) lim sup
s→∞

f(s)

s1+2/N
< ∞.

Proof. The proof is similar to that of Theorem 2.4. Let p = 1+2/N . Because
of (3.22), there is C > 0 such that f(ξ) ≤ C(1+ξp) for ξ ≥ 0. Let f1(ξ) = C(1+
|ξ|p). Then it follows from Theorem 1.4 that (1.1) with f1 has a nonnegative
solution ū for each nonnegative initial data u0 ∈ L1(Ω). By Proposition 2.2 we
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can construct a nonnegative solution for (1.1) with f , since ū is a supersolution
for (1.1). The details are omitted. □

4. Global-in-time solution in L1(Ω)

Proof of Theorem 1.5. We follow a similar strategy to that in the proof of
Theorem 1.4. Let E (resp. d) be defined by (3.3) with T = ∞ (resp. by (3.4)

with T = ∞). Here, β = Nα
2

(
1− 1

p

)
= α

p
< 1. We define K by

K =

{
u ∈ E; sup

t>0
∥u(t)∥1 + sup

t>0
tβ ∥u(t)∥p ≤ δ

}
,

where δ > 0 is determined later. Then, (K, d) is a nonempty complete metric
space. We define F by (3.5). Hereafter we assume that ∥u0∥1 ≤ ε. By (F1’)
we see that there is C > 0 such that |f(u)| ≤ C|u|p. By a calculation similar
to (3.8) we have

∥F(u)(t)∥1 ≤ C1 ∥u0∥+ C ′
2δ

p.

Therefore,

(4.1) ∥F(u)(t)∥1 ≤ δ

if

(4.2) C1ε ≤
δ

2

and

(4.3) C ′
2δ

p−1 ≤ 1

2
.

By a calculation similar to (3.12) we have

tβ ∥F(u)(t)∥p ≤ sup
t>0

tβ ∥Sα(t)u0∥p + C ′
3δ

p.

Therefore,

(4.4) sup
t>0

tβ ∥F(u)(t)∥p ≤ sup
t>0

tβ ∥Sα(t)u0∥p +
δ

2

if

(4.5) C ′
3δ

p−1 ≤ 1

2
.

By a calculation similar to (3.16) we have

tβ ∥F(u)(t)−F(v)(t)∥p ≤ 2C3C
′
4C6δ

p−1 sup
t>0

tβ ∥u(t)− v(t)∥p .

Here we used (F1’), and hence the term C3C
′′
4C5t

α−β in (3.16) does not appear.
Therefore,

(4.6) sup
t>0

tβ ∥F(u)(t)−F(v)(t)∥p ≤
1

2
d(u, v)

if

(4.7) 2C3C
′
4C6δ

p−1 ≤ 1

2
.
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We fix δ > 0 such that (4.7), (4.5) and (4.3) hold. By Proposition 3.2 (i) we
see that

(4.8) sup
t>0

tβ ∥Sα(t)u0∥p ≤ Cε.

We can choose ε > 0 such that Cε ≤ δ
2
and (4.2) holds. Then, it follows from

(4.8) and (4.4) that

(4.9) sup
t>0

tβ ∥F(u)(t)∥p ≤ δ.

By (4.9) and (4.1) we see that F : K → K. Moreover, by (4.6) we see that F
is a contraction mapping on K. Thus, F : K → K has a unique fixed point in
K which is denoted by u(t).

We can check that u(t) satisfies Definition 1.1 (a)–(e) with T = ∞ in the
same way as in the proof of Theorem 1.4. We omit details.

The existence of a nontrivial nonnegative solution with small nonnegative
initial function easily follows from a nonnegativity of a solution with nontrivial
nonnegative initial function.

The proof is complete. □
Corollary 4.1. Suppose that f ∈ C(R) is nonnegative and nondecreasing. If

(4.10) sup
t>0

f(s)

s1+2/N
< ∞,

then there is ε > 0 such that for each nonnegative initial function u0 ∈ L1(Ω)
with ∥u0∥1 ≤ ε, there exists a global-in-time solution u(t) of (1.1) in the sense
of Definition 1.1 with T = ∞.

Proof. Let p = 1 + 2/N . Because of (4.10), there is C > 0 such that f(ξ) ≤
Cξp for ξ ≥ 0. Let f1(ξ) = Cξp. Since f1 satisfies (F1’), it follows from
Theorem 1.5 that there is ε > 0 such that (1.1) with f1 has a nonnegative
global-in-time solution ū for each nonnegative initial data u0 ∈ L1(Ω) with
∥u0∥1 ≤ ε. By Proposition 2.2 we can construct a nonnegative global-in-time
solution for (1.1) with f , since ū is a supersolution of (1.1) with T = ∞. The
proof is complete. □

5. Nonexsitence of a solution in Lr(Ω), 1 ≤ r < ∞

Let G(x, y, t) denote the Dirichlet heat kernel on Ω. When u0 ∈ Lr(Ω), we
see that S(t)u0(x) =

∫
Ω
G(x, y, t)u0(y)dy and that S(t)u0 gives a solution of

the heat equation ∂tu = ∆u on Ω with the Dirichlet boundary condition.

Proposition 5.1 (see e.g., [4, Corollary 2.2]). Let δ > 0 be such that B2δ ⊂ Ω.
Then,

G(x, y, t) ≥ c∗t
−N/2 for all x, y ∈ Bδ and 0 ≤ t ≤ δ2

such that |x− y| ≤
√
t. Here, c∗ depends on N and δ.

Proof of Theorem 1.3. Let p = 1 + 2r/N and denote by ωN the volume of the
unit ball in RN . If c∗ is the constant given in Proposition 5.1, we define

c0 =
c∗ωN

2N

∫ 1

1/4

Φα(τ)dτ,
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which depends only on c∗, N and α. By (1.8) we can choose {ak}∞k=1 such that

(5.1) ak ≥ k and f(c0ak) ≥ apke
k/r for all k ≥ 1.

Let ρk = εa
−r/N
k k−2r/N . By taking ε > 0 small enough, we may assume

B3ρk ⊂ Ω for all k ≥ 1. Let

u0(x) =
∞∑
k=1

uk where uk = akχρk ,

where for ρ > 0, χρ denotes the indicator function of the ball Bρ ⊂ RN .
Since

∥uk∥rr = ωNρ
N
k a

r
k = ωN

εN

k2r
,

we have

∥u0∥r ≤
∞∑
k=1

∥uk∥r = ω
1/N
N εN/r

∞∑
k=1

1

k2
< ∞.

Suppose that (1.1) with the above defined initial data u0 ∈ Lr(RN) has a
nonnegative solution u(t) for small t > 0. Then,

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(u(s))ds.

Since u ≥ 0 and f ≥ 0, we have

u(t) ≥ Sα(t)u0 ≥ Sα(t)uk.

Hence, for any k ≥ 1,

(5.2) u(t) ≥
∫ t

0

Pα(t− s)f(Sα(s)uk)ds,

since f is nondecreasing.
For k ≥ 1, let s > 0 be small such that

√
sα ≤ ρk/2 and 0 < τ ≤ 1. By

Proposition 5.1 applied for t = τsα and δ = t2 one has

S(τsα)χρk =

∫
|y|≤ρk

G(x, y, τsα)dy

≥ χ√
τsα/2

∫
|x−y|≤

√
τsα/2

c∗(τs
α)−N/2dy

=
c∗ωN

2N
χ√

τsα/2.

Hence, from (1.2) we find

(5.3)

Sα(s)uk ≥
∫ 1

1/4

Φα(τ)S(τs
α)[akχρk ]dτ

≥ c∗ωNak
2N

∫ 1

1/4

Φα(τ)χ√
τsα/2dτ

≥ c∗ωNak
2N

χ√
sα/4

∫ 1

1/4

Φα(τ)dτ = c0akχ√
sα/4.
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On the other hand, if t > 0 is small and

(5.4)

√
τ(t− s)α

2
≤

√
sα

8
,

t

3
≤ s ≤ t

2
then
(5.5)

S(τ(t− s)α)[χ√
sα/4] =

∫
|y|≤

√
sα/4

G(x, y, τ (t− s)α)dy

≥ χ√
τ(t−s)α/2

∫
|x−y|≤

√
τ(t−s)α/2

c∗{τ(t− s)α}−N/2dy

=
c∗ωN

2N
χ√

τ(t−s)α/2
> c0χ√τ(t−s)α/2

.

Let τ0 =
1

16·2α . If τ0/4 ≤ τ ≤ τ0, then√
τ(t− s)α/2 ≤

√
sα/8 for all s, t > 0 such that t/3 ≤ s ≤ t/2.

Since (5.4) holds for τ0/4 ≤ τ ≤ τ0, by (5.3) and (5.5) we see that if
√
sα ≤ ρk/2, t/3 ≤ s ≤ t/2 and t ≥ 0 is small,

then

Pα(t− s)[f(Sα(s)uk)] ≥ Pα(t− s)[f(c0ak)χ√
sα/4]

≥ f(c0ak)α(t− s)α−1

∫ τ0

τ0/4

τΦα(τ)S(τ(t− s)α)[χ√
sα/4]dτ

≥ f(c0ak)α(t− s)α−1

∫ τ0

τ0/4

τΦα(τ)c0χ√τ(t−s)α/2
dτ

≥ f(c0ak)α(t− s)α−1c0χ√τ(t−s)α/4

∫ τ0

τ0/4

τΦα(τ)dτ

= c1f(c0ak)α(t− s)α−1χ√
τ0(t−s)α/4

.

Therefore, if t > 0 is small and

(5.6)

√(
t

2

)α

≤ ρk
2
,

then∫ t

0

Pα(t− s)[f(Sα(s)uk)]ds ≥ c1f(c0ak)α

∫ t/2

t/3

(t− s)α−1χ√
τ0(t−s)α/4

ds

≥ c1f(c0ak)

{(
2

3

)α

−
(

1

2

)α}
tαχ√

τ0(t/2)α/4
.

Thus, from (5.1) and (5.2) we deduce

∥u(t)∥rr ≥ c2f(c0ak)
rtαrtNα/2 ≥ c2a

rp
k tα(r+

N
2 )ek.

It follows from (5.6) that t ≤ 21−2/αρ
2/α
k , and hence we can choose t =

21−2/αρ
2/α
k . Then,

∥u(t)∥rr ≥ c3a
rp
k ρN+2r

k ek = c4k
−2rpek → ∞ as k → ∞.

Preliminary version – November 14, 2021 – 21:13



18 MARIUS GHERGU, YASUHITO MIYAMOTO, AND MASAMITSU SUZUKI

This means that ∥u(t)∥rr → ∞ as t → 0, since t = 21−2/αρ
2/α
k → 0 as k → ∞.

Therefore, ∥u(t)− u0∥r ≥ ∥u(t)∥r − ∥u0∥r → ∞, and hence Definition 1.1 (e)
does not hold. Thus, (1.1) with the initial function u0 has no nonnegative
solution. □
Corollary 5.2. Let 1 ≤ r < ∞. Suppose that f ∈ C[0,∞) is nonnegative
and nondecreasing. The problem (1.1) has a nonnegative solution for every
nonnegative initial data u0 ∈ Lr(Ω) if and only if

lim sup
s→∞

f(s)

s1+2r/N
< ∞.

Proof. When 1 < r < ∞, the sufficient part follows from Theorem 2.4 (i) and
the necessary part follows from Theorem 1.3 with 1 < r < ∞. When r = 1,
the sufficient part follows from Corollary 3.4 and the necessary part follows
from Theorem 1.3 with r = 1. □

6. Uniqueness

In this section we provide the proof of Theorem 1.6. Let u(t) and v(t) be
two solutions of (1.1) in the class K defined for 0 < t < T1 and 0 < t < T2,
respectively. Without loss of generality we assume T1 ≤ T2.

A =
{
t ∈ [0, T1]; u(t) = v(t) in L1(Ω)

}
.

Since u(0) = v(0) = u0, it follows that 0 ∈ A, so A is nonempty. Let U ⊂ [0, T1]
be the connected component of A that contains 0. Because of the definition,
U is a closed set of [0, T1]. Hereafter, we show that U is an open set. Since
[0, T1] is a connected set, this yields U = [0, T1].

Suppose that u(t) = v(t) in L1(Ω) for 0 ≤ t ≤ T where 0 ≤ T < T1. By the
fact that u(t), v(t) ∈ K there is M > 0 such that

sup
0<t<T1

tβ ∥u(t)∥p < M and sup
0<t<T2

tβ ∥v(t)∥p < M.

Let 0 < ε < T1 − T . With a similar calculation to (3.16), for T ≤ t ≤ T + ε
we have

tβ ∥u(t)− v(t)∥p ≤ C3t
β

∫ t

0

(t− s)−1+α−β ∥f(u(s))− f(v(s))∥1 ds

≤ C3t
β

∫ T+ε

T

(t− s)−1+α−β ∥f(u(s))− f(v(s))∥1 ds

≤ C3t
β

(
C ′′

4

∫ T+ε

T

(t− s)−1+α−βs−βds

+2Mp−1C ′
4

∫ T+ε

T

(t− s)−1+α−βs−pβds

)
sup

T≤t<T+ε
tβ ∥u(t)− v(t)∥p .

Observe that as ε → 0 we have

tβ
∫ T+ε

T

(t− s)−1+α−βs−βds → 0 and tβ
∫ T+ε

T

(t− s)−1+α−βs−pβds → 0.

Hence, from the above estimate it follows that

tβ ∥u(t)− v(t)∥p ≤ o(1) sup
T≤t<T+ε

tβ ∥u(t)− v(t)∥p as ε → 0.
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By taking ε > 0 small one derives

sup
T≤t<T+ε

tβ ∥u(t)− v(t)∥p ≤
1

2
sup

T≤t<T+ε
tβ ∥u(t)− v(t)∥p .

so u(t) = v(t) in Lp(Ω) on [0, T + ε]. Because of the continuous embedding
Lp(Ω) ↪→ L1(Ω), we see that u(t) = v(t) in L1(Ω) for 0 ≤ t < T + ε. Hence, U
is an open set which yields U = [0, T1]. This completes the proof. □
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cations, Mathématiques & Applications (Berlin), 84. Springer, 2020. 184 pp. ISBN:
978-3-030-45042-7.

[11] B. Ghanbari, Chaotic behaviors of the prevalence of an infectious disease in a prey
and predator system using fractional derivatives, Math. Methods Appl. Sci. 44 (2021),
9998–10013.

[12] B. Guswanto and T. Suzuki, Existence and uniqueness of mild solutions for fractional
semilinear differential equations, Electron. J. Differential Equations 2015, No. 168,
16pp.

[13] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equa-
tions, Proc. Japan Acad. Ser. A Math. Sci. 49 (1973), 403–525.

[14] M. Jleli, M. Kirane and B. Samet, Solution blow-up for a fractional in time acoustic
wave equation, Math. Methods Appl. Sci. 43 (2020), 6566–6575.

[15] M. Kirane and B. Torebek, Maximum principle for space and time-space fractional
partial differential equations, Z. Anal. Anwend. 40 (2021), 277–301.

[16] K. Kobayashi, T. Sirao and H. Tanaka, On the blowing up problem for semilinear heat
equations, J. Math. Soc. Japan 29 (1977), 407–424.
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