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1 | INTRODUCTION

Meshless methods appeared from 1970 onwards in numerical simulations of astrophysics problems through the well-known smooth particle
hydrodynamics (SPH) method™. Since then, many researchers have endeavored to increase the accuracy and the computational performance of
such methods. Among the meshless methods, there are those used in the strong form, such as the finite point method, the regularized local
collocation method® or the generalized finite difference method (GFDM).

An important step in the development of the GFDM was the introduction of weighted moving least squares in the derivative approximations=.
Liszka and Orkisz (1980)= developed a robust algorithm for the solution of physical and geometrical nonlinearities. The influence of key parameters
of the method was studied by Benito (2001)°. In the last years, the development of researches involving higher-order approximations has gained
strength'Z8210111 The different applications of the GFDM in current engineering problems show the versatility of this method12:1314115116117118012120]

The discretization of the domain when applying GFDM to solve a partial differential equation has been addressed in many ways. It can be
discretized regularly whenever possible and irregularly only in regions where it cannot be done otherwise. In the latter case, there is usually some
minimum distance criterion to prevent two points from being too close together.

It can also be discretized irregularly, either arbitrarily?12223 or on the basis of some kind of structure such as, for example, using triangular
elements (Delaunay triangulation)2422228 quadrilateral elements#Z28, partitions into nodal subdomains (Voronoi tessellation)2?Z or Coatmélec
distribution of points=<2,

All these discretizations have in common that the initial distribution of points is of approximately constant density throughout the domain. Liszka
and Orkisz (1980)=! developed a pre-process based on density functions that are defined by the user. However, there are not many papers where
initial distributions adapted to the problem are applied, i.e., with a distribution of points that allows capturing the particularities of the problem or

part of them. For example, in®Y a higher density of points near the interfaces is used, and in?¢ a higher density of points near the boundary is used.

Ph.D. Miguel Ureia contributed to this article in his personal capacity. The views expressed are his own and do not necessarily represent the views of
Statistics Spain.
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There are many papers where discretizations with different densities are used in different regions of the domain, but these discretizations are
the result of adaptive algorithms that refine the discretization in several steps depending on where the highest errors are.

This paper aims at designing a strategy to generate a discretization adapted to the problem in a general way. To do this, we consider two stages, a
first one that uses a coarse regular discretization to calculate the gradients and distribute the points according to the gradient values, and a second

one to solve the equation in the new discretization.

2 | THE GENERALIZED FINITE DIFFERENCE METHOD

Assuming an interior bounded domain Q C R? with boundary I, and enough regularity of the known functionsf : Q@ — Rand g : I — R, we want
to find a function U(x, y) satisfying the Dirichlet problem

L(U(xy)) =f(xy), (xy) €Q (1)
U(x,y) = g(x,y), (x,y) €T, (2)

where L is a second-order linear differential operator with constant coefficients.

Let us consider a discretization M of D = Q U I'. We assume that for each interior point (xg,y0) € M N Q there is an associated star V =
{(x1,¥1), (x2,¥2), - - -, (Xm,ym)} C M, with m points.

For each point of V, we consider the Taylor expansion of U(x, y) around (xg, yo) up to fourth-order terms. Denoting by u; the approximate value

of U(xj, y;) after truncation, we have the residual vector given by

r = Au— PDy, @)
where
r h? K2 hikd k¢ 7
hi ki =+ 2L phiky --r —1 L
v o M 6 24
h? k3 hok3  K§
ho ko —2 -2 hoky ... —2 22
2 o P 6 24
pP— Do : . : (4)
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hi ki — - hik e —b L
2 24
h2, k2 hmk3, k&
hm km — ™ hpkyp ... —2 T
L™ o 6 24
The values h; = x; — xp and k; = y; — yo, i = 1,..., m, are the relative distances from the central point to the point (x;, y;) (see Figure 1), Dy, is

the approximate value of the derivatives at the central point, that is,

_ (8uo Aug H%uy 8%uy H%ug *ug 84u0)T (5)
YT\ ox T ay 0x2 0y 9xdy’ Oxdy3’ oyt ’
and Au = (u; — ug,u2 — Ug,...,Um — uo)T.
The minimization of the weighted residuals r" W?2r (where W = diag(w1,w», . ..,wm) is a diagonal matrix of weights) by the least squares

method produces the following equation

A(rTW?2r)

= —2PT W2Au +2PT W2 P Du = 0. (6)
9Du

Solving for Du in (&), we have

Du=A"1'PT W?Au, (7)

where A = PTW?2P.
To avoid problems with singularities or ill-conditioning in matrix A, we use the strategy in’L, where stars with different number of points and

different formation criteria of the stars are considered, according to the condition number of matrix A.
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FIGURE 1 Discretization of the domain and star formation.

We apply (7) to each of the Nl interior points to approximate the derivatives in (I), and use the boundary condition in (2) to get the exact values
of U(x,y) at the points in M N T. In this way, we obtain a linear system of NI equations and NI unknowns whose solution provides a discrete
approximate solution of the problem (1)-(2).

3 | A PROCEDURE FOR GENERATING DISCRETIZATIONS ADAPTED TO THE PARTIAL
DIFFERENTIAL EQUATION

Our goal is to obtain a discretization adapted to the problem to be solved. The strategy we propose consists of solving the problem twice but
with different resolution purposes and different discretizations. In the first step, we use a coarse uniform discretization and compute the absolute
values of the gradients. Depending on these values, we place more points where the gradients are higher and fewer points where the gradients
are lower. In the second stage, we calculate the approximate solution using the adapted discretization generated in the previous stage. To generate
the adapted discretization and for each point of the initial discretization, we consider an area of influence where the new points are placed.

We have divided this section into two parts, addressing the generation of interior points and the generation of boundary points. In the first

example, we distinguish between interior points generated from interior points and from boundary points.

3.1 | Procedure for generating interior points

Firstly, we use a coarse uniform discretization to get an initial approximate solution applying a second-order approximation. With these results, we

compute the euclidean norm of the gradients, V,, at the interior points by means of the GFDM,

8u0 2 B’U,O 2
Vi = — — ) ,k=1,...,NL 8
i \/(ax)ﬁ(ay)k ®

Each interior point of the domain has the same square influence area, with the geometric center at the respective point (see Figure . The side

length A of this area is the shortest distance between two points in all the domain.

Let V be the average gradient, ¢ the standard deviation of the gradients and 3 a constant. The general rule of thumb for the number of points
that each area of influence will have is as follows:

i) 4 points if V + o < Vi < V + 280.

i) 9 points if V,, > V + 230.

iii) 1 point, otherwise.

Within the influence areas the points are distributed in a regular way as shown in Figure[3] If the influence area has 4 points, then we have a
distance between them of h = A/3 and if it has 9 points, the distance is h = A /4. To facilitate a smooth transition between the different influence
areas, we multiply h by an expansion coefficient o, checking that the points do not leave their influence area. This « is given by

a:1+72n s (9)
n—1
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where 7 is an expansion percentage (0 < n < 1) and n is the number of points inside of the influence area in one direction, (n = 2 in case of 4
points and n = 3 in case of 9 points). So, « is just a percentage of broadening of the regular grid in the influence area. We give below the details
of how « is obtained.

As the A value is invariable considering the same discretization M, then we established a limit in « to avoid that any point be inserted outside
of the influence area to which it belongs.

Considering o > 1, we have

n—1
(n—1Dh<> ah<A=(n—1)h<ah(n—1) <A, (10)
i=1
Since h = i then it is
n+1
n—1
(n—1) <aA—— <A, (11)
n+1 n+1
from which it follows that
1
1<a< i (12)
n—1
The parameters involved in {I2) are illustrated in Figure[2]
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FIGURE 2 Parameters involved inside of an influence area.

Finally, we adopted an expansion coefficient given by

a =1+ n(max(a) — min(a)) = 1+ 2”1. (13)
—

After inserting the corresponding points in the influence areas, we check if there are influence areas with a single point and at least one of the

four closest areas of influence has 9 points. In such a case, we treat the area of influence of the single point as if it were the case with 4 points. In
this way, we smooth the transition between influence areas, as can be seen in Figure[3]

Further, since we do not have the gradient values for the boundary points, we associate to each boundary point the number of points containing
the area of influence of the closest interior point. Then we place the points as before but without considering the points that fall outside the
domain and that are located at a distance less than A /10 from the boundary. We also use two additional restrictions in this case, on the one hand,
an expansion percentage (n) 50% higher than that used in the previous case and, on the other hand, if one of the interior points added from the
boundary is less than A /2 from any other interior point, we keep it and remove the other interior point. Note that the inserted points in this section
are not in I (see Figure [d) for details).

3.2 | Procedure for generating boundary points

In case a boundary point generates an area of influence with 4 or 9 points, then we do an interpolation to also insert points in the boundary I'.

First we do a cubic spline interpolation considering all the boundary points. The interpolation requires two essential steps: (1) a spline repre-
sentation of the boundary points is computed, and (2) the spline is evaluated at the desired points. Assuming a central point and its two closest
neighbors at I', we insert two points, each one parametrically equidistant from the central point to each neighbor. Of course, in case of overlapping
points, only one of them is added (see red points in Figure Eb
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FIGURE 3 The insertion of points within the areas of influence (left) and the discretization smoothing process (right).
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FIGURE 4 Interior points generated from boundary points and boundary points inserted. The points p1, p2, p3,and p4 have the closest interior
areas A1, A2, A3, and A4 with 4, 1, 1, and 9 points, respectively. The white points do not exist because they are outside the domain, the yellow
point is removed because it is too close to the boundary, and the green point is removed because it is close to an interior point generated from a

boundary point. The blue and red points are interior and boundary points inserted, respectively.

4 | NUMERICAL RESULTS

In all examples, we used the weighting function w; = ||x; — X0||2_4, i =1,2,...,m.For the first stage, the calculation of the gradients, we used the
second-order approximation and stars with 8 points formed by the distance criterion. For the second stage, the resolution of the problem, we used
the fourth-order approximation and stars with 18 initial points for examples in sections 4.1 and 4.2, and we used the second-order approximation
and stars with 16 points formed by the distance criterion for examples in section 4.3.

In all examples, we chose = 0.25 and 8 = 0.5 and compared the adapted discretization with the two regular discretizations whose errors

contain the error due to the adapted discretization. We used the following global error formula:

)’

error(%) = ——— - 100, (14)

Umax
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FIGURE 5 Adapted and uniform discretizations in Example 1.

where Uj is the exact value of the solution at the point (x;, y;), uj is the approximate solution provided by the GFDM at the same point, and umax
is the maximum value of the approximations given by the GFDM.

In all examples, by uniform discretization we mean a uniform discretization over the entire domain except for the boundaries.

We wrote the codes in Python and used an Intel i7-8750H processor to execute the codes. The calculated values of speedups in each example
mean the ratio between the runtime of an uniform and a adapted discretization. Of course, when we put the runtime of an adapted discretization,
we included the stage of the calculation of the gradients.

In section 4.1, we show the errors and the code runtimes in adapted discretizations. We study the influence on the proposed technique for
different values of n and 3 concerning the accuracy in section 4.2. Finally, in section 4.3, we show the errors and the code runtimes of adapted

discretizations with second-order approximations.

4.1 | Adapted discretizations with fourth-order approximation

4.1.1 | Example 1

Consider the square domain
D1 ={(x,y) € R?0 <x,y <1}

and the boundary value problem given by the following partial differential equation:

2 2
a—g + Z—g = 2500e %07 4 2575157 4 25675 4 25755 (15)
x )
whose exact solution is
U(w,y) — e—50a: + e—5y + e—5+5x + e—5+5y' (16)

We solve in the domain D1 considering an initial discretization with 196 points. We denote by SA1 the resulting adapted discretization
that can be seen in Figure with 596 points. The uniform discretizations SU1 and SU2 have 1600 and 1681 points, respectively. The uniform
discretization SU2 is shown in Figure 5B}

TabIe|I| shows the errors and execution times of all discretizations. In the adapted discretization SA1, we achieved similar accuracy with a
decrease of approximately 65% of the number of points and with a speedup of approximately 4 relative to the uniform discretization SU2.
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TABLE 1 Global error and execution times in Example 1

Discretization Total number of points Error (%) Time (s)
SuU1 1600 8.63e-1 7.02
SuU2 1681 7.93e-1 7.92

SA1 (adapted) 596 8.10e-1 2.05

interior points - interior points

boundary points - boundary points
1.0 ¢ ¢ e e e e e e e e e e 1.0
081 . . v i i | 08
0.6-::. N T T PN 0.6 1
0.4 . 0.4 -
021 - 0.2 -
0.0 - 0.0 &

ofo 0j2 0j4 ofs OjB le OjO 0j2 014 ofs Oj8 le
(a) Discretization SA2 (b) Discretization SU4
FIGURE 6 Adapted and uniform discretizations in Example 2.
TABLE 2 Global error and execution times in Example 2

Discretization Total number of points Error (%) Time (s)
SuU3 2254 5.96e-1 11.00
SuU4 2304 1.94e-2 11.19

SA2 (adapted) 526 3.34e-2 1.79

4.1.2 | Example 2

Consider the boundary value problem given by the following partial differential equation:
8’U  9%U
— — — =0, 17
oz2 Oy? (7)

whose exact solution is

Uz, y) =e ®7¥72 (18)

We solve in the domain D1 using an initial discretization with 220 points. We denote by SA2 the adapted discretization that can be seen in
Figure with 526 points. The uniform discretizations SU3 and SU4 have 2254 and 2304 points, respectively. The discretization SU4 is shown
in Figure[6B]

Table|2| shows the errors and execution times of all discretizations. In the adapted discretization SA2, we achieved similar accuracy with a
decrease of approximately 75% of the number of points and with a speedup of approximately 6 relative to the uniform discretization SU4.
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(a) Discretization CA1 (b) Discretization CU2
FIGURE 7 Adapted and uniform discretizations in Example 3.
TABLE 3 Global error and execution times in Example 3
Discretization Total number of points Error (%) Time (s)
CcuU1 1719 9.61le-1 15.94
cuU2 1799 6.17e-1 21.75
CA1 (adapted) 696 9.38e-1 4.29

4.1.3 | Example 3

Consider the circular domain
D2 = {(x,y) € R?jx® + y? < 1.5%}

and the boundary value problem given by the following partial differential equation

0%U | 9’U  8x2—448y?

—t =, (19)
M2 9y (x2+y2+0.01)°
with exact solution
U(x,y) ! (20)
X,y) = 5—F———.
Y= ey roo01

We solve in the domain D2 using an initial discretization with 488 points. We denote by CA1 the adapted discretization that can be seen in
Figure with 696 points. The uniform discretizations CU1 and CU2 have 1719 and 1799 points, respectively. The discretization CU2 is shown
in Figure[7B}

Table [3] shows the errors and execution times of all discretizations. In the adapted discretization CA1, we achieved similar accuracy with a

decrease of approximately 60% of the number of points and with a speedup of approximately 4 relative to the uniform discretization CU1.
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(a) Discretization CA2 (b) Discretization CU4
FIGURE 8 Adapted and uniform discretizations in Example 4.
TABLE 4 Global error and execution times in Example 4
Discretization Total number of points Error (%) Time (s)
CU3 1579 1.56 13.30
cu4 1653 1.00 14.20
CA2 (adapted) 849 1.19 7.75

4.1.4 | Example 4

Consider the boundary value problem given by the following partial differential equation

82U 92U 8x2 4 2(2x + 1.50)? 4
2 B T @1y 10017 (@4y2 10017 (X 0752+ (y+ 0752 +0.01)°  ((xt 07572+ (y+ 0.75) +0.01) 21)
N 8y? N 2(2y + 1.50)2
(@ +y2+0.01)®  ((x+0.75)2 + (y + 0.75)2 +0.01)°
with exact solution
UGy) = g+ ! (22)

x24+y24+0.01 (x4 0.75)2 4+ (y + 0.75)2 +0.01°
We solve in D2 using an initial discretization with 220 points. We denote by CA2 the adapted discretization that can be seen in Figure
with 849 points. The uniform discretizations CU3 and CU4 have 1579 and 1653 points, respectively. The discretization CU4 is shown in Figure .
Table E| shows the errors and execution times of all discretizations. In the adapted discretization CA2 we achieved similar accuracy with a
decrease of approximately 50% of the number of points and with a speedup of approximately 2 relative to the uniform discretization CU4.

4.1.5 | Example 5

Consider the circular domain

D3 = {(x,y) € B|(x — 2.3 +y* < 1.5}

and the boundary value problem given by the following partial differential equation
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FIGURE 9 Adapted and uniform discretizations in Example 5.

TABLE 5 Global error and execution times in Example 5

Discretization Total number of points Error (%) Time (s)
CUé6 1506 1.56e-1 10.13
CuU3 1579 1.48e-1 13.30

CAS3 (adapted) 798 1.54e-1 4.95

82U 82U 82U  oU  au
-2 —— 4+ ——-—=0, 23
Ox? OxOy + Oy? + Ox Oy 23)
with exact solution
Ulxyy) = — (24)
X,y) = .
V=5

We solve in D3 using an initial discretization with 220 points. We denote by CA3 the adapted discretization that can be seen in Figure
with 798 points. The uniform discretizations CU3 and CU6 have 1579 and 1506 points, respectively. The discretization CU3 is shown in Figure .
Table|§|shows the results and execution times of all discretizations. In the adapted discretization CA3 we achieved similar accuracy with a

decrease of approximately 50% of the number of points and with a speedup of approximately 3 relative to the uniform discretization CU3.

4.1.6 | Example 6

Consider a circle with a lemniscate geometry inside it

D4=C-L,

where C = {(x,y) € R?|x?2 +y2 <= 152} and L = {(x,y) € R?|(x® + y?)? — (x? —y?) < 0}.
Consider the boundary value problem given by the following partial differential equation

with exact solution given in (20).

02U  0%U

8x2 — 8y2

022~ 92 (22 142 4 0.01)°

(25)
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FIGURE 10 Adapted and uniform discretizations in Example 6.

TABLE 6 Global error and execution times in Example 6 with fourth-order approximations.

Discretization Total number of points Error (%) Time (s)
LU1 2032 4.24e-1 23.50
LU2 2416 1.71e-1 73.40

LA (Adapted) 493 1.19%e-1 1.61

We solve in the domain D4 using an initial discretization with 280 points. We denote by LA the adapted discretization that can be seen in
Figure with 493 points. The uniform discretizations LU1 and LU2 have 2032 and 2416 points, respectively. The discretization LU2 is shown
in Figure (ZOR).

Table[g]shows the errors and runtime of all discretizations. In the adapted discretization LA, we achieved a similar accuracy with a decrease of

approximately 75% of the number of points and with a speedup of approximately 37 relative to the uniform discretization SU4.

4.2 | Influence of the parameters n and 3

On the one hand, the parameter 7 influences the distance between points within the area of influence and, therefore, affects the accuracy of the
derivatives. On the other hand, the parameter 3 controls the total amount of inserted points, the smaller the 3, the more points will be added.
Figure[TT]shows the global errors resulting from the variation of the parameter 7 in all adapted discretizations used in section 4.1. We varied 7
between 0.1 and 0.4 with a step equal to 0.05. In general, the results indicate that intermediate values of n provide more accurate results. In this
paper, we have chosen the value of n = 0.25.
FigurelT_lehows the global errors due to variation of the parameter 8. We varied 3 between 0 and 2 with a step equal to 0.5. In general, values

of 3 lower than 1 generate more accurate results. In this paper, we have chosen the value of 3 = 0.5.

4.3 | Adapted discretizations with second-order approximations

We solve and using the second-order approximation and an initial discretization with 504 points.

We denote by SA3 and SA4 the adapted discretizations with 1134 and 1233 points, respectively (see Figures and ). The uniform
discretizations SU5, SU6, SU7, and SU8 have 2916, 3136, 5329 and 5476 points, respectively. The discretizations SU6 and SU8 are shown in
Figures[I3b]and[I3d] respectively.
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FIGURE 12 Relation between the value of 5 and the global errors.
TABLE 7 Global error and execution times in Example 1 with second-order approximation

Discretization Total number of points Error (%) Time (s)

SuU5 2916 1.38 6.86

SuUé 3136 1.32 7.93
SA3 (adapted) 1134 1.32 1.48

Tables[7]and [8] show the results and execution times of all discretizations. In the adapted discretizations SA3 and SA4, we achieved a similar
accuracy with a decrease of approximately 65% and 75%, respectively, of the number of points relative to the uniform discretizations SU6 and
SUS8, respectively. Comparing the same discretizations, we get a speedup of approximately 5 and 15, respectively.

5 | CONCLUSIONS

Given a problem for which it is necessary to solve a differential equation in a domain employing the GFDM, the discretizations performed in such
a domain generally have an approximately constant point density. Possibly, the most widespread ways of discretizing are by means of mesh-based

preprocessors or simply in a regular way, allowing for irregularities where this is not possible.
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FIGURE 13 Adapted and uniform discretizations in examples 1 and 2 with second-order approximations

TABLE 8 Global error and execution times in Example 2 with second-order approximation

Discretization Total number of points Error (%) Time (s)
SuU7 5329 9.5%e-1 22.55
SuU8 5476 8.06e-2 25.85

SA4 (adapted) 1233 1.56e-1 1.75

However, these forms of discretization do not allow to capture the characteristics of the problem and to take advantage of the benefits of
GFDM. There are particular cases where the authors use discretizations with non-constant density in the domain to obtain higher accuracy using
a smaller number of points.

We propose in this paper to use discretizations adapted to the problem in general. To do so, we solve the problem in two stages. In the first
stage, we solve the problem to compute the gradients using a regular coarse discretization. Once the gradients are calculated, we distribute the
points according to the gradient values. Finally, we solve the problem considering the adapted discretization.
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We have shown the performance of the proposed strategy for fourth-order approximations but we have also shown some examples with
second-order approximations where the results have been similar.

On the one hand, the adapted discretizations provide the same accuracy as a regular discretization, but with a smaller number of points, with
reductions above 50% in all our examples. In addition, the initial coarse discretization, that automatically generates the adapted discretization, has
required between 9% and 27% of the points of the regular discretization.

On the other hand, the computational time required to solve the problem with these adapted discretizations, taking into account the entire
process, is less, with reductions above 50% in all our examples.

References

1. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal
Astronomical Society 1977; 181(3): 375-389. doi: 10.1093/mnras/181.3.375

2. Onate E, Idelsohn S, Zienkiewicz O, Taylor R, Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer
Methods in Applied Mechanics and Engineering 1996; 139(1): 315-346. doi: https:/doi.org/10.1016/50045-7825(96)01088-2

3. LiuGR, Gu Y. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering 2001; 50(4):
937-951. [doi: https:/doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X

4. Wyatt M, Taylor, Davies G, snell C. A new difference based finite element method. Proceedings of the Institution of Civil Engineers 1975; 59(3):
395-409. doi: https:/doi.org/10.1680/iicep.1975.3672

5. Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures
1980; 11(1-2): 83-95. doi: https:/doi.org/10.1016/0045-7949(80)90149-2

6. Benito JJ, Urefa F, Gavete L. Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling 2001;
25(12): 1039-1053. [doi: https:/doi.org/10.1016/S0307-904X(01)00029-4

7. Milewski S. Selected computational aspects of the meshless finite difference method. Numerical Algorithms 2012; 63(1): 107-126. doi:
10.1007/s11075-012-9614-6

8. Milewski S, Putanowicz R. Higher order meshless schemes applied to the finite element method in elliptic problems. Computers & Mathematics
with Applications 2019; 77(3): 779-802. doi: https:/doi.org/10.1016/j.camwa.2018.10.016

9. Jaworska |, Orkisz J. Higher order multipoint method-from Collatz to meshless FDM. Engineering Analysis with Boundary Elements 2015; 50:
341-351. doi: https:/doi.org/10.1016/j.enganabound.2014.09.007

10. Jaworska I. Higher order multipoint Meshless Finite Difference Method for two-scale analysis of heterogeneous materials. International Journal
for Multiscale Computational Engineering 2019; 17(3). doi: 10.1615/IntJMultCompEng.2019028866

11. Albuquerque-Ferreira AC, Urefia M, Ramos H. The generalized finite difference method with third-and fourth-order approx-
imations and treatment of ill-conditioned stars. Engineering Analysis with Boundary Elements 2021; 127: 29-39. doi:
https:/doi.org/10.1016/j.enganabound.2021.03.005

12. Benito JJ, Garcia A, Gavete ML, Negreanu M, Urena F, Vargas AM. Convergence and Numerical Solution of a Model for Tumor Growth.
Mathematics 2021; 9(12): 1355. |doi: 10.3390/math9121355

13. LiPW, Fan CM, Grabski JK. A meshless generalized finite difference method for solving shallow water equations with the flux limiter technique.
Engineering Analysis with Boundary Elements 2021; 131: 159-173. |doi: https:/doi.org/10.1016/j.enganabound.2021.06.022

14. Urena M, Benito JJ, Urefia F, Salete E, Gavete L. Application of generalised finite differences method to reflection and transmission problems in
seismic SH waves propagation. Mathematical Methods in the Applied Sciences 2018; 41(6): 2328-2339. doi: https://doi.org/10.1002/mma.4268

15. Korkut F, Tokdemir T, Mengi Y. The use of generalized finite difference method in perfectly matched layer analysis. Applied Mathematical
Modelling 2018; 60: 127-144. doi: https://doi.org/10.1016/j.apm.2018.03.014


http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(96)01088-2
http://dx.doi.org/ https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
http://dx.doi.org/https://doi.org/10.1680/iicep.1975.3672
http://dx.doi.org/https://doi.org/10.1016/0045-7949(80)90149-2
http://dx.doi.org/https://doi.org/10.1016/S0307-904X(01)00029-4
http://dx.doi.org/10.1007/s11075-012-9614-6
http://dx.doi.org/10.1007/s11075-012-9614-6
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.10.016
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2014.09.007
http://dx.doi.org/10.1615/IntJMultCompEng.2019028866
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.03.005
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.03.005
http://dx.doi.org/10.3390/math9121355
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.06.022
http://dx.doi.org/https://doi.org/10.1002/mma.4268
http://dx.doi.org/https://doi.org/10.1016/j.apm.2018.03.014

Albuquerque-Ferreira et al | 15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Korkut F, Mengi Y, Tokdemir T. On the use of complex stretching coordinates in generalized finite difference method with
applications in inhomogeneous visco-elasto dynamics. Engineering Analysis with Boundary Elements 2022; 134: 466-490. doi:
https://doi.org/10.1016/j.enganabound.2021.10.014

Shao M, Song L, Li PW. A generalized finite difference method for solving Stokes interface problems. Engineering Analysis with Boundary Elements
2021; 132: 50-64. doi: https://doi.org/10.1016/j.enganabound.2021.07.002

Garcia A, Negreanu M, Urena F, Vargas AM. Convergence and numerical solution of nonlinear generalized Benjamin-Bona-Mahony-Burgers
equation in 2D and 3D via generalized finite difference method. International Journal of Computer Mathematics 2021; 0(0): 1-21. doi:
10.1080/00207160.2021.1989423

Hosseini SM. Analysis of elastic wave propagation in a functionally graded thick hollow cylinder using a hybrid mesh-free method. Engineering
Analysis with Boundary Elements 2012; 36(11): 1536-1545. doi: https://doi.org/10.1016/j.enganabound.2012.05.001

Hosseini SM. Application of a hybrid mesh-free method based on generalized finite difference (GFD) method for natural frequency analysis
of functionally graded nanocomposite cylinders reinforced by carbon nanotubes. Computer Modeling in Engineering and Sciences-CMES 2013;
95(1): 1-29. doi: 10.3970/cmes.2013.095.001

Collatz L. The numerical treatment of differential equations. Springer Science & Business Media . 2012.
Forsythe GE, Wasow WR. Finite-difference methods for partial differential equations. 1960.

Jensen PS. Finite difference techniques for variable grids. Computers & Structures 1972; 2(1-2): 17-29. doi: https:/doi.org/10.1016/0045-
7949(72)90020-X

Milewski S. Development of simple effective cloud of nodes and triangular mesh generators for meshless and element-
based analyses-implementation in Matlab. Computer Assisted Methods in Engineering and Science 2018; 24(3): 157-180. doi:
http://dx.doi.org/10.24423/cames.192

Wei J, Wang S, Hou Q, Dang J. Generalized finite difference time domain method and its application to acoustics. Mathematical Problems in
Engineering 2015; 2015. doi: https://doi.org/10.1155/2015/640305

Ferreira ACA, Ribeiro PMV. Reduced-order strategy for meshless solution of plate bending problems with the generalized finite difference
method. Latin American Journal of Solids and Structures 2019; 16(1): 1-21. |doi: https://doi.org/10.1590/1679-78255191

Chi-Mou N. A quadrilateral finite difference plate element for nonlinear transient analysis of panels. Computers & Structures 1982; 15(1): 1-10.
doi: https://doi.org/10.1016/0045-7949(82)90028-1

Tseng A, Gu S. A finite difference scheme with arbitrary mesh systems for solving high-order partial differential equations. Computers &
Structures 1989; 31(3): 319-328. [doi: https://doi.org/10.1016/0045-7949(89)90379-9

Orkisz J. Finite difference method. Handbook of Computational Solid Mechanics 1998: 336-432.

Garcia-March MA, Arevalillo-Herrdez M, Villatoro FR, Giménez F, de Cdrdoba PF. A generalized finite difference method using Coatmélec
lattices. Computer Physics Communications 2009; 180(7): 1125-1133. doi: https://doi.org/10.1016/j.cpc.2009.01.015

Benito JJ, Urena F, Urena M, Salete E, Gavete L. A new meshless approach to deal with interfaces in seismic problems. Applied Mathematical
Modelling 2018; 58: 447-458. |doi: https:/doi.org/10.1016/j.apm.2018.02.014


http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.10.014
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.10.014
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.07.002
http://dx.doi.org/10.1080/00207160.2021.1989423
http://dx.doi.org/10.1080/00207160.2021.1989423
http://dx.doi.org/https://doi.org/10.1016/j.enganabound.2012.05.001
http://dx.doi.org/10.3970/cmes.2013.095.001
http://dx.doi.org/https://doi.org/10.1016/0045-7949(72)90020-X
http://dx.doi.org/https://doi.org/10.1016/0045-7949(72)90020-X
http://dx.doi.org/http://dx.doi.org/10.24423/cames.192
http://dx.doi.org/http://dx.doi.org/10.24423/cames.192
http://dx.doi.org/https://doi.org/10.1155/2015/640305
http://dx.doi.org/https://doi.org/10.1590/1679-78255191
http://dx.doi.org/https://doi.org/10.1016/0045-7949(82)90028-1
http://dx.doi.org/https://doi.org/10.1016/0045-7949(89)90379-9
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2009.01.015
http://dx.doi.org/https://doi.org/10.1016/j.apm.2018.02.014

	CMMSE: A technique for generating adapted discretizations to solve partial differential equations with the generalized finite difference method
	Abstract
	Introduction
	The generalized finite difference method
	A procedure for generating discretizations adapted to the partial differential equation
	Procedure for generating interior points
	Procedure for generating boundary points

	Numerical results
	Adapted discretizations with fourth-order approximation
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Influence of the parameters  and 
	Adapted discretizations with second-order approximations

	Conclusions
	References


