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Abstract: The purpose of this paper is to study the following equation driven by a nonlocal
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utt + [u]2(θ−1)
s LKu+ a|ut|m−1ut = b|u|p−1u

with homogeneous Dirichlet boundary condition and initial data, where [u]2s is the Gagliardo
seminorm, a ≥ 0, b > 0, 0 < s < 1, and θ ∈ [1, 2∗s/2) with 2∗s = 2N/(N − 2s), N is the space
dimension. By virtue of a differential inequality technique, an upper bound of the blow-up
time is obtained with a bounded initial energy if m < p and some additional conditions are
satisfied. For m ≡ 1, in particular, the blow-up result with high initial energy also is showed
by constructing a new control functional and combining energy inequalities with the concavity
argument. Moreover, an estimate for the lower bound of the blow-up time is investigated.
Finally, the energy decay estimate is proved as well. These results improve and complement
some recent works obtained by Pan, Pucci and Zhang( J. Evol. Equ. 18 (2018) 385–409) and
by Lin and Tian et al(Discrete Contin. Dyn. Syst. Ser. S 13 (7) (2020) 2095–2107).
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1 Introduction

In this paper, we are concerned with the following Kirchhoff-type hyperbolic equations in-
volving the fractional Laplacian and the weak damping

utt + [u]
2(θ−1)
s LKu+ a|ut|m−1ut = b|u|p−1u in Ω× (0, T ),

u(x, t) = 0 in RN\Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(1.1)

where [u]2s =
∫∫

R2N |u(x, t) − u(y, t)|2K(x − y)dxdy is the Gagliardo seminorm, a ≥ 0, b > 0,
T ∈ (0,+∞] is the maximal existence time of the solution, Ω is a bounded domain in RN (N > 2s)
with smooth boundary ∂Ω, s ∈ (0, 1) is fixed and LK is the integro-differential operator, which
(up to normalization factors) may be defined as

LKu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

(u(x)− u(y))K(x− y)dy, x ∈ RN (1.2)
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for u ∈ C∞0 (RN ), where Bε(x) is a ball with x as the center and ε as the radius, x ∈ RN , ε > 0,
the kernel K : RN\{0} → (0,+∞) is a function satisfying the properties below:

(a) γK ∈ L1(RN ), where γ(x) = min{|x|2, 1};

(b) there exists λ > 0 such that K(x) ≥ λ|x|−(N+2s) for any x ∈ RN\{0};

(c) K(x) = K(−x) for any x ∈ RN\{0}.

Throughout this paper, let u0(x) ∈ X0, u1(x) ∈ L2(Ω) and the exponents satisfy the condition

(H) 1 ≤ m, 1 ≤ θ < 2∗s
2
, 2θ − 1 < p ≤ 2∗s − 1.

where 2∗s := 2N
N−2s , X0 will be showed later.

In 1883, Kirchhoff [10] first introduced the following hyperbolic equation:

ρhutt + δut =
{
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2
dx
}∂2u

∂x2
+ f, 0 ≤ x ≤ L, t ≥ 0,

to describe the nonlinear vibrations of an elastic string, where u = u(x, t) is the lateral deflection,
E is the Young’s modulus, ρ is the mass density, h is the cross-section area, L is the length, p0

is the initial axial tension, δ is the resistance modulus, and f is the external force. Lions [12]
proposed a functional analysis framework to study the following higher dimension problem in
presence of an external force term f :

utt −
(
a+ b

∫
Ω
|∇u|2dx

)
∆u = f(x, u).

Subsequently, the study of the mathematical theory to Kirchhoff type equations has been well
developing by various authors. The interested readers can refer to references [8, 9, 16, 17] to
be familiar with the latest results. Specifically, Han and Li [8] discussed the following initial
boundary value problem for a class of Kirchhoff type parabolic equations with a nonlinear term

ut −M
( ∫

Ω |∇u|
2dx
)

∆u = |u|q−1u in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where the diffusion coefficient M(s) = a+ bs with the parameters a, b being positive, 3 < q ≤
2∗−1 with 2∗ being the Sobolev conjugate of 2. They applied the modified potential well method
and variational method to give a threshold result for the solutions to exist globally or to blow up
in finite time when the initial energy is subcritical and critical, respectively. The decay rate of
the L2(Ω) norm was also obtained for global solutions in these cases. Moreover, some sufficient
conditions for the existence of global and blow-up solutions were also derived when the initial
energy is supercritical.

In recent years, more and more attentions have been paid to various models involving frac-
tional Laplacian and nonlocal operators. This type of operators arises in a lot of applications,
such as, continuum mechanics, phase transition phenomena, population dynamics, image pro-
cess, game theory and Lévy processes and so on. Servadei and Valdinoci [30] studied the following
equation {

LKu+ f(x, u) = 0 in Ω,

u = 0 in RN\Ω,
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with

LKu(x) =

∫
RN

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN .

They proved that the equation above admits a Mountain Pass type solution u ∈ X0 which is not
identically zero if f is a Carathéodory function satisfying suitable conditions. For more results
with non-local operators of elliptic type, one may refer to [1, 29, 31, 33]. And there exist some
papers on the study of fractional p-Laplacian evolution equations, the interested readers can
refer to [18, 26, 27, 34]. For Kirchhoff type problem involving a nonlocal operator, many results
have been showed. For example, Fiscella and Valdinoci [3] investigated{

−M([u]2s)LKu = λf(x, u) + |u|2∗−2u in Ω,

u = 0 in RN\Ω,

where λ is a positive parameter, M : R+ → R+ is an increasing and continuous function, and
there exists m0 > 0 such that M(t) ≥ m0 = M(0) for any t ∈ R+. They proved that there
exists λ∗ > 0 such that the above problem has a nontrivial solution uλ for all λ ≥ λ∗. Xiang,
Rădulescu and Zhang [35] studied the following problem

ut +M([u]2s)LKu = |u|p−2u in Ω× (0, T ),

u(x, t) = 0 in RN\Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where M : R+
0 → R+

0 is continuous and there exists m0 > 0 and θ > 1 such that M(σ) ≥ m0σ
θ−1

for all σ ∈ R+
0 . Under the suitable conditions, the local existence of nonnegative solutions was

obtained by employing the Galerkin method. In addition, supposed that there exists a constant
µ ≥ 1 such that µM(σ) ≥ M(σ)σ for all σ ∈ R+

0 with M(σ) =
∫ σ

0 M(τ)dτ , they proved that
the local nonnegative solutions blows up in finite time with arbitrary negative initial energy and
suitable initial values by virtue of a differential inequality technique. Moreover, an estimate for
the lower and upper bounds of the blow-up time was obtained. These results were improved by
Ding and Zhou [2].

To our best knowledge, there are many papers dedicated to the blow-up phenomenon of the
solution for hyperbolic problems involving the Laplacian, one may see [4–7, 13, 15, 24, 25, 32]
and the reference therein. However, there is hardly any work on the study of hyperbolic problems
involving the fractional Laplacian, in particular, on the blow-up study with high initial energy.
In this paper, we are devoted to the study of problem (1.1) on the blow-up phenomenon of
the solution with the subcritical and high initial energy, respectively, and will give the energy
decay estimate when the solution of problem (1.1) exists globally. Our results improve and
complement some recent works in [21, 28], where for a = 0 and b = 1 in problem (1.1), Pan,
Pucci and Zhang [28] obtained the global existence, vacuum isolating and blow-up of solutions
by combining the Galerkin method with potential wells theory for subcritical initial energy
under some appropriate assumptions, and investigated the existence of global solutions with the
critical initial energy. It is noted that the blow-up phenomenon with high initial energy is not
discussed in [28]. Hereafter, Lin and Tian et al [21] estimated the upper bound of the blow-up
time with arbitrary positive energy under some assumptions, and gave the lower bound of the
blow-up time for p ∈ (2∗s − 1, 2∗s/2]. In this paper, we investigate the the lower bound of the

blow-up time for p ∈
[
2∗s − 1, 2∗s

2 − 2θ
(

1
2∗s
− 1

2

))
. Obviously, the range is extended due to 2∗s > 2.

The outline of the present paper is as follows: In Section 2, we will give the corresponding
function space and some necessary lemmas. Section 3 is devoted to give a blow-up result with
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a bounded initial energy. In Section 4, a blow-up criterion with high initial energy is proved for
m ≡ 1. The lower bound of the blow-up time will be discussed in Section 5. In Section 6, we
prove that the solution exists globally, and give a energy decay estimate.

2 Preliminaries

We begin with introducing some spaces and lemmas, which can be found in [30]. In the
sequel, we denote Q = R2N\O, where O = CΩ × CΩ ⊂ R2N and CΩ = RN\Ω. X is the linear
space of Lebesgue measurable functions from RN to R such that the restriction to Ω of any
function u in X belongs to L2(Ω) and

the mapping (x, y)→ (u(x)− u(y))
√
K(x− y) is in L2(Q, dxdy).

The space X is endowed with the norm defined as

‖u‖X = ‖u‖L2(Ω) +

(∫∫
Q
|u(x)− u(y)|2K(x− y)dxdy

) 1
2

Define
X0 = {u ∈ X : u = 0 a.e. in CΩ}.

Lemma 2.1.
[30]

Let K : RN\{0} → (0,+∞) satisfy assumptions (a)− (c).

(1) For any r ∈ [1, 2∗s], there exists a positive constant c, depending only on N, s such that for
any u ∈ X0

‖u‖2Lr(Ω) = ‖u‖2Lr(RN ) ≤ c
∫∫

Q
|u(x)− u(y)|2K(x− y)dxdy;

(2) There exists a constant C > 1 depending only on N, s, θ and Ω such that for any u ∈ X0∫∫
Q
|u(x)− u(y)|2K(x− y)dxdy ≤ ‖u‖2X ≤ C

∫∫
Q
|u(x)− u(y)|2K(x− y)dxdy,

that is,

‖u‖X0 =

(∫∫
Q
|u(x)− u(y)|2K(x− y)dxdy

) 1
2

is a norm on X0 equivalent to the usual one.

Definition 2.1. (Weak solution) A function u = u(x, t) over Ω × [0, T ] is said to be a
weak solution of problem (1.1) if u ∈ C([0, T ];X0) with ut ∈ C([0, T ];L2(Ω)) ∩ Lm+1(0, T ; Ω),
u(x, 0) = u0(x) ∈ X0, ut(x, 0) = u1(x) ∈ L2(Ω) and∫

Ω
uttϕdx+ 〈u(·, t), ϕ(·, t)〉X0 +

∫
Ω
a|ut|m−1utϕdx =

∫
Ω
b|u|p−1uϕdx (2.1)

for any ϕ ∈ X0, where

〈u(·, t), ϕ(·, t)〉X0 = ‖u(·, t)‖2(θ−1)
X0

∫∫
Q

(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))K(x− y)dxdy.



5
The local existence of the solution to problem (1.1) may be proved by exploiting the Galerkin

method in [35].

Definition 2.2. (Blow-up in finite time) We say that the weak solution u of problem
(1.1) blows up in finite time T ∗ if

lim
t→T ∗

‖u‖p+1
p+1 = +∞.

Define the energy functional

E(t) =
1

2
‖ut‖22 +

1

2θ
‖u‖2θX0

− b

p+ 1
‖u‖p+1

p+1. (2.2)

Lemma 2.2. If u is a solution for problem (1.1), the energy functional E(t) is nonincreasing
with respect to t, that is E′(t) = −a‖ut‖m+1

m+1 ≤ 0.

The proof of this lemma is pretty direct if we choose ϕ = ut in (2.1). Here, we omit the
process.

3 Blow-up with a bounded initial energy

In what follows, we are committing to discussing the blow-up phenomenon with a bounded
initial energy. Our results is as follows:

Theorem 3.1. Let m < p and (H) hold. Supposed that

‖u0‖2θX0
> α1 := (bc

p+1
2 )
− 2θ

(p+1−2θ) , E(0) < E1 :=
( 1

2θ
− 1

p+ 1

)
α1,

the solution of problem (1.1) blows up at finite time T* and

T ∗ ≤ F−
σ

1−σ (0)
M2

M1

1− σ
σ

,

where F (0), σ, M1, M2 will be discussed below.

Let us first give two critical lemmas to help prove this theorem.

Lemma 3.1. If u is a solution for problem (1.1) and all conditions in Theorem 3.1 are
satisfied, there exists a positive constant α2 > α1 such that

‖u‖2θX0
≥ α2, ∀t ≥ 0. (3.1)

Proof. It follows from (2.2) and Lemma 2.1(1) that

E(t) ≥ 1

2θ
‖u‖2θX0

− b

p+ 1
‖u‖p+1

p+1 ≥
1

2θ
‖u‖2θX0

− bc
p+1

2

p+ 1
‖u‖p+1

X0

=
1

2θ
α− bc

p+1
2

p+ 1
α
p+1
2θ := h(α),

(3.2)

where α := α(t) = ‖u‖2θX0
. It is easily verified that h(α) is increasing for 0 < α < α1, decreasing

for α1 < α, h(α)→ −∞ as α→ +∞, and h(α1) = E1. Since E(0) < E1, there exists an α2 > α1

such that h(α2) = E(0). Recall (3.2), then h(α(0)) ≤ E(0) = h(α2), which implies α(0) ≥ α2
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since the condition α(0) > α1. To prove (3.1), we suppose by contradiction that for some t0 > 0,
α(t0) < α2. The continuity of α(t) illustrates that we could choose t0 such that α1 < α(t0) < α2,
and then we have

E(0) = h(α2) < h(α(t0)) ≤ E(t0).

This contradicts Lemma 2.2.

Lemma 3.2. Set H(t) = E2 −E(t) for all t ≥ 0 with E2 ∈ (E(0), E1). If all the conditions
of Theorem 3.1 hold, for all t ≥ 0,

0 < H(0) ≤ H(t) ≤ b

p+ 1
‖u‖p+1

p+1. (3.3)

Proof. Lemma 2.2 implies that H(t) is nondecreasing with respect to t, thus for t ≥ 0, H(t) ≥
H(0) = E2 − E(0) > 0. (2.2) and (3.1) illustrate

H(t) ≤ E1 −
1

2θ
α2 +

b

p+ 1
‖u‖p+1

p+1 ≤ E1 −
1

2θ
α1 +

b

p+ 1
‖u‖p+1

p+1 =
b

p+ 1
‖u‖p+1

p+1.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1: Define an auxiliary function

F (t) = H1−σ(t) + ε

∫
Ω
utudx,

where 0 < σ ≤ min
{

p−m
(p+1)m ,

p−1
2(p+1)

}
, ε > 0. The rest of this proof will be divided into three

steps:
Step 1: Estimate for F ′(t) Differentiating directly F (t), recalling (1.1), adding and

subtracting ε(p+ 1)(1− ε1)H(t) with 0 < ε1 < 1, we obtain

F ′(t) = (1− σ)H−σ(t)H ′(t) + ε‖ut‖22 − ε‖u‖2θX0
− εa

∫
Ω
|ut|m−1utudx+ εb‖u‖p+1

p+1

≥ (1− σ)H−σ(t)H ′(t) + ε
[
1 +

(p+ 1)(1− ε1)

2

]
‖ut‖22 + ε

[(p+ 1)(1− ε1)

2θ
− 1
]
‖u‖2θX0

− εa
∫

Ω
|ut|m−1utudx+ ε(p+ 1)(1− ε1)H(t)− ε(p+ 1)(1− ε1)E2 + εε1b‖u‖p+1

p+1.

(3.4)

Applying Young’s inequality with ε2 > 1 and H ′(t) = −E′(t), Lemma 2.2, the embedding
Lp+1(Ω) ↪→ Lm+1(Ω), we easily get∣∣∣ ∫

Ω
|ut|m−1utudx

∣∣∣ ≤ ε2H
−σ(t)‖ut‖m+1

m+1 +
1

εm2
Hσm(t)‖u‖m+1

m+1

≤ ε2

a
H−σ(t)H ′(t) +

1

εm2
Hσm(t)(|Ω|+ 1)m+1‖u‖m+1

p+1 .

(3.5)
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Recalling 0 < σ ≤ p−m

(p+1)m and Lemma 3.2, apparently,

1

εm2
Hσm(t)(|Ω|+ 1)m+1‖u‖m+1

p+1

=
1

εm2
(|Ω|+ 1)m+1 H

σm+m+1
p+1
−1

(t)

H
σm+m+1

p+1
−1

(0)
H

1−m+1
p+1 (t)H

σm+m+1
p+1
−1

(0)‖u‖m+1
p+1

≤ 1

εm2
(|Ω|+ 1)m+1

( b

p+ 1

) p−m
p+1

(‖u‖p+1
p+1)

1−m+1
p+1 H

σm+m+1
p+1
−1

(0)‖u‖m+1
p+1

=
1

εm2
(|Ω|+ 1)m+1

( b

p+ 1

) p−m
p+1

H
σm+m+1

p+1
−1

(0)‖u‖p+1
p+1.

(3.6)

It follows from (3.4) (3.5) and (3.6) that

F ′(t) ≥ (1− σ − εε2)H−σ(t)H ′(t) + +ε
[
1 +

(p+ 1)(1− ε1)

2

]
‖ut‖22

+ ε
[(p+ 1)(1− ε1)

2θ
− 1
]
‖u‖2X0

+ ε(p+ 1)(1− ε1)H(t)− ε(p+ 1)(1− ε1)E2

+ ε
[
ε1b−

a

εm2
(|Ω|+ 1)m+1

( b

p+ 1

) p−m
p+1

H
σm+m+1

p+1
−1

(0)
]
‖u‖p+1

p+1.

(3.7)

Let us choose 0 < ε1 <
p+1−2θ
p+1 sufficiently small and choose E2 ∈ (E(0), E1), sufficiently close

to E(0) such that

E2 ≤ α1

( 1

2θ
− 1

(p+ 1)(1− ε1)

)
< E1,

therefore, Lemma 3.1 implies

ε
[(p+ 1)(1− ε1)

2
− 1
]
‖u‖2θX0

− ε(p+ 1)(1− ε1)E2

≥ ε
[(p+ 1)(1− ε1)

2
− 1
]
α1 − ε(p+ 1)(1− ε1)E2 ≥ 0.

Let us fix the constant ε2 so that

ε1b >
a

εm2
(|Ω|+ 1)m+1

( b

p+ 1

) p−m
p+1

H
σm+m+1

p+1
−1

(0),

and then choose ε so small that 1− σ > εε2. Therefore, (3.7) can be written as

F ′(t) ≥M1

(
‖ut‖22 +H(t) + ‖u‖p+1

p+1

)
, (3.8)

where

M1 = εmin
{

1 +
(p+ 1)(1− ε1)

2
, (p+ 1)(1− ε1),

ε1b−
a

εm2
(|Ω|+ 1)m+1

( b

p+ 1

) p−m
p+1

H
σm+m+1

p+1
−1

(0)
}
.

Step 2: Estimate for F
1

1−σ (t) We now consider

F
1

1−σ (t) =
(
H1−σ(t) + ε

∫
Ω
utudx

) 1
1−σ

. (3.9)
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On the one hand, applying Cauchy-Schwarz inequality, embedding Lp+1(Ω) ↪→ L2(Ω) and
Young’s inequality to show∣∣∣ ∫

Ω
utudx

∣∣∣ 1
1−σ ≤ (1 + |Ω|)

1
1−σ ‖ut‖

1
1−σ
2 ‖u‖

1
1−σ
p+1 ≤ C1‖ut‖22 + C2‖u‖

2
2(1−σ)−1

p+1 , (3.10)

where

C1 =
(1 + |Ω|)

1
1−σ

2(1− σ)
, C2 =

(1 + |Ω|)
1

1−σ [2(1− σ)− 1]

2(1− σ)
.

Recalling 0 < σ ≤ p−1
2(p+1) , Lemma 3.2, we obtain

‖u‖
2

2(1−σ)−1

p+1 ≤
[(p+ 1)H(t)

b

] 2−(p+1)[2(1−σ)−1]
(p+1)[2(1−σ)−1] ‖u‖p+1

p+1 ≤ C3‖u‖p+1
p+1

(3.11)

with C3 =
(

min
{

(p+1)H(0)
b , 1

}) 2−(p+1)[2(1−σ)−1]
(p+1)[2(1−σ)−1]

. Inserting (3.11) into (3.10), and combining (3.9),

we obtain

F
1

1−σ (t) ≤M2

(
H(t) + ‖ut‖22 + ‖u‖p+1

p+1

)
, (3.12)

where
M2 = 2

σ
1−σ max

{
1, ε

1
1−σC1, ε

1
1−σC2C3

}
.

Step 3: Blow-up result Combining (3.8) and (3.12) arrives at F
1

1−σ (t) ≤ M2
M1
F ′(t), which

implies by Gronwall’s inequality

F
σ

1−σ (t) ≥ 1

F
σ

1−σ (0)− M2
M1

σ
1−σ t

,

with F (0) = H1−σ(0) + ε
∫

Ω u1(x)u0(x)dx > 0 by choosing suitable ε, which further yields

F (t)→ +∞ at finite time T ∗ and T ∗ ≤ F
σ

1−σ (0)M2
M1

1−σ
σ .

In what follows, we will prove lim
t→T ∗

F (t)→ +∞ =⇒ lim
t→T ∗

‖u‖p+1
p+1 = +∞. Let us consider the

following two cases based on the definition of F (t) as t→ T ∗:
Case 1: H(t)→ +∞. In this case, Lemma 3.2 yields ‖u‖p+1

p+1 → +∞.
Case 2:

∫
Ω utudx→ +∞. Cauchy’s inequality and Lemma 2.1(1) illustrate∫

Ω
utudx ≤

1

2
‖ut‖22 +

1

2
‖u‖22 ≤

1

2
‖ut‖22 +

1

2
c‖u‖2X0

. (3.13)

Recalling (2.2) and E(t) ≤ E(0), we have

1

2
‖ut‖22 +

1

2θ
‖u‖2θX0

= E(t) +
b

p+ 1
‖u‖p+1

p+1 ≤ E(0) +
b

p+ 1
‖u‖p+1

p+1 (3.14)

It is direct by combining (3.13) with (3.14) that if there exists
∫

Ω utudx → +∞, we obtain

‖u‖p+1
p+1 → +∞. This completes the proof of this theorem.
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4 Blow-up with high initial energy

In Section 3, we show a blow-up result with a bounded initial energy. The aim of this section
is to give a blow-up criterion with high initial energy for m ≡ 1. Before moving further, let us
first give a lemma, which comes from soma ideas in [7, 15, 22].

Lemma 4.1. Let (H) hold. If u is a weak solution of problem (1.1), there exists the following
inequality:

d

dt

[ ∫
Ω
uutdx−

p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0

]
≥M0

[∫
Ω
uutdx−

p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0

]
.

(4.1)

where M0 =
2(p+ 1− 2θ)(p+ 1)

c̃θ[2a+ 4(p+ 1)]
> 0, c̃θ = max

{
1, cθ, 4(p+1−2θ)(p+1)

(p+3)[2a+4(p+1)]

}
.

Proof. Define an auxiliary function G(t) =
∫

Ω uutdx. The first equality in problem (1.1), (2.2)
and Cauchy’s inequality with δ > 0 yield

G′(t) = ‖ut‖22 +

∫
Ω
uuttdx = ‖ut‖22 − ‖u‖2θX0

− a
∫

Ω
uutdx+ b‖u‖p+1

p+1

≥ p+ 3

2
‖ut‖2 +

p+ 1− 2θ

2θ
‖u‖2θX0

− δa

2
‖u‖22 −

a

2δ
‖ut‖22 − (p+ 1)E(t).

By choosing δ =
p+ 1− 2θ

c̃θ[2a+ 4(p+ 1)]
and combining Lemma 2.2, we have

d

dt

[
G(t)− p+ 1

M0
E(t)

]
≥ p+ 3

2
‖ut‖22 +

p+ 1− 2θ

2θ
‖u‖2θX0

− δa

2
‖u‖22 +

((p+ 1)a

M0
− a

2δ

)
‖ut‖22 − (p+ 1)E(t)

=
p+ 3

2
‖ut‖22 +

p+ 1− 2θ

2θ
‖u‖2θX0

− δa

2
‖u‖22 − (p+ 1)E(t).

(4.2)

Moreover, Lemma 2.1(1) and Cauchy’s inequality yield

p+ 1− 2θ

2θ
‖u‖2θX0

≥ p+ 1− 2θ

2θc̃θ
‖u‖2θ2 ≥

p+ 1− 2θ

2θc̃θ
[θ‖u‖22 − (θ − 1)]. (4.3)

Substituting (4.3) into (4.2) yields

d

dt

[
G(t)− p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0

]
≥M0

(
‖ut‖22 −

p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0
+ ‖u‖22

)
≥M0

(
G(t)− p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0

)
.

(4.4)

(4.1) obviously follows from (4.4).
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Lemma 4.2.

[11, 14]
Suppose a positive, twice-differentiable function ψ(t) satisfies the inequal-

ity
ψ′′(t)ψ(t)− (1 + θ)(ψ′(t))2 ≥ 0,

where θ > 0. If ψ(0) > 0, ψ′(0) > 0, then ψ(t)→∞ as t→ t1 ≤ t2 = ψ(0)
θψ′(0) .

Based on the two lemmas above, we give our result as follows:

Theorem 4.1. Let (H) hold. Assume that the following conditions are fulfilled:

(H1)

∫
Ω
u0u1dx >

p+ 1

M0
E(0) +

(p+ 1− 2θ)(θ − 1)

2θc̃θM0
;

(H2)
p+ 1− 2θ

2θc̃θ(p+ 1)
[θ‖u0‖22 − (θ − 1)] > E(0),

then any weak solution u blows up at finite time T ∗. And Tmax can be estimate from above as
follows:

T ∗ ≤ 2(‖u0‖22 + ρσ2)

(p− 1)[
∫

Ω u1u0dx+ ρσ]− 2‖u0‖22
.

with ρ = p+1−2θ
θc̃θ(p+1)

[θ‖u0‖22 − (θ − 1)]− 2E(0) > 0 and σ > max
{

0,
2‖u0‖22
(p−1)ρ −

∫
Ω u1u0dx

ρ

}
.

Proof. In what follows, the proof will be divided into two steps.
Step 1: Finite time blow-up Suppose, on the contrary, that the solutions u exist globally,

i.e. Tmax =∞. Using Hölder’s inequality and Lemma 2.2, then for all t ∈ [0,∞),

‖u(t)‖2 =
∥∥∥u0 +

∫ t

0
uτdτ

∥∥∥
2
≤ ‖u0‖2 +

∫ t

0
‖uτ (τ)‖2dτ

≤ ‖u0‖2 +
√
t
(∫ t

0
‖uτ (τ)‖22dτ

) 1
2

= ‖u0‖2 +

√
t

a
(E(0)− E(t))

1
2 .

(4.5)

Since u is a global solution of problem (1.1), we have E(t) ≥ 0 for all t ∈ [0,∞). Otherwise,
there exists t0 ∈ [0,∞) such that E(t0) < 0. Choosing u(x, t0) as the new initial data, then it
is clear from Theorem 3.1 that the solution blows up in finite time, which is a contradiction. It
follows from Lemma 2.2 that 0 ≤ E(t) ≤ E(0). Thus, (4.5) can be rewritten as

‖u(t)‖2 ≤ ‖u0‖2 +

√
t

a
(E(0))

1
2 (4.6)

for all t ∈ [0,∞).
Let

F(t) =

∫
Ω
uutdx−

p+ 1

M0
E(t)− (p+ 1− 2θ)(θ − 1)

2θc̃θM0
,

then it follows from Lemma 4.1 and (H1) that

d

dt
‖u(t)‖22 = 2

∫
Ω
uutdx ≥ 2

[
F(0)eM0t +

p+ 1

M0
E(t) +

(p+ 1− 2θ)(θ − 1)

2θc̃θM0

]
≥ 2F(0)eM0t > 0.

(4.7)
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Integrating (4.7) from 0 to t yields

‖u(t)‖22 = ‖u0‖22 + 2

∫ t

0

∫
Ω
uuτdxdτ

≥ ‖u0‖22 + 2

∫ t

0
F(0)eM0τdτ

= ‖u0‖22 +
2

M0
F(0)(eM0t − 1),

(4.8)

which contradicts (4.6) for t sufficiently large. Thus, the solution u for problem (1.1) blows up
in finite time.

Step 2: An upper bound of the blow-up time. In what follows, we are devoted to get
the upper bound of the blow-up time. We still denote by T ∗ the maximal existence time, and
T ∗ <∞ due to step 1. For any T < T ∗, define an auxiliary function

Ψ(t) = ‖u(t)‖22 + a

∫ t

0
‖u(τ)‖22dτ + a(T ∗ − t)‖u0‖22 + ρ(t+ σ)2 for t ∈ [0, T ]. (4.9)

It follows from a direct computation that

Ψ′(t) = 2

∫
Ω
utudx+ a‖u(t)‖22 − a‖u0‖22 + 2ρ(t+ σ)

= 2

∫
Ω
utudx+ 2a

∫ t

0

∫
Ω
uτudxdτ + 2ρ(t+ σ) for t ∈ [0, T ].

Let us combine problem (1.1) and the above one, then

Ψ′′(t) = 2
d

dt

∫
Ω
utudx+ 2a

∫
Ω
utudx+ 2ρ

= 2‖ut(t)‖22 − 2‖u‖2θX0
+ 2b‖u‖p+1

p+1 + 2ρ for t ∈ [0, T ].

By making full use of Hölder’s inequality and Cauchy’s inequality, one has

ξ(t) : =
[
‖u(t)‖22 + a

∫ t

0
‖u(τ)‖22dτ + ρ(t+ σ)2

][
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

]
−
[ ∫

Ω
utudx+ a

∫ t

0

∫
Ω
uτudxdτ + ρ(t+ σ)

]2

= ‖u(t)‖22‖ut(t)‖22 −
(∫

Ω
utudx

)2

+ ρ‖u(t)‖22 + ρ(t+ σ)2‖ut(t)‖22 − 2ρ(t+ σ)

∫
Ω
utudx

+ ρa

∫ t

0
‖u(τ)‖22dτ + ρ(t+ σ)2a

∫ t

0
‖uτ (τ)‖22dτ − 2ρ(t+ σ)a

∫ t

0

∫
Ω
uτudxdτ

+ a2

∫ t

0
‖u(τ)‖22dτ

∫ t

0
‖uτ (τ)‖22dτ −

(
a

∫ t

0

∫
Ω
uτudxdτ

)2

+ a‖u(t)‖22
∫ t

0
‖uτ (τ)‖22dτ + a‖ut(t)‖22

∫ t

0
‖u(τ)‖22dτ

− 2a

∫
Ω
utudx

∫ t

0

∫
Ω
uτudxdτ ≥ 0 for t ∈ [0, T ].
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Therefore,

Ψ(t)Ψ′′(t)− p+ 3

4
(Ψ′(t))2

= Ψ(t)Ψ′′(t)− (p+ 3)
[ ∫

Ω
utudx+ a

∫ t

0

∫
Ω
uτudxdτ + ρ(t+ σ)

]2

= Ψ(t)Ψ′′(t) + (p+ 3)
{
−
[
‖u(t)‖22 + a

∫ t

0
‖u(τ)‖22dτ + ρ(t+ σ)2

]
×
[
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

]
+ ξ(t)

}
= Ψ(t)Ψ′′(t) + (p+ 3)

{
−
[
Ψ(t)− a(T ∗ − t)‖u0‖22

]
×
[
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

]}
+ (p+ 3)ξ(t)

= Ψ(t)Ψ′′(t)− (p+ 3)Ψ(t)
(
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

)
+ (p+ 3)ξ(t)

+ (p+ 3)(T ∗ − t)‖u0‖22
[
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

]
≥ Ψ(t)η(t) for t ∈ [0, T ],

(4.10)

where

η(t) := Ψ′′(t)− (p+ 3)
(
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

)
.

It follows from the definition of E(t) in (2.2) and (4.3) that

η(t) ≥ 2‖ut(t)‖22 − 2‖u‖2θX0
+ 2b‖u‖p+1

p+1 + 2ρ− (p+ 3)
(
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

)
≥ 2‖ut(t)‖22 − 2‖u‖2θX0

+ 2
[p+ 1

2
‖ut‖22 +

p+ 1

2θ
‖u‖2θX0

− (p+ 1)E(t)
]

+ 2ρ

− (p+ 3)
(
‖ut(t)‖22 + a

∫ t

0
‖uτ (τ)‖22dτ + ρ

)
=
p+ 1− 2θ

θ
‖u(t)‖2θX0

− 2(p+ 1)E(t)− a(p+ 3)

∫ t

0
‖uτ (τ)‖22dτ − (p+ 1)ρ

≥ p+ 1− 2θ

θc̃θ
[θ‖u‖22 − (θ − 1)]− 2(p+ 1)E(0) + a(p− 1)

∫ t

0
‖uτ (τ)‖22dτ − (p+ 1)ρ

≥ p+ 1− 2θ

θc̃θ
[θ‖u0‖22 − (θ − 1)]− 2(p+ 1)E(0)− (p+ 1)ρ for t ∈ [0, T ].

(4.11)

Here we have used ‖u(t)‖22 ≥ ‖u0‖22 obtained by (4.7). By recalling

ρ =
p+ 1− 2θ

θc̃θ(p+ 1)
[θ‖u0‖22 − (θ − 1)]− 2E(0),

then we directly obtain η(t) ≥ 0. Therefore, it follows from (4.10) that

Ψ(t)Ψ′′(t)− p+ 3

4
(Ψ′(t))2 ≥ 0 for t ∈ [0, T ].

It is noted that
Ψ(0) = ‖u0‖22 + T ∗‖u0‖22 + ρσ2 > 0,
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Ψ′(0) = 2

∫
Ω
u1u0dx+ 2ρσ > 0,

and

T ≤ 2(‖u0‖22 + T ∗‖u0‖22 + ρσ2)

(p− 1)[
∫

Ω u1u0dx+ ρσ]
.

Here we have used Lemma 4.2. Since the arbitrariness of T < T ∗, we obtain

T ∗ ≤ 2(‖u0‖22 + T ∗‖u0‖22 + ρσ2)

(p− 1)[
∫

Ω u1u0dx+ ρσ]
,

or equivalently

T ∗ ≤ 2(‖u0‖22 + ρσ2)

(p− 1)[
∫

Ω u1u0dx+ ρσ]− 2‖u0‖22
. (4.12)

Remark 4.1. For m > 1, we find this method is not applicable. It is necessary to propose
a new method to discuss the blow-up phenomenon with high initial energy.

5 Lower bounds for blow-up time

In what follows, we will discuss lower bounds for blow-up time in this section based on some
ideas in [5, 6, 32]. The following is the main result.

Theorem 5.1. If all conditions of Theorem 3.1(or Theorem 4.1) hold, the blow-up time T ∗

satisfies the following estimate:

(1) for p ∈ (2θ − 1, 2∗s
2 ], ∫ +∞

Φ(0)

1

B1y
p
θ +B2y +B3

dy ≤ T ∗, (5.1)

where Φ(0) = ‖u0‖p+1
p+1, B1, B2, B3 will be discussed later.

(2) for p ∈
[

2∗s
2 ,

2∗s
2 − 2θ

(
1
2∗s
− 1

2

))
,∫ +∞

Ψ(0)

1

B8yη(t) +B9yζ(t) +B10
dy ≤ T ∗, (5.2)

where Ψ(0) = ‖u0‖
2∗s
2

+1
2∗s
2

+1
, B8, B9, B10, η, ζ will be discussed later.

Proof. (1) Denote by Φ(t) the norm ‖u‖p+1
p+1 for simplicity. It is direct that

Φ′(t) = (p+ 1)

∫
Ω
|u|p−1uutdx ≤

p+ 1

2

(
‖u‖2p2p + ‖ut‖22

)
≤ p+ 1

2

(
cp‖u‖2pX0

+ ‖ut‖22
)

(5.3)

due to Cauchy’s inequality. Recalling (3.14), we directly get

Φ′(t) ≤ p+ 1

2

[
cp(2θ)

p
θ

(
E(0) +

b

p+ 1
‖u‖p+1

p+1

) p
θ

+ 2
(
E(0) +

b

p+ 1
‖u‖p+1

p+1

)]
≤ B1Φ

p
θ (t) +B2Φ(t) +B3,

(5.4)
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where

B1 =
p+ 1

2
cp2

p−θ
θ (2θ)

p
θ

( b

p+ 1

) p
θ
, B2 = b, B3 =

p+ 1

2
cp2

p−θ
θ (2θ)

p
θ (E(0))

p
θ + (p+ 1)E(0).

Inequality (5.4) yields (5.1) due to Theorem 3.1 or Theorem 4.1.

(2) Define Ψ(t) = ‖u‖δδ with δ = 2∗s
2 + 1. Clearly,

Ψ′(t) ≤ δ

2

(
‖u‖2(δ−1)

2(δ−1) + ‖ut‖22
)
≤ δ

2

(
c

2∗s
2 ‖u‖2(δ−1)

X0
+ ‖ut‖22

)
(5.5)

since 2(δ − 1) = 2∗s. (3.14) implies

Ψ′(t) ≤ δ

2

[
c

2∗s
2 (2θ)

δ−1
θ

(
E(0) +

b

p+ 1
‖u‖p+1

p+1

) δ−1
θ

+ 2
(
E(0) +

b

p+ 1
‖u‖p+1

p+1

)]
≤ B3Φ

δ−1
θ (t) +B4Φ(t) +B5,

(5.6)

where

B3 =
δ

2
c

2∗s
2 2

δ−1−θ
θ (2θ)

δ−1
θ

( b

p+ 1

) δ−1
θ
, B4 =

bδ

p+ 1
, B5 =

δ

2
c

2∗s
2 2

δ−1−θ
θ (2θ)

δ−1
θ (E(0))

δ−1
θ + δE(0).

By the interpolation inequality, we get

Φ(t) ≤ ‖u‖(1−γ)(p+1)
δ ‖u‖γ(p+1)

2∗s
≤ c

γ(p+1)
2 ‖u‖(1−γ)p+1

δ ‖u‖γ(p+1)
X0

, (5.7)

where 1
p+1 = 1−γ

δ + γ
2∗s

. Noticing that 2θ
γ(p+1) > 1, and then using Young’s inequality with ε > 0,

(5.7) can be written as

Φ(t) ≤ c
γ(p+1)

2

(2θ − γ(p+ 1)

2θ
ε
− 2θ

2θ−γ(p+1) ‖u‖
2θ(1−γ)(p+1)

2θ−γ(p+1)

δ +
γ(p+ 1)

2θ
ε

2θ
γ(p+1) ‖u‖2θX0

)
≤ c

γ(p+1)
2

2θ − γ(p+ 1)

2θ
ε
− 2θ

2θ−γ(p+1) Ψ
2θ(1−γ)(p+1)
δ[2θ−γ(p+1)] (t) + c

γ(p+1)
2 γ(p+ 1)ε

2θ
γ(p+1)

(
E(0) +

bΦ(t)

p+ 1

)
.

Let us now choose ε such that 1− c
γ(p+1)

2 γε
2θ

γ(p+1) b > 0, it follows form the inequality above

Φ(t) ≤ B6Ψ
2θ(1−γ)(p+1)
δ[2θ−γ(p+1)] (t) +B7 (5.8)

where

B6 =
c
γ(p+1)

2
2θ−γ(p+1)

2θ ε
− 2θ

2θ−γ(p+1)

1− c
γ(p+1)

2 γε
2θ

γ(p+1) b
, B7 =

c
γ(p+1)

2 γ(p+ 1)ε
2θ

γ(p+1)E(0)

1− c
γ(p+1)

2 γε
2θ

γ(p+1) b
,

which implies lim
t→T ∗

Ψ(t) = +∞ due to Theorem 3.1 or Theorem 4.1.

Inserting (5.8) into (5.6) is to get

Ψ′(t) ≤ B8Ψη(t) +B9Ψζ(t) +B10, (5.9)

where

η =
2θ(1− γ)(p+ 1)

δ[2θ − γ(p+ 1)]

δ − 1

θ
, ζ =

2θ(1− γ)(p+ 1)

δ[2θ − γ(p+ 1)]
,

B8 = B3B
δ−1
θ

6 2
δ−1
θ
−1, B9 = B4B6, B10 = B32

δ−1
θ
−1B

δ−1
θ

7 +B4B7 +B5.

Clearly, (5.2) follows (5.9).
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Remark 5.1. For a ≡ 0, i.e. in the absence of the weak damping, Theorem 5.1 still holds.

And this result improves that one in Theorem 4.3 of [21], which only discussed the lower bound

of the blow-up time for p ∈ (2θ − 1, 2∗s
2 ].

Remark 5.2. For p ∈
[

2∗s
2 − 2θ

(
1
2∗s
− 1

2

)
, 2∗s − 1

]
, we do not discuss the corresponding lower

bound of the blow-up time.

6 Energy decay estimates

In this section, we show the global existence of the solution and the following decay estimate:

Theorem 6.1. Let 2θ − 1 < m < p and (H) hold. Supposed that

0 < E(0) < E1, ‖u0‖2θX0
< α1,

then the solution of problem (1.1) exists globally. Moreover, the energy functional satisfies the
following estimate

E(t) ≤ E(0)
[ K(m+ 1)

2K + (m− 1)t

] 2
m−1

for all t ≥ 0, (6.1)

where the constant K may be defined in (6.13).

Let us give some lemmas to prove Theorem 6.1.

Lemma 6.1.
[23]

Let E : R+ → R+ be a nonincreasing function and φ : R+ → R+ be a
strictly increasing function of class C1such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.

Assume that there exist σ ≥ 0, and ω > 0 such that

∀s ≥ 0,

∫ +∞

s
E(t)1+σφ′(t)dt ≤ 1

ω
Eσ(0)E(s).

Then E(t) has the following decay property:

if σ = 0, then E(t) ≤ E(0)e1−ωφ(t), ∀t ≥ 0,

if σ > 0, then E(t) ≤ E(0)

(
1 + σ

1 + ωσφ(t)

) 1
σ

, ∀t ≥ 0.

Lemma 6.2. Let all conditions of Theorem 6.1 hold, then there exists a positive constant
0 < α̃2 < α1 such that

‖u‖2θX0
≤ α̃2, ∀t ≥ 0. (6.2)

Proof. With the proof of Lemma 3.1 in mind. This proof is clear. Since E(0) < E1, there exists
an α̃2 < α1 such that h(α̃2) = E(0). Recall (3.2), then h(α(0)) ≤ E(0) = h(α̃2), which implies
α(0) ≤ α̃2 since the condition α(0) < α1. To prove (6.2), we suppose by contradiction that for
some t0 > 0, α(t0) > α̃2. The continuity of α(t) illustrates that we could choose t0 such that
α1 > α(t0) > α̃2, then we have

E(0) = h(α̃2) < h(α(t0)) ≤ E(t0).

This is a contradiction since Lemma 2.2.
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Lemma 6.3. Let all conditions of Theorem 6.1 hold. The following inequalities hold:

‖u‖p+1
p+1 ≤

2θc
p+1

2 α̃2
p+1−2θ

2θ

1− b
p+12θc

p+1
2 α̃2

p+1−2θ
2θ

E(t), ∀t ≥ 0. (6.3)

1

2
‖ut‖22 +

1

2θ
‖u‖2θX0

≤ p+ 1

p+ 1− 2θ
E(t) ≤ p+ 1

p+ 1− 2θ
E(0), ∀t ≥ 0. (6.4)

Proof. Lemma 2.1(1), (2.2) and (6.2) implies

‖u‖p+1
p+1 ≤ c

p+1
2 ‖u‖p+1

X0
≤ 2θc

p+1
2 ‖u‖p+1−2θ

X0

(
E(t) +

b

p+ 1
‖u‖p+1

p+1

)
≤ 2θc

p+1
2 α̃2

p+1−2θ
2θ

(
E(t) +

b

p+ 1
‖u‖p+1

p+1

)
The above inequality directly implies (6.3). And combining (6.3) with (2.2), we have (6.4).

Remark 6.1. Lemma 6.3 yields that the solutions of problem (1.1) exist globally.

Proof of Theorem 6.1: Some ideas in [19, 20] are used here. Multiplying the first identity
of problem (1.1) by Eβ(t)u(β > 0) and integrating over Ω× (s, T )(s < T ) give∫ T

s
Eβ(t)

d

dt

∫
Ω
uutdxdt+

∫ T

s
Eβ(t)‖u‖2θX0

dt

+

∫ T

s
Eβ(t)

(
− ‖ut‖22 − b‖u‖

p+1
p+1 + a

∫
Ω
|ut|m−1utudx

)
dt = 0.

(6.5)

Inserting (2.2) into (6.5) yields

2θ

∫ T

s
Eβ+1(t)dt ≤ −

∫ T

s

d

dt

[
Eβ(t)

∫
Ω
uutdx

]
dt+ β

∫ T

s
Eβ−1(t)E′(t)

∫
Ω
uutdxdt

+ a

∫ T

s
Eβ(t)

∫
Ω
|ut|m−1utudxdt+

2θ + 2

2

∫ T

s
Eβ(t)‖ut‖22dt

+ b
(

1− 2θ

p+ 1

)∫ T

s
Eβ(t)‖u‖p+1

p+1dt := J1 + J2 + J3 + J4 + J5.

(6.6)

It follows from Young’s inequality and (6.3) and Lemma 2.2 that

|J1| =
∣∣∣Eβ(s)

∫
Ω
uut(·, s)dx− Eβ(T )

∫
Ω
uut(·, T )dx

∣∣∣
≤ Eβ(s)

2

(
‖u(·, s)‖22 + ‖ut(·, s)‖22 + ‖u(·, T )‖22 + ‖ut(·, T )‖22

)
≤ Eβ(s)

2

[
c
(
‖u(·, s)‖2X0

+ ‖u(·, T )‖2X0

)
+ ‖ut(·, s)‖22 + ‖ut(·, T )‖22

]
≤
[
c
( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ

+
2(p+ 1)

p+ 1− 2θ

]
Eβ+ 1

θ
−1(0)E(s);

(6.7)
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|J2| ≤ −
β

2

∫ T

s
Eβ−1(t)E′(t)(‖u‖22 + ‖ut‖22)dt ≤ −β

2

∫ T

s
Eβ−1(t)E′(t)(c‖u‖2X0

+ ‖ut‖22)dt

≤ −βc
2

( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ

∫ T

s
Eβ+ 1

θ
−1(t)E′(t)dt− β(p+ 1)

p+ 1− 2θ

∫ T

s
Eβ(t)E′(t)dt

≤ −βc
2

( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ θ

θβ + 1

[
Eβ+ 1

θ (s)− Eβ+ 1
θ (T )

]
+

β(p+ 1)

(p+ 1− 2θ)(β + 1)

[
Eβ+1(s)− Eβ+1(T )

]
≤
[βc

2

( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ θ

θβ + 1
Eβ+ 1

θ
−1(0) +

β(p+ 1)

(p+ 1− 2θ)(β + 1)
Eβ(0)

]
E(s).

(6.8)

Using Young’s inequality with 0 < ε < 1, Lemma 2.1(1) and (6.3), we obtain

|J3| ≤ a
∫ T

s
Eβ(t)

( m

m+ 1
ε−

m+1
m ‖ut‖m+1

m+1 +
1

m+ 1
εm+1‖u‖m+1

m+1

)
dt

≤ m

m+ 1

ε−
m+1
m

β + 1

[
Eβ+1(s)− Eβ+1(T )

]
+
aεm+1

m+ 1
c
m+1

2

∫ T

s
Eβ(t)‖u‖m+1

X0
dt

≤ m

m+ 1

ε−
m+1
m

β + 1
Eβ(0)E(s) +

aεm+1

m+ 1

[ 2θ(p+ 1)

b(p+ 1− 2θ)

]m+1
2θ
E

m+1
2θ
−1(0)

∫ T

s
Eβ+1(t)dt.

(6.9)

For m+1 > 2, one may apply Hölder’s inequality and Young’s inequality with ε1 > 0 to establish
the following inequalities

|J4| ≤ (1 + |Ω|)2

∫ T

s
Eβ(t)‖ut‖2m+1dt

≤ ε
m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2

∫ T

s
E

(m+1)β
m−1 (t)dt+

2

m+ 1
ε
−m+1

2
1 (1 + |Ω|)2

∫ T

s
‖ut‖m+1

m+1dt

≤ ε
m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2

∫ T

s
Eβ+1(t)dt− 2

(m+ 1)a
ε
−m+1

2
1 (1 + |Ω|)2

∫ T

s
E′(t)dt

≤ ε
m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2

∫ T

s
Eβ+1(t)dt+

2

(m+ 1)a
ε
−m+1

2
1 (1 + |Ω|)2E(s),

(6.10)

where (m+1)β
m−1 = β + 1. (6.3) directly implies

|J5| ≤ b
(

1− 2θ

p+ 1

) 2θc
p+1

2 α̃2
p+1−2θ

2θ

1− b
p+12θc

p+1
2 α̃2

p+1−2θ
2θ

∫ T

s
Eβ+1(t)dt. (6.11)

Obviously,

ω := b
(

1− 2θ

p+ 1

) 2θc
p+1

2 α̃2
p+1−2θ

2θ

1− b
p+12θc

p+1
2 α̃2

p+1−2θ
2θ

< 2θ

We choose ε, ε1 satisfying

aεm+1

m+ 1

[ 2θ(p+ 1)

b(p+ 1− 2θ)

]m+1
2θ
E

m+1
2θ
−1(0) =

p+ 1− 2θ

4
, ε

m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2 =

p+ 1− 2θ

4
,
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and utilizing (6.6)− (6.11), we arrive at the following inequalities∫ T

s
Eβ+1(t)dt ≤ 2

p+ 1− 2θ

[
c
( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ

+
2(p+ 1)

p+ 1− 2θ

]
Eβ+ 1

θ
−1(0)E(s)

+
2

p+ 1− 2θ

[βc
2

( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ θEβ+ 1

θ
−1(0)

θβ + 1
+

β(p+ 1)Eβ(0)

(p+ 1− 2θ)(β + 1)

]
E(s)

+
2

p+ 1− 2θ

[ m

m+ 1

ε−
m+1
m

β + 1
Eβ(0)E(s) + ε

m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2E(s)

]
:= KEβ(0)E(s),

(6.12)

where

K =
2

p+ 1− 2θ

{[
c
( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ

+
2(p+ 1)

p+ 1− 2θ

]
E

1
θ
−1(0)

+
βc

2

( 2θ(p+ 1)

p+ 1− 2θ

) 1
θ θE

1
θ
−1(0)

θβ + 1
+

β(p+ 1)

(p+ 1− 2θ)(β + 1)

+
m

m+ 1

ε−
m+1
m

β + 1
+ ε

m+1
m−1

1

m− 1

m+ 1
(1 + |Ω|)2E−β(0)

}
.

(6.13)

Obviously, (6.1) follows from (6.12) and Lemma 6.1. This completes the proof of Theorem 6.1.
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[5] B. Guo, and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation
with nonlinear sources, Appl. Math. Lett. 60 (2016) 115–119.
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