
Self calibration method of binocular vision based on
Conformal geometric algebra

Stanislav Froĺık1, Marek Stodola1

1 Institute of Mathematics, Faculty of Mechanical Engineering

Brno University of Technology Brno Czech Republic

{Marek.Stodola, Stanislav.Frolik } @vutbr.cz

Abstract

We will study binocular vision for 6-DOF robotic manipulator in conformal geo-
metric algebra approach. We will focus on the case where some information as relative
cameras positions, has been lost. In particular, we will use the construction of the
manipulator to infer a self calibration method for cameras position based in binocular
vision with incomplete information.

AMS2020— Primary 15A66; Secondary 51N25
Keywords— Conformal geometric algebra, Binocular vision, self calibration, robotic manipu-

lator
The research was supported by the Grant No.: FSI-S-20-6187

1 Introduction

Computer vision has been here for a while, but since the spread of neural networks and
artificial intelligence models in the past decade it became trendy and gained a lot of popularity
in research and industry as well. With wide range of applications - from facial recognition,
through industrial measurements to modern microscopy - researchers and developers pushed
hardware to the limit. Moreover, just one sensor can not secure satisfactory field of view,
reliability and stereopsis. To ensure such conditions, one has to use binocular vision. In
order to achieve a solid reconstructed scene, one has to ensure either fixed relative position of
sensors, which is due to material flexibility always a problem, or compute the position from
some reference object, which is operationally hard to achieve since the object has to be fixed
in predefined configuration (pose). In this paper we would like to propose a method which
resolves such troubles. Even though there are another work-arounding methods, e.g. gradient
based and sometimes machine learning, we are intended to proceed in more geometric way.
We will investigate a case where we will reconstruct 3D position of observed object, given by
images from two cameras. Our goal is to solve a case where we have lost cameras positions,
which, in general, has to be known for further computation, i.e. calibrate cameras position,

1

which leads to 3D scene reconstruction. Moreover our approach does camera self-calibration,
thus cameras (or binocular vision) does not require any special calibration method. In order
to get the 3D position of observed object we will use a minimum knowledge of observed
object construction.

This approach will be demonstrated with a typical example of robotic manipulator. For
this problem we will use Conformal geometric algebra. At first we will recall some notions such
as multivectors, transformators etc. from CGA in section 2. Then, in section 3 we will infer
equations for determination of manipulator position given by cameras position and its images.
Those equations are useful for further computations. Inversely we will define equations for
camera images given by cameras and manipulator position. With such knowledge we can
solve a problem of binocular vision in the case where some information (e.g. camera position)
has been lost in section 4. It means that we do not have any information of cameras position
neither manipulator position. Traditional task of binocular vision is to compute position of
object from cameras position or vice-versa. This is not the case. Fortunately we have some
knowledge of observed object like kinematics, dimensions, specific construction etc. which
can by used to infer the unknown positions.

2 Conformal geometric algebra

We will infer further computations using geometric algebra approach, which can be found in
classical books [15, 4, 5, 2, 12] or scientific papers (e.g. [7, 9]) published in last decade. In
this chapter we will recall only some necessary notions from the theory of geometric algebra
calculus. We will recall just statements and formulas which will be strictly needed. For
compact theory see the books listed above.

In the binocular vision and robotics, the conformal geometric algebra (CGA) plays signif-
icant role. So, let us have conformal geometric algebra, i.e. geometric algebra G4,1 together
with Hestenes embedding

(x, y, z) ∈ R3 7→ xe1 + ye2 + ze3 +
1

2
(xe1 + ye2 + ze3)

2e∞ + e0. (1)

Generally in Geometric algebra models we represent objects by so called OPNS and
IPNS representations with the help of dot and wedge product. In detail, for each point P
and each geometric object O in IPNS representation, resp. geometric object O∗ in OPNS
representation the following property holds:

P ∈ O ⇔ P ·O = 0, (2)

P ∈ O∗ ⇔ P ∧O∗ = 0. (3)

Follows relation between IPNS and OPNS representation of object O:

O = cIO∗, I = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0, c ∈ R \ {0}. (4)

It allows us to represent geometric objects in forms as in Table 1.
Let us recall some properties of conformal geometric algebra. During the following algo-

rithms of binocular vision these relationships between geometric objects are used:

2

Object IPNS representation OPNS representation
Point P = p+ 1

2
∥p∥2e∞ + e0

Sphere S = P− 1
2
r2e∞ S∗ = P1 ∧P2 ∧P3 ∧P4

Plane π = n+ de∞ π∗ = P1 ∧P2 ∧P3 ∧ e∞
Circle Z = S1 ∧ S2 Z∗ = P1 ∧P2 ∧P3

Line L = π1 ∧ π2 L∗ = P1 ∧P2 ∧ e∞
Point pair Pp = S1 ∧ S2 ∧ S3 P∗

p = P1 ∧P2

p = p1e1 + p2e2 + p3e3, n = n1e1 + n2e2 + n3e3, ||n|| = 1

Table 1: Geometric objects in CGA

1. Distance between two points: dP1P2 =
√

−2(P1 ·P2)

2. Angle between two planes: cosα = π1 · π2

3. Plane of symmetry of two points:

π = P1 −P2 (5)

4. Midpoint M of point pair P1 ∧P2 as point pair with e∞:

c1(M ∧ e∞) = (c(P1 ∧P2) · e∞) · LP1P2 , c, c1 ∈ R/{0}, (6)

where
LP1P2 = I(c(P1 ∧P2) ∧ e∞). (7)

5. Distance between points of point pair P1 ∧P2:

dP1P2 = 2

√
c(P1 ∧P2) · c(P1 ∧P2)

ILP1P2 · ILP1P2

(8)

For the following computations, let us introduce a couple of new operators, namely • and
◦ as follows:

•π =
π√
π · π

, (9)

◦L =
L√

−L · L
, (10)

then •π is a standard representation of plane π and ◦L is a standard representation of line L.
In standard representation, a plane, resp. a line has unit normal vector, resp. unit direction
vector. In the end, remind that by translator we mean a multivector

T = exp(−1

2
te∞) =

∞∑
i=0

(−1
2
te∞)i

i!
= 1− 1

2
te∞, (11)

where t = xe1 + ye2 + ze3 is a translate vector with its conjugate

T̃ = exp(
1

2
te∞) = 1 +

1

2
te∞. (12)

3

By rotor we mean a multivector

R = exp(−θ

2
Lst), (13)

where Lst is standard IPNS representation of rotation axis and θ ∈ R is a rotation angle,
with its conjugate

R̃ = exp(
θ

2
Lst). (14)

Recall that by motor we mean a rigid body motion

M = RT (15)

with its conjugate
M̃ = T̃ R̃. (16)

Remind that having a geometric object O we compute rigid body motion with help of con-
jugation by motor M , e.g. Õ = MOM̃.

3 3D scene reconstruction

There are various concepts of 3D scene reconstruction. We focus on so called binocular
vision, for example see [8, 14, 13] (for monocular vision see [16] for multiocular vision see
[1]). At first, we define forward kinematics in CGA, this became a standard approach, see
[10, 18, 19, 3, 6] (for inverse kinematic in geometric algebra approach see [17, 6, 11]).

3.1 Forward kinematics

The goal of this subsection is to compute the final position of the manipulator after applying
rotational motion in its joints. Let us denote angles of rotations as

θ01, θ12, θ34, θ56, θ67, θ78.

The final position is given by points P̃i ∈ {0, 1, . . . , 8}, where P̃i represents point Pi after a
rotation.

4

Figure 1: An example of robotic manipulator. Blue lines represent coordinate system axes,
purple lines represent rotation axes, red points describe robot position.

Obviously point P0 is identified as origin of our coordinate system and point P1 never change
its position, thus P̃0 = P0 and P̃1 = P1. Now let us denote axes of rotation corresponding to
θij as L̃ij and corresponding rotors as Rij. Then we can compute

L̃∗
ij = ◦(P̃i ∧ P̃j ∧ e∞), (17)

Rij = exp(−θij
2
L̃ij). (18)

Finally, we can compute the final positions of points P̃i after applying a transformation as

P̃2 = R01P2R̃01,

P̃3 = R12R01P3R̃01R̃12,

...

P̃8 = R67R56R34R12R01P8R̃01R̃12R̃34R̃56R̃67.

(19)

3.2 Binocular vision

In this subsection we will determine a position of the manipulator by an image from two cam-
eras. Input parameters of such problem are positions of left camera focusOL = [oL1, oL2, oL3] ≡
oL1e1+oL2e2+oL3e3+

1
2
∥oL∥2+e0 and right camera focus respectively OR = [oR1, oR2, oR3] ≡

oR1e1 + oR2e2 + oR3e3 +
1
2
∥oR∥2 + e0. Parameters αL, βL, γL describe the view angle of left

camera, where αL describes a rotation around vertical axis, βL describes a rotation around
horizontal axis and γL describes a rotation around anteroposterior axis. Analogically we
assign to αR, βR, γR corresponding angles for the right camera. For simplicity, let us assume
that those reference axes go through the focuses of cameras. Parameters fL, fR represents
focal distance of cameras. For simplicity assume that they are equal fL = fR = f. πprL, πprR

denotes projection planes and images of points P̃i, i ∈ {0, 1, 2, . . . , 8} we denote as PiL resp.
PiR.
Firstly, let us place camera focuses and images of projection planes into the space. Ini-
tially we place images of projection planes into plane πyz = e1 and camera focuses to point
O = fe1 +

1
2
f 2e∞ + e0. Now we need to determine motor ML = TLRL given by parameters

oL1, oL2, oL3, f, αL, βL, γL, which realize such geometric transformation which grants appro-
priate position of left camera focus and images from left projection plane in the space.
Equivalently we determine motor MR = TLRL given by oR1, oR2, oR3, f, αR, βR, γR.

Remark 3.1 During computation of 3D scene reconstruction we assume that rotations RL, RR

of cameras are given. In fact, a technician can set cameras with angles αR, βR, γR, resp.
αL, βL, γL. Therefore we infer rotations of cameras with those parameters in this article.

We can compute axis z as
Lz = e1 ∧ e2. (20)

5

Now we can move this axis to point O with translator T = 1 − 1
2
te∞, where t = fe1, and

convert it to standard form:

Lz = TLzT̃ . (21)

Furthermore we will define a rotor which represents rotation of left camera around vertical
axis Lz by angle αL in negative direction.

RzL = exp(
αL

2
Lz). (22)

Now we will move line Ly = e3 ∧ e1 with translator T and we will rotate it with rotor RzL ,
to preserve horizontal axis fixed with camera

Ly = TLyT̃ , (23)

LỹL
= RzLLyR̃zL . (24)

Now we will define rotors representing rotation around horizontal axis LỹL
by angle βL in

negative direction:

RyL = exp(
βL

2
LỹL

). (25)

Next we will rotate axis Lx = e2 ∧ e3 with rotors RzL and RyL . After that we will compute
rotor representing rotation around this anteroposterior axis of left camera by angle γL, in
negative direction.

Lx̃L
= RyLRzLLxR̃zLR̃yL , (26)

RxL
= exp(

γL
2
Lx̃L

). (27)

Finally we will define translator representing translation to the appropriate position

tL = (oL1 − f)e1 + oL2e2 + oL3e3, (28)

TL = 1− 1

2
tLe∞. (29)

Resulting in motor ML

ML = TLRxL
RyLRzL , (30)

and its conjugate motor

M̃L = R̃zLR̃yLR̃xL
T̃L. (31)

Analogically we can get motor MR and its conjugate rotor M̃R for the right camera. We will
place image records into space with motors ML and MR as

P̃iL = MLPiLM̃L, (32)

P̃iR = MRPiRM̃R. (33)

6

OL
OR

P̃(i+1)R

P̃(i−1)R
P̃iR

P̃(i−1)L

P̃(i+1)L

P̃iL

P̃i+1

P̃i−1

P̃i

πi,i+1,R

πi−1,i,R

πi,i+1,L

πi−1,i,L

πprL
πprR

Figure 2: Position reconstruction of points P̃i in space

Now we will introduce planes

πi,i+1,L = I(OL ∧ P̃iL ∧ P̃(i+1)L ∧ e∞), (34)

πi,i+1,R = I(OR ∧ P̃iR ∧ P̃(i+1)R ∧ e∞), i ∈ {0, 1, ..., 7}. (35)

Point P̃i, i ∈ {1, 2, ..., 7} is an intersection of planes from set
Πi = {πi−1,i,L, πi,i+1,L, πi−1,i,R, πi,i+1,R} (see figure 2). Conformal geometric algebra allows to
find an intersection of three planes as a pair of points, where one of the point is e∞.

c(P̃i ∧ e∞) = I(πi1 ∧ πi2 ∧ πi3), (36)

where
c ∈ R \ {0}, πi1, πi2, πi3 ∈ Πi, πij ∧ πik ̸= 0, j, k ∈ {1, 2, 3}, j ̸= k. (37)

If we know c(P̃i ∧ e∞), we can find coordinates of P̃i easily, because

P̃i ∧ e∞ = (pi1e1 + pi2e2 + pi3e3 +
1

2
∥pi∥2e∞ + e0) ∧ e∞

= pi1e1 ∧ e∞ + pi2e2 ∧ e∞ + pi3e3 ∧ e∞ + e0 ∧ e∞. (38)

Remark 3.2 The set Πi = {πi−1,i,L, πi,i+1,L, πi−1,i,R, πi,i+1,R} contains four planes, which
intersect in one point. But generally four planes need not to have an intersection point in
the space. In real applications it might happen that it the position of a camera is not exactly
as we assume it, we get multiple possible position of point P̃i. The real position of point P̃i

has to be estimated by appropriate approximation.

7

Remark 3.3 Condition πij ∧ πik ̸= 0, j, k ∈ {1, 2, 3}, j ̸= k grants various planes of three
out of four planes from the set Πi. Two planes from the set would be identical in instance if
points P̃i, P̃i+1,OL and OR layed on one plane.

Point P̃8 lays on planes π7,8,L, π7,8,R and on lines

L8,L = I(OL ∧ P̃8L ∧ e∞), (39)

L8,R = I(OR ∧ P̃8R ∧ e∞). (40)

We will find a pair of points P̃8 ∧ e∞ as

c(P̃8 ∧ e∞) = I(L8,L ∧ π7,8,R) (41)

or
c(P̃8 ∧ e∞) = I(L8,R ∧ π7,8,L). (42)

So have found all points P̃i, i ∈ {0, 1, 2, . . . , 8}, thus we know the final position of the machine.

4 Self calibration

In the previous chapter, we solved the problem of the binocular vision for a specific 6-DOF
manipulator. Next we consider that we lost information about the exact position of the
cameras for a short time due to some influences. Our goal is to calibrate the system using
knowledge of the manipulator construction (proportions, movement possibilities), the current
recording of the cameras and their approximate position. The manipulator construction and
the current recording give all possible camera positions, figure 7 shows the possible focus
positions. The solution is not unique, but if we know the position of the cameras at least
approximately, we can choose a specific possible position of the cameras, which is closest to
the approximate position with respect to the appropriate metric.

Note that the current recording is given by images PiL,PiR, i ∈ {0, 1, . . . , 8} on projection
planes. Consider coordinate system of left, resp. right camera in such a way, that its focus
is placed to point O = fe1 +

1
2
f 2e∞ + e0 and its images PiL,PiR are projected to plane

πyz = e1. In our procedure we are trying to find a rotor RROT = exp(−αROT

2
LROT), which

represents rotation of coordinate systems to each other and translator TTRANS representing
their relative displacement. Resulting motor Mv = TTRANSRROT , resp. M̃v = R̃ROT T̃TRANS

will transfer a representation of geometric objects from one coordinate system to the other
one. This is key for the following description of all possible camera positions.

4.1 Relative cameras rotation

At first we want to find rotor RROT , which describes the rotation of the right camera coor-
dinate system to the left camera coordinate system. Note that points P̃1, P̃2, P̃3, P̃4 always
form a rectangle in the space with respect to the possible machine position configurations.
An intersection of lines I(P1L ∧P3L ∧ e∞) and I(P2L ∧P4L ∧ e∞), resp. I(P1R ∧P3R ∧ e∞)
and I(P2R ∧ P4R ∧ e∞) is an image of center point S of rectangle P̃1, P̃2, P̃3, P̃4 (see figure
3). Relative rotation of cameras can be found using diagonal vectors of the rectangle (normal

8

P̃1

P̃2

P̃3

P̃4

P1L

P2L

P3L

P4L

OL

S

SL

LOL,S

π24,L

π13,L

LP1L,P3L

Figure 3: Calculation of line LOL,S S of rectangle P̃1, P̃2, P̃3, P̃4

vectors of symmetry planes P̃3− P̃1 and P̃4− P̃2) in the coordinate system for left and right
cameras. Now consider coordinate system of the left camera. Firstly let us compute following
objects

π13,L = •(I(O ∧P1L ∧P3L ∧ e∞)), (43)

π24,L = •(I(O ∧P2L ∧P4L ∧ e∞)), (44)

LP1L,P3L
= ◦(I(P1L ∧P3L ∧ e∞)). (45)

Image SL of center point S is the intersection of plane π24,L and line LP1L,P3L
, which we can

express in the equation
c(SL ∧ e∞) = I(π24,L ∧ LP1L,P3L

). (46)

Point S belongs to line

LOL,S = ◦(I(O ∧ SL ∧ e∞)) (47)

For illustration see figure 3.

Remark 4.1 The algorithm fails if images from points P̃1, P̃2, P̃3 and P̃4 of one camera
belong to one line.

Now we will compute representations of line through focus and points P̃1, P̃2, P̃3, P̃4:

LOL,Pi
= ◦(I(O ∧PiL ∧ e∞)), i ∈ {1, 2, 3, 4}. (48)

9

α13,L

α′
13,L

γ13,L

β13,L

β′
13,L

γ′13,L

P̃1

P̃3

S

O(L)

LOL,P1

LOL,P3

LOL,S

Lπ13,L

1
2dP1P3

1
2dP1P3

P3L

P1L

π13,L

πyz,(L)

Figure 4: Illustration of angles given by lines in plane π13,L

In the picture 4 we can see lines belonging to plane π13,L, angles defining these lines and a line
perpendicular to the plane. Analogously we can denote angles α24,L, α

′
24,L, β24,L, β

′
24,L, γ24,L, γ

′
24,L

in plane π24,L. When computing directional vectors of rectangle P̃1, P̃2, P̃3, P̃4 diagonals we
have to rotate line LOL,P3 with angle γ′

13,L in plane π13,L and line LOL,P4 with angle γ′
24,L in

plane π24,L. It is necessary to define angles γ′
13,L, γ

′
24,L and lines perpendicular to its respective

planes. Firstly we will compute angles defined by line LOL,S and lines LOL,Pi
,∈ {1, 3}:

α13,L = arccos(nOL,S · nOL,P1), (49)

α′
13,L = arccos(nOL,S · nOL,P3), (50)

where nOL,S = nS1e1+nS2e2+nS3e3 is unitary directional vector of line LOL,S and nOL,Pi
=

nPi1e1 +nPi2e2 +nPi3e3 is unitary directional vector of line LOL,Pi
. According to law of sines

we can infer that

γ′
13,L =

π

2
for

sinα13,L

sinα′
13,L

+ cos(π − α13,L − α′
13,L) = 0, (51)

γ′
13,L = arctan

sin(π − α13,L − α′
13,L)

sinα13,L

sinα′
13,L

+ cos(π − α13,L − α′
13,L)

otherwise. (52)

Analogously we can compute angles α24,L, α
′
24,L, γ24,L, γ

′
24,L.

Remark 4.2 Image of function arctan(x) in the previous expression we consider set ⟨0, π)/{π
2
}

in order to get nonnegative, convex angles γ′
13,L, γ

′
24,L.

10

Now we will compute a line perpendicular to plane π13,L, resp. π24,L, passing the origin

Lπ13,L
= n1,π13,L

e2 ∧ e3 + n2,π13,L
e3 ∧ e1 + n3,π13,L

e1 ∧ e2, (53)

Lπ24,L
= n1,π24,L

e2 ∧ e3 + n2,π24,L
e3 ∧ e1 + n3,π24,L

e1 ∧ e2, (54)

where ni,π13,L
, resp. ni,π24,L

are coefficients of unitary normal vector of plane π13,L, resp. π24,L,
i ∈ {1, 2, 3}. Next, let us perform following lines LOL,P3 a LOL,P4 rotations

R13,L = exp(−
γ′
13,L

2
Lπ13,L

), (55)

R24,L = exp(−
γ′
24,L

2
Lπ24,L

), (56)

LPN13,L = R13,LLOL,P3R̃13,L, (57)

LPN24,L = R24,LLOL,P4R̃24,L. (58)

Directional vectors of lines LPN13,L and LPN24,L refers to normal vectors of planes P̃3 − P̃1

and P̃4 − P̃2 in the coordinate system of left camera. In the direction of such vectors we
can find points, whose distance from the origin is equal to 1. Those points we will denote as
PN13,L and PN24,L. Analogously we can find similar points PN13,R and PN24,R in the right
coordinate system. Relative rotation of cameras coordinate systems describes a rotation
rotating point PN13,R into PN13,L and at the same time PN24,R into PN24,L or conversely. If
the rotation converts one point to another, then its rotational axis has to belong to a plane of
symmetry of both points, because rotation is a circular motion, whose center is equidistant
from both points, rotational axis passes the origin and is perpendicular to the plane, where
the rotational circle belongs. Thanks to the expression (5) we can find a plane of symmetry
of points PN13,L and PN13,R and a plane of symmetry of points PN24,L and PN13,R as

πS13 = •(PN13,L −PN13,R), (59)

πS24 = •(PN24,L −PN24,R) (60)

Final rotational axis belongs to both of those planes therefore applies following

LROT = ◦(πS13 ∧ πS24) (61)

Furthermore we need to compute rotational axes in such a way that final motor Mv converts
representations of geometric objects from coordinate system of the right camera into coor-
dinate system of the left camera. We can get an orientation of rotational axis in following
way

πo = I(e0 ∧PN13,R ∧PN13,L ∧ e∞), (62)

LROT = sgn(πo · nROT)LROT , (63)

where sgn(x) is sign function and nROT is directional vector of line LROT . The meaning of
the sign in the scalar product of vectors πo and nROT is visible in the picture 5.

11

e0

PN13,R

PN13,L

πo
−→n πo

LROT

Figure 5: Normal vector of plane πo defines orientation of rotational axis

Remark 4.3 If I(O ∧PN13,R ∧PN13,L ∧ e∞) · nROT = 0, then it is a rotation of π radians,
the axis orientation does not apply and we can use either LROT = LROT or LROT = −LROT .

Now we can compute the angle of rotation αROT . Rotation of point PN13,R into PN13,L is
performed in a plane perpendicular to line LROT , where those points belong (see figure 6).
Let us denote such a plane as πp. To find plane πp we have to compute auxiliary point PNp,
which belongs to it in the following way

Tp = 1− 1

2
π24e∞, (64)

PNp = TpPN13,LT̃p. (65)

Then we can compute plane πp as

πp = I(PN13,L ∧PN13,R ∧PNp ∧ e∞). (66)

From the equation

c(PROT ∧ e∞) = I(πp ∧ LROT), c ∈ R/{0}, (67)

we can compute an intersection PROT of plane πp and line LROT (see (38)). The angle of
rotation which is defined by normal vectors of planes

πROT,L = PN13,L −PROT , (68)

πROT,R = PN13,R −PROT , (69)

12

e0

PROT

PN24,L
PN24,R

αROT

LROT

PN13,R

PN13,L

πS24

πS13

πp

Figure 6: Rotation of point PN13,R to point PN13,L and another rotation of PN24,R to PN24,L

around axis LROT with angle αROT . πS13 is a plane of symmetry of points PN13,R and PN13,L,
πS24 is a plane of symmetry of points PN24,R and PN24,L

so
αROT = arccos(πROT,L · πROT,R). (70)

Next we will move rotation axis into focus O

Tf = 1− 1

2
fe1e∞, (71)

L̃ROT = TfLROT T̃f . (72)

We got the resulting rotor RROT , describing a rotation of the right camera coordinate system
with respect to the left camera coordinate system as

RROT = exp(−αROT

2
L̃ROT). (73)

4.2 Relative shift of cameras

As the next step we have to find translator TTRANS, which describes the shift of the right
camera coordinate system to the left camera coordinate system. At first we have to get the
length of rectangle P̃1, P̃2, P̃3, P̃4 diagonal as

dP1P3 =
√

−2(P1 ·P3). (74)

Next we want to compute a position of point P̃3 in the left camera coordinate system and
the right camera coordinate system simultaneously. It holds that

β′
13,L = π − α′

13,L − γ′
13,L (75)

13

(see figure 4). From the law of sines it follows that the distance of point P̃3 from the left
focus we can compute as

dOLP̃3
=

1

2
dP1P3

sin β′
13,L

sinα′
13,L

. (76)

With translator T3,L, which we can get as

t3,L = dOLP̃3
nOL,P3 , (77)

T3,L = 1− 1

2
t3,Le∞, (78)

where nOL,P3 is unitary directional vector of line LOL,P3 , we can compute a position of point
P̃3 in the left camera coordinate system as

P̃L
3 = T3,LOT̃3,L. (79)

Analogously we can compute a position of the point in the right camera coordinate system,
which we will denote as P̃R

3 . Next we will rotate this point with rotor RROT

P̃R
3,ROT = RROT P̃

R
3 R̃ROT . (80)

The shift of the right camera coordinate system to the left camera coordinate system describes
translator TTRANS, which we will get as

πTRANS = P̃L
3 − P̃R

3,ROT , (81)

TTRANS = 1− 1

2
πTRANSe∞. (82)

The final motor
Mv = TTRANSRROT (83)

converts representations of geometric objects from the right camera coordinate system to the
left camera coordinate system. The following equation

P̃L
i = MvP̃

R
i M̃v, i ∈ {0, 1, ..., 8}. (84)

holds. Conjugate motor
M̃v = R̃ROT T̃TRANS (85)

converts representations of geometric objects from the left camera coordinate system to the
right camera coordinate system, so

P̃R
i = M̃vP̃

L
i Mv, i ∈ {0, 1, ..., 8}. (86)

14

4.3 Cameras positions possibilities

Now we want to describe a space of all possible cameras positions in original coordinate
system. With respect to possible machine motions we know points P̃0 = P0 a P̃1 = P1 -
their position does not change with machine motion. With inferred relations from previous
sections we can compute their position in right, resp. left camera coordinate system and
their distance from focuses. At first we will convert representation of left focus and image
in the left projection plane from left camera coordinate system to right camera coordinate
system

OR
L = M̃vOMv, PR

iL = M̃vPiLMv, i ∈ {0, 1, ..., 8}. (87)

Representations of points P̃0 and P̃1 in right camera coordinate system follows from

c0(P̃
R
0 ∧ e∞) = I((I(OR

L ∧PR
0L ∧PR

1L ∧ e∞)) ∧ (I(O ∧P0R ∧ e∞))), (88)

c1(P̃
R
1 ∧ e∞) = I((I(OR

L ∧PR
0L ∧PR

1L ∧ e∞)) ∧ (I(O ∧P1R ∧ e∞))), (89)

where c0, c1 ∈ R/{0}. The distance of points P̃0 and P̃1 from left and right camera focuses
we get as

dOLP̃i
=

√
−2(OR

L · P̃R
i), dORP̃i

=

√
−2(O · P̃R

i), i ∈ {0, 1}. (90)

Next fix the original coordinate system. Focus of left camera belongs to following two spheres

SiL = P̃i −
1

2
d2
OLP̃i

e∞, i ∈ {0, 1}. (91)

This yields that it belongs to circle

ZL = S0L ∧ S1L. (92)

Analogously we can compute circle ZR, where belongs right camera focus. Now we will
compute one particular position of left and right camera and we will label resulting points
with upper index z. Let us combine plane πxz = e2 and circle ZR and we get its intersection
(pair of points) as

c(Oz
R ∧Oz2

R) = I(ZR ∧ πxz), c ∈ R/{0}. (93)

Now we want to choose point Oz
R out of pair of points c(Oz

R ∧ Oz2
R) with positive x-axis

coordinate. We can compute a line, which is defined by those points, as

LOz
RO

z2
R

= I(c(Oz
R ∧Oz2

R) ∧ e∞). (94)

Let MOz
RO

z2
R

be the midpoint of line segment |Oz
RO

z2
R | given by (6) and dOz

RO
z2
R

is its length

given by (8). We can get points Oz
R and Oz2

R as a shift of point MOz
RO

z2
R

in positive, resp.

negative orientation of line LOz
RO

z2
R

with displacement 1
2
dOz

RO
z2
R
. Furthermore we move points

P0R and P1R in following way

πtz = Oz
R −O, (95)

Tz = 1− 1

2
πtze∞, (96)

PiR,T = TzPiRT̃z, i ∈ {0, 1}, . (97)

15

Now we need to determine a rotation of right camera with respect to the original position.
To achieve that we will use analogical inference as in the picture 6. Initially we want to find
images positions of points P̃z

0R and P̃z
1R. These points belongs to lines

LOz
RP̃i

= ◦(I(Oz
R ∧ P̃i ∧ e∞)), i ∈ {0, 1}, (98)

in distances
dOPiR

=
√

−2(O ·PiR), i ∈ {0, 1}, (99)

from focus Oz
R. We can get images P̃z

0R and P̃z
1R with a shift of focus Oz

R with unitary
directional vector of line LOz

RP̃0
, resp. LOz

RP̃1
in the following way

tOz
RP̃iR

= dOPiR
nOz

RP̃i
, (100)

TOz
RP̃iR

= 1− 1

2
tOz

RP̃0R
e∞, (101)

P̃z
iR = TOz

RP̃iR
Oz

RT̃Oz
RP̃iR

, i ∈ {0, 1}. (102)

Now we need to determine rotation converting point P0R,T to point P̃z
0R and point P1R,T to

point P̃z
1R as well. So the axis of rotation belongs to plane of symmetry of points P̃z

0R and
P0R,T and simultaneously it belongs to plane of symmetry of points P̃z

1R a P1R,T . We can
compute those planes as

πz
i = P̃z

iR −PiR,T , i ∈ {0, 1}. (103)

Then we can get the rational axis within its orientation as

L
z

ROTOR
= πz

0 ∧ πz
1, (104)

Lz
ROTOR

= ◦(sgn(I(Oz
R ∧P0R,T ∧ P̃z

0R ∧ e∞) · nz
ROTOR

)L
z

ROTOR
), (105)

where nz
ROTOR

is directional vector of line L
z

ROTOR
. Next we want to know an angle of

such rotation. Firstly we will find an intersection Pz
ROTOR

of rotational axis and plane

perpendicular to it, which contains points P̃z
0R and P0R,T

T z
p = 1− 1

2
πz
1e∞, (106)

Pz
p = T z

p P̃
z
0RT̃

z
p , (107)

c(Pz
ROTOR

∧ e∞) = I(I(P̃z
0R ∧P0R,T ∧Pz

p ∧ e∞) ∧ Lz
ROTOR

). (108)

Then the angle of rotation define normal vectors of planes

πz
ROTP0R,T

= P0R,T −Pz
ROTOR

, (109)

πz
ROTPz

0R
= P̃z

0R −Pz
ROTOR

, (110)

so

αROTOR
= arccos(πz

ROTP0R,T
· πz

ROTPz
0R
). (111)

16

Resulting rotation describes rotor

Rz
ROTOR

= exp(−αROTOR

2
Lz

ROTOR
). (112)

For images in right camera holds

P̃z
iR = Rz

ROTOR
PiR,T R̃

z
ROTOR

, i ∈ {0, 1, ..., 8}. (113)

Representations of geometric objects from right camera coordinate system converts to the
original coordinate system motor

Mz = Rz
ROTOR

Tz. (114)

Finally, because motor M̃v converts representations of geometric objects from left camera
coordinate system to right camera coordinate system and following relations hold

Oz
L = MzM̃vOMvM̃z, P̃z

iL = MzM̃vPiLMvM̃z, i ∈ {0, 1, ..., 8}. (115)

Thus all possible camera positions can be described as

Rθ = exp(−θ

2
e1 ∧ e2), (116)

Oθ
L = RθO

z
LR̃θ, P̃θ

iL = RθP̃
z
iLR̃θ, (117)

Oθ
R = RθO

z
RR̃θ, P̃θ

iR = RθP̃
z
iRR̃θ, i ∈ {0, 1, ..., 8}, (118)

where parameter θ takes values of interval ⟨0, 2π⟩ (see figure 7).

5 Conclusion

We considered a system given by a specific manipulator and two cameras that detect the ma-
nipulator position. Using CGA, We have proposed a method, which can compute all possible
camera positions precisely with minimum initial knowledge - recording of the cameras and
manipulator construction. It can be useful for self calibration, if we lose information about
the exact position of the cameras for a short time due to some influences. The solution is
not unique, but the selection of a concrete possible position will allow knowledge of the ap-
proximate position of the cameras (last known position). Although the algorithm is limited
with a quality of images while image processing - structure identification, the method itself
is quite effective, consisting with just a few equations, which enables online re-calibration
of sensors. This means that the process can re-calibrate the sensors position prior further
analysis on every image sample. Furthermore this method is applicable on wide range of
structures, namely solid structures, which are supported by plane skeleton or plane frame.
To reduce the dependence on given sensors images the research could continue adding pertur-
bations and noise to the problem. The file containing the supporting code shall be available
on https://www.vut.cz/www_base/vutdisk.php?i=277353a744.

17

https://www.vut.cz/www_base/vutdisk.php?i=277353a744

P̃0

Oz
L

Oz
R

Oθ
L

Oθ
R

θ

θ

x

y

ZL

ZR

Figure 7: Final possible camera positions depending on parameter θ ∈ ⟨0, 2π⟩ - top view

References

[1] Bennett, S., Lasenby, J., Korkam, A., Iingiva, S. and Birkbeck, N.: Reconstruction
of the pose of uncalibrated cameras via user-generated videos, Proceedings of the 8th
ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2014
(2014) (cited on p. 4)

[2] Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc. (2007) (cited on
p. 2)

[3] Hadfield H., Wei L., Lasenby J.: The Forward and Inverse Kinematics of a Delta Robot.
In: Magnenat-Thalmann N. et al. (eds) Advances in Computer Graphics. CGI 2020.
Lecture Notes in Computer Science, vol 12221. Springer, Cham. (2020) (cited on p. 4)

[4] Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer Science &
Business Media (2013) (cited on p. 2)

[5] Hildenbrand, D.: Introduction to Geometric Algebra Computing. CRC Press, Taylor &
Francis Group (2019) (cited on p. 2)

[6] Hildenbrand, D., Hrdina, J., Návrat, A., Vaš́ık, P. Local controllability of snake robots
based on CRA, theory and practice. Advances in Applied Clifford Algebras, 30(1)
(2020).doi:10.1007/s00006-019-1022-8 (cited on p. 4)

18

[7] Hrdina, J.; Vaš́ık, P.: Notes on differential kinematics in conformal geometric algebra
approach. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzer-
land, Volume 378 (2015) 363–374. (cited on p. 2)

[8] Hrdina, J., Návrat, A.: Binocular computer vision based on conformal geometric algebra.
Advances in Applied Clifford Algebras, 27(3), 1945-1959. (2017) doi:10.1007/s00006-017-
0764-4 (cited on p. 4)

[9] Hrdina, J., Návrat, A., Vaš́ık, P., Dorst, L.: Projective geometric algebra as a subalgebra
of conformal geometric algebra. Advances in Applied Clifford Algebras, 31(2) (2021)
doi:10.1007/s00006-021-01118-7 (cited on p. 2)

[10] González-Jiménez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E. Ro-
bust pose control of robot manipulators using conformal geometric algebra. Advances in
Applied Clifford Algebras, 24(2), 533-552. (2014) doi:10.1007/s00006-014-0448-2 (cited
on p. 4)

[11] Kleppe, A. and Egeland, O., 2016. Inverse kinematics for industrial robots using con-
formal geometric algebra. Modeling, Identification and Control, 37(1), pp. 63-75. (cited
on p. 4)

[12] Lounesto, P.: Clifford Algebra and Spinors. 2nd edn. CUP, Cambridge (2006). (cited on
p. 2)

[13] Zamora-Esquivel, J., Bayro-Corrochano, E. Kinematics and diferential kinematics of
binocular robot heads Proceedings - IEEE International Conference on Robotics and
Automation, 2006, art. no. 1642337, pp. 4130-4135 (2006) (cited on p. 4)

[14] Jiang, G., Luo, M., Bai, K.: Optical positioning technology of an assisted puncture robot
based on binocular vision. International Journal of Imaging Systems and Technology,
29(2), (2019) 180-190. doi:10.1002/ima.22303 (cited on p. 4)

[15] Perwass, Ch.: Geometric Algebra with Applications in Engineering (1st edn). Springer
Verlag, 2009. (cited on p. 2)

[16] Stodola, M. 2019. Monocular Kinematics Based on Geometric Algebras. Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 11472 LNCS. (cited on p. 4)

[17] Tichy, R., 2020. Inverse Kinematics for the Industrial Robot IRB4400 Based on Confor-
mal Geometric Algebra. In Modelling and Simulation for Autonomous Systems. MESAS
2019. Lecture Notes in Computer Science, vol 11995. Springer, Cham. (cited on p. 4)

[18] Xu, C., Wang, D., Huang, D., Yuan, P., Han, W. (2019). Self-location of unmanned aerial
vehicle using conformal geometric algebra. Advances in Applied Clifford Algebras, 29(4)
doi:10.1007/s00006-019-0992-x (cited on p. 4)

[19] Ganmin Zhu, Shimin Wei, Ying Zhang, Qizheng Liao, CGA-based novel modeling
method for solving the forward displacement analysis of 3-RPR planar parallel mecha-
nism, Mechanism and Machine Theory, Volume 168 (2022) 104595 (cited on p. 4)

19

	Introduction
	Conformal geometric algebra
	3D scene reconstruction
	Forward kinematics
	Binocular vision

	Self calibration
	Relative cameras rotation
	Relative shift of cameras
	Cameras positions possibilities

	Conclusion

