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Abstract. In this work, we investigate the poroelastic waves by solving the time-domain Biot-JKD

equation with an efficient numerical method. The viscous dissipation occurring in the pores depends

on the square root of the frequency and is described by the Johnson-Koplik-Dashen (JKD) dynamic
tortuosity/permeability model. The temporal convolutions of order 1/2 shifted fractional derivatives

are involved in the time-domain Biot-JKD model, causing the problem to be stiff and challenging to

be implemented numerically. Based on the best relative approximation of the square-root function, we
design an efficient algorithm to approximate and localize the convolution kernel by introducing a finite

number of auxiliary variables that satisfy a local system of ordinary differential equations. The imperfect

hydraulic contact condition is used to describe the interface boundary conditions and the Runge-Kutta
discontinuous Galerkin (RKDG) method together with the splitting method is applied to compute the

numerical solutions. Several numerical examples are presented to show the accuracy and efficiency of our
approach.

Keyword: poroelastic media, Biot-JKD model, temporal convolution, stiff system, Chebyshev approx-
imation, splitting method, RKDG method.

1. Introduction

Porous media consist of a solid matrix saturated with fluids that can flow through the pores freely
and has important applications in petroleum rocks, engineering composites, energy conversion and energy
storage. The propagation of waves in these media can be described by poroelasticity theory, which was
originally developed by Biot (2; 3; 4). Biot theory predicts that there are three waves propagating in
isotropic poroelastic materials. In the order of decreasing wave speeds, they are classified as: fast p wave,
which are analogous to the standard elastic p wave; s wave, which are analogous to the elastic shear wave;
and slow p wave, which exhibits substantial phase difference between the solid matrix and fluid. Because
of the viscous effect, the fast p wave and s wave are lightly damped, while the slow p wave is strongly
damped. Simultaneously, the viscous dissipation also causes slight dispersion in the fast p wave and s wave
and strong dispersion in the slow p wave.

In Biot’s theory, two frequency regimes of the low-frequency range (LF) and the high-frequency range
(HF) are separated by the critical frequency fc. In the LF regime, the fluid inside the pores is assumed
to be of Poiseuille type, making the viscous effect proportional to the relative velocity between pore fluid
and the solid matrix. In the HF regime, the viscous effect depends on the square root of the frequency,
resulting in a convolution term in the time-domain. In (3), Biot firstly presented an expression of the
memory kernel for particular geometries. In (18), Johnson-Koplik-Dashen (JKD) derived a more general
model of dynamic permeability, which accounted for the viscous effects in a full frequency range and was in
agreement with Biot’s theory for the low frequency regime. In (1), Avellaneda and Torquato pointed out
that the permeability in the frequency domain can be represented as a Stieltjes integral with a probability
measure; mathematically, this is by far the most general theory for the high-frequency correction of Biot’s
LF equations. In (26), Pride et al. developed a drag force model for more general pore geometry by adding
correction to the JKD model when the cross-section size of pore space varies significantly along the fluid
trajectory.
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In the LF regime, the major difficultly for numerical simulation is to handle the stiffness of the Biot
equations; see (20; 12; 29; 27; 5; 15; 16; 33; 32; 11) for reference. In the HF regime, not only the viscous
term but also the temporal convolution is hard to implement numerically, complicating the modeling task
greatly. Two approaches have appeared in the literature to approximate the Biot-JKD equations directly in
the time-domain. The first one is to discretize the convolution term directly by defining a time convolution
product (23). The second one is to approximate the memory kernel by the summation of exponentials
and replace the temporal convolution by the auxiliary variables satisfying local differential equations. In
(10), the Fourier transform of the memory kernel (dynamic tortuosity) is approximated by a sum of Zener
kernels in the frequency domain. In (22), the Biot-DA (diffusive approximation) model with the Gauss-
Laguerre quadrature formula is developed to approximate the Biot-JKD model, which is based on the
diffusive representation of the fractional derivative. Instead of the Gauss-Laguerre quadrature, a linear
optimization procedure has been used to determine the coefficients of the DA model (6; 7), which is more
accurate than the Gauss-Laguerre formula. Furthermore, a nonlinear optimization method is developed in
(8) to improve the performances of the linear optimization method. In (24; 25; 31), based on the fact that
the dynamic tortuosity in the Laplace domain, including the JKD model, can be exactly represented with
a Stieltjes function, whose two-sided residue approximation is used to approximate the tortuosity. This
approach is more accurate than the optimization method.

Both the optimization method and the Stieltjes function approach work well for the approximation of
the convolution kernel. However, although the Stieltjes function approach has high accuracy, it involves
solving a linear system with very large condition number. The linear optimization method also encounter
a high condition number linear system. Besides, both methods are sensitive to the choice of sample points
and an improper choice of the nodes may lead to lower convergence, especially for the linear optimization
method. To avoid solving a system of high condition number, a more general method of the best relative
Chebyshev approximation for the square root functions (9; 30) is developed in this work. One of the
advantage is that it can be implemented easily without the need of forming the system or choosing the
interpolation points.

The objective of this paper is to develop an efficient algorithm to simulate wave propagation in or-
thotropic poroelastic media. For this purpose, we apply the Runge-Kutta discontinuous Galerkin (RKDG)
method to solve the Biot-JKD equations. Due to the existence of the temporal convolution, a naive im-
plementation will be very expensive and highly inefficient. To overcome this difficulty, we design a fast
algorithm by utilizing the best relative Chebyshev approximation of the square-root function
appearing in the JKD model. The main idea is to approximate the JKD dynamic tortuosity in the Laplace
domain by rational functions, and then apply the inverse Laplace transform to obtain the time-domain
approximation of the convolution. By this approach, the temporal convolution is replaced by a set of
local ODEs with auxiliary variables, and thus a fast evaluation is straightforward. In addition, the viscous
dissipation is challenging to be implemented since the viscous term has its own intrinsic timescale, which
is independent of the mesh grids and may cause the poroelasticity system to be stiff. To tackle this, we
apply the second-order Strang splitting method to deal with the viscous term by splitting the Biot-JKD
equations into a homogeneous hyperbolic system and a system of ordinary differential equations (ODEs).
The imperfect hydraulic contact condition is use to handle the interface conditions when heterogeneous
poroelastic media is considered. We give a complete dispersion and energy analysis of the Biot-JKD model.

The remainder of this paper is organized as follows. In Section 2, the mathematical formulation of
the governing equations is described. In Section 3, we present the dispersion analysis. In Section 4,
we introduce the fast algorithm based on the best relative Chebyshev approximation of the square-root
function. A brief description of the numerical method is in Section 5. Finally, several numerical tests are
provided in Section 6.

2. Mathematical model for wave propagation in transversely isotropic poroelastic
media

Let u be the skeleton solid displacement vector, U the fluid displacement vector, w := φ(U − u) the
relative motion of the fluid scaled by the porosity φ and ζ := −∇ ·w the variation in fluid content. The
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solid velocity v and the relative fluid velocity q are defined by

(2.1) v :=
∂u

∂t
, q :=

∂w

∂t
.

2.1. The constitutive relation. Let the z axis be the symmetry axis, the stress-strain relations for a
transversely isotropic elastic material has the following form:

(2.2) τ = Cε,

where the matrix elastic stiffness tensor C, stress tensor τ , and strain tensor ε are defined as

C =

 c11 c13 0
c13 c33 0
0 0 c55

 , τ = (τ11 τ33 τ13)T , ε = (ε11 ε33 2ε13 )T ,(2.3)

with εij = 1
2 (∂iuj + ∂jui). Here and hereafter, the subscripts 1 and 3 represent the x and z axes, respec-

tively. The constitutive relations are expressed as

τ = Cε− βp = Cuε−Mβζ,(2.4)

p = M
(
ζ − βT ε

)
,(2.5)

where Cu is the undrained matrix elasticity tensor and is determined by

Cu : = C +MββT , β := (β1, β3, 0)T ,

β1 : = 1− c11 + c12 + c13

3Ks
, β3 := 1− 2c13 + c33

3Ks
,

M : =
K2
s

Ks [1 + φ(Ks/Kf − 1)]− (2c11 + c33 + 2c12 + 4c13) /9
,

with Ks and Kf being the bulk modulus of the skeleton and pore fluid, respectively.

2.2. Equations of motion. The equations of motion are given by the conservation of momentum as

(2.6) ρ
∂v

∂t
+ ρf

∂q

∂t
= ∇ · τ ,

where ρs is the density of constituent solid, ρ = (1 − φ)ρs + φρf the bulk density of the medium and

τ =

[
τ11 τ13

τ13 τ33

]
with ∇ · τ = (∂xτ11 + ∂zτ13, ∂xτ13 + ∂zτ33)

T
.

The generalized Darcy’s law is

(2.7) ρf
∂v

∂t
+ diag

(
ρf
φ

)
α̌ ∗ ∂q

∂t
= −∇p,

where ∗ denotes the temporal convolution and α̌ = (α̌1, α̌3)T is the inverse Laplace transform of the
dynamic tortuosity α(s) with s = iω, i =

√
−1 and ω is the frequency.

2.3. The Biot-JKD equation. In the LF regime, the viscous effect is proportional to the relative velocity
between pore fluid and the solid matrix, which leads to

(2.8) α̌j(t) = α∞jδ(t) +
ηφ

κjρf
H(t), j = 1, 3,

where δ(t) is the Dirac function and H(t) the Heaviside function. In the HF regime, the viscous effect
depends on the square root of the frequency, resulting in a memory kernel in time-domain. The JKD
model (18) in the frequency domain is

αj(s) := α∞j +
ηφ

sκjρf

(
1 + s

4α2
∞jκ

2
jρf

ηΛ2
jφ

2

) 1
2

, j = 1, 3,



4 JIANGMING XIE, MAOJUN LI, AND MIAO-JUNG YVONNE OU

where Λj =
√

4α∞jκj

φPj
is the viscous characteristic length and Pj is the Pride number. Set

(2.9) λj =
ηφ2Λ2

j

4α2
∞jκ

2
jρf

, j = 1, 3,

then we have

(2.10) αj(s) := α∞j +
ηφ

sκjρf
√
λj

(s+ λj)
1
2 , j = 1, 3.

Combining (2.7) and (2.10), we obtain the Darcy’s law in the time-domain

(2.11) ρf
∂v

∂t
+ diag

(
α∞jρf
φ

)
∂q

∂t
+∇p = −diag

(
η

κj
√
λj

(∂t + λj)
1/2

)
q, j = 1, 3.

Taking derivative on both sides (2.4) and (2.5) with respect to time t, and combining the motion
equation (2.6), we rewrite the Biot-JKD equation as

∂τ

∂t
=

∂

∂t
(Cuε−Mβζ) ,(2.12)

∂p

∂t
=

∂

∂t

(
M
(
ζ − βT ε

))
,(2.13)

ρ
∂v

∂t
+ ρf

∂q

∂t
= ∇ · τ ,(2.14)

ρf
∂v

∂t
+ diag

(
α∞jρf
φ

)
∂q

∂t
+∇p = −diag

(
ϑj (∂t + λj)

1/2
)

q, j = 1, 3,(2.15)

where (∂t + λj)
1/2 is the Caputo fractional derivative with the shifted factor λj and ϑj = η

κj

√
λj

. Based

on the diffusive representation of the fractional derivative, we have

(2.16) (∂t + λj)
1/2

qj = e−λjt∂
1/2
t

(
eλjtqj

)
=

2

π

∫ ∞
0

ψj(y, t)dy, j = 1, 3,

where the auxiliary variables are defined as

ψj(y, t) =

∫ t

0

e−(y2+λj)(t−τ) [λjqj(τ) + ∂τqj(τ)] dτ.

It is easy to check that the auxiliary variables satisfy the following equations

(2.17)
∂ψj
∂t

= −
(
y2 + λj

)
ψj + [λjqj + ∂tqj ] , j = 1, 3,

with zero initial conditions.

Theorem 2.1. (energy decay) Consider the Biot-JKD model (2.12)-(2.15) without force. Define

E1 =
1

2

∫
R2

(
(v1, q1)M1(v1, q1)T + (v3, q3)M3(v3, q3)T

)
dxdz,

E2 =
1

2

∫
R2

(
(τ + pβ)TC−1(τ + pβ) +

1

M
p2

)
dxdz,

E3 =
1

π

∫
R2

∫ ∞
0

(ψ − q)T diag

(
ϑj

y2 + 2λj

)
(ψ − q)dxdz,

with Mj =

[
ρ ρf
ρf µj

]
, µj =

α∞jρf
φ and ψ = (ψ1, ψ3)T , then

E = E1 + E2 + E3,
is the total energy, which satisfies

(2.18)
dE
dt

= − 2

π

∫
R2

∫ ∞
0

[
ψT diag

(
y2 + λj
y2 + 2λj

ϑj

)
ψ + qT diag

(
λjϑj

y2 + 2λj

)
q

]
dydxdz < 0, j = 1, 3.

Proof. We refer the readers to A for the proof. �
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2.4. The approximate Biot-JKD equation. The Biot-JKD model (2.12)-(2.15) is hard to be im-
plemented due to the existence of the temporal convolution. To overcome this difficulty, we derive an
approximated Biot-JKD model by utilizing the best relative Chebyshev approximation of the square-root
function (9; 30)

(2.19)
√
s w −

m∑
k=1

ωk
s+ pk

+ ωm+1s+ ωm+2 := Φ(s),

where pk > 0 and ωk > 0 are the poles and weights respectively. Consequently, we have

(2.20) (s+ λj)
1
2 w −

m∑
k=1

ωjk
s+ λj + pjk

+ ωjm+1(s+ λj) + ωjm+2 := Φ(s+ λj), j = 1, 3.

With the above approximation, the Darcy’s law (2.15) in the Laplace domain can be expressed as

(2.21) ρf (sv̂) + diag (µj) (sq̂) +∇p̂+ diag

(
ϑj

(
−

m∑
k=1

ωjk
s+ λj + pjk

+ ωjm+1(s+ λj) + ωjm+2

))
q̂ = 0.

Define the auxiliary variables

(2.22) Ĥk = diag

(
1

s+ λj + pjk

)
q̂, j = 1, 3.

By applying the inverse Laplace transform, we obtain

(2.23)

ρf
∂v

∂t
+ diag

(
µj + ϑjω

j
m+1

) ∂q

∂t
+∇p

=

m∑
k=1

diag
(
ϑjω

j
k

)
Hk − diag

(
ϑj

(
ωjm+1λj + ωjm+2

))
q,

where zero initial conditions for q are used. According to (2.22), we have

(2.24)
∂Hj

k

∂t
= −

(
pjk + λj

)
Hj
k + qj , Hj

k|t=0 = 0, k = 1, · · ·m, j = 1, 3.

From (2.14) and (2.23), we derive

∂q1

∂t
+
ρf
γ1

(
∂τ11

∂x
+
∂τ13

∂z

)
+

ρ

γ1

∂p

∂x
=
ρϑ1

γ1

[
m∑
k=1

ω1
kH

1
k −

(
ω1
m+1λ1 + ω1

m+2

)
q1

]
,(2.25)

∂q3

∂t
+
ρf
γ3

(
∂τ13

∂x
+
∂τ33

∂z

)
+

ρ

γ3

∂p

∂z
=
ρϑ3

γ3

[
m∑
k=1

ω3
kH

3
k −

(
ω3
m+1λ3 + ω3

m+2

)
q3

]
,(2.26)

∂v1

∂t
−
µ1 + ϑ1ω

1
m+1

γ1

(
∂τ11

∂x
− ∂τ13

∂z

)
− ρf
γ1

∂p

∂x
=
ρfϑ1

γ1

[
−

m∑
k=1

ω1
kH

1
k +

(
ω1
m+1λ1 + ω1

m+2

)
q1

]
,(2.27)

∂v3

∂t
−
µ3 + ϑ3ω

3
m+1

γ3

(
∂τ13

∂x
+
∂τ33

∂z

)
− ρf
γ3

∂p

∂z
=
ρfϑ3

γ3

[
−

m∑
k=1

ω3
kH

3
k +

(
ω3
m+1λ3 + ω3

m+2

)
q3

]
,(2.28)

where γj = ρµj − ρ2
f + ρϑjω

j
m+1, j = 1, 3. Simultaneously, by (2.12), we have

∂tτ11 = cu11∂xv1 + cu13∂zv3 + β1M(∂xq1 + ∂zq3),(2.29)

∂tτ33 = cu13∂xv1 + cu33∂zv3 + β3M(∂xq1 + ∂zq3),(2.30)

∂tτ13 = cu55(∂zv1 + ∂xv3),(2.31)

∂tp = −β1M∂xv1 − β3M∂zv3 −M(∂xq1 + ∂zq3).(2.32)
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In terms of the unknown vector Q =
(
τ11, τ33, τ13, p, v1, v3, q1, q3, H

1
1 , · · · , H1

m, H
3
1 , · · · , H3

m

)T
and

the external source S = (s11, s33, s13, 0, 0, sf , 0, 0, 01, · · ·, 0m, 01, · · ·, 0m)
T

, the first-order governing
system (2.25)-(2.32) reads as

(2.33)
∂Q

∂t
+ A

∂Q

∂x
+ B

∂Q

∂z
= HQ + S,

where

(2.34) A =

[
A1 0
0 0

]
, B =

[
B1 0
0 0

]
, H =

[
H1 H2

H4 H3

]
,

and

A1 = −



0 0 0 0 cu11 0 β1M 0
0 0 0 0 cu13 0 β3M 0
0 0 0 0 0 cu55 0 0
0 0 0 0 −β1M 0 −M 0

µ1+ϑ1ω
1
m+1

γ1
0 0

ρf
γ1

0 0 0 0

0 0
µ3+ϑ3ω

3
m+1

γ3
0 0 0 0 0

−ρfγ1 0 0 − ρ
γ1

0 0 0 0

0 0 −ρfγ3 0 0 0 0 0


,

B1 = −



0 0 0 0 0 cu13 0 β1M
0 0 0 0 0 cu33 0 β3M
0 0 0 0 cu55 0 0 0
0 0 0 0 0 −β3M 0 −M
0 0

µ1+ϑ1ω
1
m+1

γ1
0 0 0 0 0

0
µ3+ϑ3ω

3
m+1

γ3
0

ρf
γ3

0 0 0 0

0 0 −ρfγ1 0 0 0 0 0

0 −ρfγ3 0 − ρ
γ3

0 0 0 0


,
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H1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
ρfϑ1(λ1ω

1
m+1+ω1

m+2)
γ1

0

0 0 0 0 0 0 0
ρfϑ3(λ3ω

3
m+1+ω3

m+2)
γ3

0 0 0 0 0 0 −ρϑ1(λ1ω
1
m+1+ω1

m+2)
γ1

0

0 0 0 0 0 0 0 −ρϑ3(λ3ω
3
m+1+ω3

m+2)
γ3


,

H2 =



0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0

−ρfϑ1ω
1
1

γ1
−ρfϑ1ω

1
2

γ1
· · · −ρfϑ1ω

1
m

γ1
0 0 · · · 0

0 0 · · · 0 −ρfϑ3ω
3
1

γ3
−ρfϑ3ω

3
2

γ3
· · · −ρfϑ3ω

3
m

γ3
ρϑ1ω

1
1

γ1

ρϑ1ω
1
2

γ1
· · · ρϑ1ω

1
m

γ1
0 0 · · · 0

0 0 · · · 0
ρϑ3ω

3
1

γ3

ρϑ3ω
3
2

γ3
· · · ρϑ3ω

3
m

γ3


,

H4 =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 1


, H3 =

[
−diag

(
p1
k + λ1

)
0

0 −diag
(
p3
k + λ3

) ] .

It is this system (2.33) with 2m + 8 unknowns that forms the basis for our numerical work, in which the
temporal convolution in (2.15) is divided into a series of local ordinary differential equations with finite
memories. The dimension of this system increases linearly with the number of auxiliary variables. Note
that the flux of the auxiliary variables Hj

k is exactly zero, making the system very simple to implement .

Theorem 2.2. (eigenvalues of H) Suppose {pjk}mk=1 is an increasing sequence w.r.t. k for each fixed j =

1, 3, then zero is an eigenvalue of H with multiplicity 6, and the 2m+ 2 nonzero eigenvalues {λ̃jk}
m+1
k=1 , j =

1, 3 satisfy

0 < λ̃j1 < pj1 + λj1 < · · · < λ̃jm < pjm + λj < λ̃jm+1, j = 1, 3.

Proof. We refer the readers to B for the proof. �

3. Dispersion analysis

In this section, we present the dispersion analysis of (2.33), where the phase velocities and the attenu-
ation will be deduced. Assume that the particle velocity and stress have the plane wave form

V = (vx, vz, qx, qz)
T = V0 exp(i(ωt− kxx− kzz)),

T = (τxx, τzz, τxz, −p)T = T0 exp(i(ωt− kxx− kzz)),

where V0, T0 are constant vectors, ω is the angular frequency, and ~k = (kx, kz) = k (lx, lz) is the wave
vector with k being the wave number and (lx, lz) being the unit wave direction. Injecting the plane wave
to the stress-strain equations (2.29)-(2.32) gives

(3.1) ωT0 = −kFV0,
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where F is given by

F =


lxc

u
11 lzc

u
13 β1Mlx β1Mlz

lxc
u
13 lzc

u
33 β3Mlx β3Mlz

lzc
u
55 lxc

u
55 0 0

β1Mlx β3Mlz Mlx Mlz

 .
Substituting the plane wave to the equations of motion (2.25)-(2.28) gives

(3.2) − kLT0 = ωΓV0,

where Γ and L are given by

L =


lx 0 lz 0
0 lz lx 0
0 0 0 lx
0 0 0 lz

 , Γ =


ρ 0 ρf 0
0 ρ 0 ρf
ρf 0 Y1(ω)

iω 0

0 ρf 0 Y3(ω)
iω

 ,
with

Yj(ω) = iωµj +
η

κj
√
λj

[
−

m∑
k=1

ωjk
iω + λj + pjk

+ ωjm+1(iω + λj) + ωjm+2

]
, j = 1, 3.

For the LF Biot equation, we have

Yj(ω) := iωµj +
η

κj
, j = 1, 3,

while for the Biot-JKD equation, we have

Yj(ω) = iωµj +
η

κj
√
λj

(iω + λj)
1
2 , j = 1, 3.

Together (3.1) and (3.2) lead to

(3.3) Γ−1LFV0 =
(ω
k

)2

V0.

Equation (3.3) is an eigenproblem for V0 and ω2/k2 and can be solved numerically. Eight wave modes are
obtained: ±kpf , ±kps, ±ks and 0 with multiplicity two, which correspond to the fast p wave, slow p wave
and shear wave respectively. It is worthwhile to note that the wave modes depend on the frequency ω and
the wave direction (lx, lz).

With the wave modes, we deduce the phase velocities: cpf = ω/<(kpf ), cps = ω/<(kps) and cs =
ω/<(ks), satisfying 0 < cps < cpf and 0 < cs. Simultaneously, the attenuations are also derived: αpf =
−=m(kpf ), αps = −=m(kps) and αs = −=m(ks). As shown in (8), both the phase velocities and the
attenuations of the Biot-LF and Biot-JKD are strictly increasing functions with respect to frequency.
Theoretically, in the case that f > fc with fc being the critical frequency, the slow p wave is highly damped,
while the fast p wave and the shear wave are lightly damped; on the contrary, the phase velocities and
the attenuations of the Biot-LF model and the Biot-JKD model are consistent when f < fc. See Fig. 1.

4. Numerical methods for the poles and weights

In this section, we introduce the best relative Chebyshev approximation of the square-root function to
determine the poles and weights in (2.33). To compare with the Stieltjes function (31) and the diffusive
approximation (6; 8; 7; 22) for the convolution kernel, we also give a brief introduction of these two
methods. For simplicity, the subscripts for indicating the principle directions are suppressed in the following
statements.
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Figure 1. Dispersion results for for material J3 with 15 poles and the wave direction
(1, 0). Top: the phase velocities, bottom: the attenuations. Left to right: the fast p wave,
the slow p wave, the shear wave.

4.1. The best relative Chebyshev approximation for
√
x. The function Φq,q−1 ∈ Rq,q−1, q ≥ 1, with

Rq,q−1 denoting the rational functions of degrees (q, q − 1), is the best relative Chebyshev approximation
for
√
x in [a2, b2] if

Φq,q−1 = arg min
g∈Rq,q−1

∥∥∥∥g −√x√
x

∥∥∥∥
L∞[a2,b2]

.

Define

Eq,q−1,[a2,b2] :=

∥∥∥∥Φq,q−1 −
√
x√

x

∥∥∥∥
L∞[a2,b2]

.

Given two numbers a0 and b0 such that 0 < a0 < b0, the sequences {aj} and {bj} are constructed
recursively as follows

(4.1) aj+1 =
√
ajbj , bj+1 =

1

2
(aj + bj) , j ≥ 0.

Clearly, 0 < aj < bj , j ≥ 0.

Lemma 4.1 ((9), Lemma 3.1). For q ≥ 1 and (aj , bj) constructed according to (4.1), we have

Eq,q−1,[a2j+1,b
2
j+1] = E2q,2q−1,[a2j ,b

2
j ].

The above Lemma provides a strategy to calculate the poles and weights recursively. Denote r(x) :=
(x + ajbj)/2 and ξ := x/r2(x), then ξ maps [a2

j , ajbj ] and [ajbj , b
2
j ] onto [1/b2j+1, 1/a

2
j+1] monotonously,

and it holds that
√
x = r(x)

√
x/r2(x) = r(x)

√
ξ. Suppose we have the following approximation

(4.2)
√
x w −

m∑
k=1

ωk
x+ pk

+ ωm+1x+ ωm+2 =: Φq,q−1(x), m = 2q−1 − 1, q ≥ 2,

where pk, ωk > 0 are poles and weights of the rational function. As a result, one can derive

Φ2q,2q−1,[a2j ,b
2
j ](x) = r(x)Φq,q−1,[1/b2j+1,1/a

2
j+1](ξ) ∈ R2q,2q−1, q ∈ Z+,
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which provides an approximation for the interval [a2
j , b

2
j ] with the same maximal relative error as Φq,q−1

on the interval [1/b2j+1, 1/a
2
j+1]. Obviously, r(x)

ξ+pk
, r(x)ξ and r(x) are of degree (3, 2), (1, 1) and (1, 0),

respectively, and thus one can determine the poles and weights easily and obtain all the poles and weights
recursively as follows. The starting point of the recursive procedure is the best constant approximating
function

Φ0,0 =
2ab

a+ b
, E0,0 =

b− a
b+ a

.

In particular, one has

Φ1,0 =

√
1− E2

0,0

1 +
√

1− E2
0,0

 Φ0,0√
1− E2

0,0

+
√

1− E2
0,0

x

Φ0,0

 , E−1
1,0 =

(
E−1

0,0 +
√
E−2

0,0 − 1

)2

,

and

E−1
2q,2q−1 =

(
E−1
q,q−1 +

√
E−2
q,q−1 − 1

)2

.

Theorem 4.1. ((9), Theorem 3.3) Let [a, b] ⊂ R+, set ` =
√
a/b and η (`) = exp

(
πK(`)
K′(`)

)
with

K(`) :=

∫ ∞
0

1√
(1 + θ2)(1− `2 + θ2)

dθ, K′(`) :=

∫ ∞
0

1√
(1 + θ2)(`2 + θ2)

dθ.

Then

Eq,q−1,[a,b] ≤ 4η(`)−2q, ∀ q ≥ 1.

4.2. Stieltjes function formulation. Based on the fact that the tortuosity can be represented in terms
of the Stieltjes function, the rational approximation was used to approximate the convolution kernel (31).
Define the new function

(4.3) D(s) := T (ω)− iχ

ω
=

∫ C

0

dσ(t)

1 + st
, C =

4α2
∞κ

2

νφ2Λ2
, χ :=

ηφ

ρfκ
,

where dσ is a probability measure, then D is a Stieltjes function and can be approximated as

(4.4) D(s) =

∫ C

0

dσ(t)

1 + st
≈ α∞ +

N∑
`=1

r`
s− θ`

, s ∈ C\
(
−∞,− 1

C

]
,

with the poles θ` < 0 and weights r` > 0. The above approximation can be achieved by the two-sided
residue interpolation method with interpolation points ω`:

s` := −iω`, u` = s−1
` , v` = D (s`)− α∞, ` = 1 . . . N,(4.5)

(S1)pq :=
s∗pv
∗
p − sqvq
s∗p − sq

=
−sqD (sq) + s∗pD

∗ (sp)

s∗p − sq
− α∞, p, q = 1 . . . N,(4.6)

(S2)pq :=
v∗p − vq
sq − s∗p

=
−D (sq) +D∗ (sp)

sq − s∗p
, p, q = 1 . . . N.(4.7)

where the superscript ∗ denotes the complex conjugation. In terms of the generalized eigenvalues/eigenvectors
of S1, S2, i.e., S1V = S2V Φ with V being the matrix of generalized eigen vectors and Φ the diagonal matrix
of generalized eigen values, the poles and weights are then given by

θ` = −Φ(`, `), r` = C+V (:, `)V (:, `)∗C∗+,

where

C+ := (v1, · · ·, vN ) , .

To handle the high condition number of the matrices involved, arbitrary precision code such as Advanprix
should be used for implementing this algorithm.
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4.3. Diffusive approximation. The shifted fractional derivative can be expressed as

(4.8) (D + λ)1/2q =e−λtD1/2(eλtq) =

∫ ∞
0

ψ(x, z, t; y)dy '
L∑
l=1

alψl(x, z, t; yl),

where

ψ(x, z, t; y) =
2

π

∫ t

0

e−(t−τ)y2−λ(t−τ)

[
λq(τ) +

∂q

∂t
(τ)

]
dτ

is the auxiliary variable satisfying

(4.9)
∂ψ

∂t
= −

(
y2 + λ

)
ψ +

2

π

[
λq +

∂q

∂t

]
.

Replacing the convolution term with (4.8) and (4.9), one can obtain the Biot-DA model (8). Many methods
have been used to determine the coefficients a` and y`. The modified Gauss-Laguerre quadrature with
slowly convergence was used in (22). The optimization method was developed in (8), which was much
more accurate than those obtained with Gaussian quadratures. Note that the viscous operator is

F̂ JKD(ω) =

(
1 + iω

4α2
∞κ

2ρf
ηΛ2φ2

)1/2

=
1√
λ

(λ+ iω)
1/2

.

Applying the Fourier transform to (4.8), one has the following approximation

F̂DA(ω) =
λ+ iω√

λ

N∑
l=1

al
y2
` + λ+ iω

.

Clearly, one can establish the following objective function

χ2 =

K∑
k=1

∣∣∣∣ FDAF JKD
− 1

∣∣∣∣2 .
Now for any partition of the given frequency range [ωmin, ωmax], the optimization problem reads as

min
ā`,y`

χ2 = min
ā2` ,y`

K∑
k=1

∣∣∣∣∣
N∑
`=1

ā`
(λ+ iωk)1/2

y2
` + λ+ iωk

− 1

∣∣∣∣∣
2

, y` ≤ ωmax, ā2
` = a`.

The values of K and N are crucial, which influence the accuracy of this method, see (8) for more details.
In the above, the frequency range is set as ωmin = ωc/10, ωmax = 10ωc with ωc being the peak frequency
of the selected Ricker wavelet. In the implementation, the above problem is solved by using the SolvOpt
(19; 28) and the initial data for a` and y` are obtained by using modified Gauss-Jacobi quadratures and
the sample points are chosen as

ωk = ωmin

(
ωmax
ωmin

) k−1
K−1

, k = 1, · · · ,K.

5. Numerical method

5.1. Space discretization. Let Ω be the computational domain and Ωh be a partition of Ω. For any
element K ∈ Ωh, we define the approximation space consisting of piecewise polynomials

V kh = {v : v|K ∈ Pn(K),K ∈ Ωh} ,

where P k(K) indicates the collection of polynomials of degree at most k on element K. The semi-discrete
DG method for (2.33) is to find Qh ∈ (V kh )8+2m, such that for all K ∈ Ωh and ϕ ∈ (V kh )8+2m, it holds
that

d

dt

∫
K

Qh ·ϕ dxdz +

∫
∂K

H
(
Qint
h ,Qext

h

)
·ϕ ds−

∫
K

F(Qh) · ∇ϕ dxdz =

∫
K

h(Qh) ·ϕ dxdz,
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where F(Qh) = (AQh,BQh), h(Qh) = HQh, Qint and Qext are the traces of Q on ∂K calculated from
the interior of K and the exterior adjacent K ′, andH is the numerical flux. In this work, the Lax-Friedrichs
flux (local) is employed

H(Qint
h ,Qext

h ) =
1

2

[
F(Qint

h ) · n∂K + F(Qext
h ) · n∂K − α∂K(Qext

h −Qint
h )
]
,

where α∂K is an estimate of the biggest eigenvalue of Jacobian matrix in a neighborhood of ∂K, and n∂K
is the unit outward normal of ∂K from K to K ′.

5.2. Operator splitting. In the numerical implementation of (2.33), one of the difficulties is to handle
the viscous dissipation term, which has its own decay timescale and may cause the poroelasticity system
to be stiff. As shown in (8), the stability condition of the direct method requires

∆t′ ≤ min

(
∆t,

2

R(H)

)
,

where R(H) is the spectral radius of H, and ∆t depends on the left hand side of (2.33) and is determined
by (13)

∆t =
CFL

maxK∈Ωh
‖(c1(K), c3(K))‖ × perimeter(K)/|K|

with |K| being the area of the triangle element and cj(K), j = 1, 3 the speeds of the waves. According to
Theorem 2.2, we know

R(H) > max
k=1,··· ,m

{
p1
k + λ1, p

3
k + λ3

}
.

With highly dissipative fluids or large value of poles, the computational time step can be so small that
makes the simulation highly inefficient.

Instead of solving the original system (2.33) directly, we apply the splitting method by splitting the
original system into a homogeneous conservation law

∂Q

∂t
+ A

∂Q

∂x
+ B

∂Q

∂z
= 0, (Q1),

and an ordinary differential equation

∂Q

∂t
= HQ + S, (Q2),

where Q1 and Q2 are the relevant operators. Then the subproblems can be solved by different solvers and
thus to optimize the time step. In this work, the second-order Strang splitting method (21) is employed
to solve (Q1) and (Q2) alternatively, and the algorithm is as follows:
• step 1: solve Q2 with ∆t/2 and initial data Qn

Q̃ = Q2

(
tn,

∆t

2

)
Qn,

• step 2: solve Q1 with ∆t and initial data Q̃

Q′ = Q1 (tn,∆t) Q̃,

• step 3: solve Q2 with ∆t/2 and initial data Q′

Qn+1 = Q2

(
tn+1,

∆t

2

)
Q′.

5.3. Time discretization. In the implementation, we apply a strong stability preserving high order (17)
scheme for the time discretization. Such discretizations can be expressed as a convex combination of the
forward Euler method, and thus they maintain strong stability properties in any semi-norm of the forward
Euler step. Consider the following ODE system

d

dt
Q = L(Q).
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Let {tn}Nn=0 be a partition of [0, T ], with uniform time step ∆t, the third order total variation diminishing
(TVD) Runge-Kutta method is given as follows:

Q(1) = Qn + ∆tL(Qn, tn),

Q(2) =
3

4
Qn +

1

4
Q(1) +

1

4
∆tL(Q(1)),

Qn+1 =
1

3
Qn +

2

3
Q(2) +

2

3
∆tL(Q(2)).

5.4. Interface condition. When we consider the heterogeneous media with a stationary interface, the
following imperfect hydraulic contact condition (14) is needed

[v] = 0, [q · n] = 0, [p] = 0, [τ n] = 0,

where [·] means the jump at the interface. The first condition indicates that the materials are connected at
the interface; the second one states that all fluids entering the interface should exit the other side; the third
one shows that the difference of the pressure across the interface is zero and the last one is a statement of
the continuity of the stress.

6. Numerical results

In this section, numerical examples are presented to demonstrate the validation of the proposed nu-
merical method. The properties of the materials used for the forthcoming examples are given in Table 1.
The viscous characteristic lengths Λ1 and Λ3 are calculated by setting the Pride numbers P1 = P3 = 0.5.
The poles and weights with frequency interval [300, 1500] and m = 7 are used for all materials. In the
implementation of numerics, without loss of generality, the principal directions of the material are assumed
to coincide with the global coordinate axes.

J1 J2 J3 J4

Basic properties
Ks (Gpa) 40 36.66 40 40
ρs (kg/m3) 1815 2644 1815 1815
c11 (Gpa) 39.4 19.652 39.4 39.4
c12 (Gpa) 1.0 5.572 1.0 1.0
c13 (Gpa) 5.8 5.572 5.8 5.8
c33 (Gpa) 13.1 19.652 13.1 13.1
c55 (Gpa) 3.0 7.04 3.0 3.0
φ 0.2 0.2 0.2 0.2
κ1 (10−15m2) 600 360 600 100
κ3 (10−15m2) 100 360 600 100
α∞1 2 2.4 2 3.6
α∞3 3.6 2.4 2 3.6
Kf (Gpa) 2.5 2.2495 2.5 2.5
ρf (kg/m3) 1040 1000 1040 1040
η (10−3kg/m.s) 1 1 1 1
Λ1 (10−6m) 6.93 5.88 6.93 3.79
Λ3 (10−6m) 3.79 5.88 6.93 3.79

Table 1. Material properties

6.1. Validation of the rational approximation. As the first example, we aim to assess the performance
of the best relative Chebyshev approximation of the square root function. For this purpose, we illustrate
the relative error between

√
s+ λ and Φ(s + λ) in the right half complex plane with different poles and

weights, where λ is given by (2.9). The considered materials are the transversely isotropic J4with the
critical frequencies fcz = 85 kHz. The interest interval is [300, 1500] which should contain the critical



14 JIANGMING XIE, MAOJUN LI, AND MIAO-JUNG YVONNE OU

frequencies and the frequency f0 of the source function. To compare with the Stieltjes IRF and DA
approximation, we show the results with different number of poles and weights in Fig. 2, from which we
can see that the proposed approach approximates the kernel very well. In addition, we can see that the
results by Chebyshev approximation are comparable to those by the Stieltjes IRF and are better than
those by the DA method.
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Figure 2. Results comparison for different methods and different N.

6.2. Homogeneous medium. In this example, we demonstrate the phenomena of waves in poroelastic
media by solving the approximated Biot-JKD equation (2.33) with the proposed DG method. The problem
setup is that the homogeneous medium J1 is excited by a source point acting only on τ13. The source is
located at the center of the medium and is expressed as

(6.1) S = −g(t)h(x, z)/(π ∗ r2
0),

where

g(t) =

{
(1− 2π2f2

0 (t− td)2)exp(−π2f2
0 (t− td)2) if 0 ≤ t ≤ 2td,

0 otherwise,

with the peak frequency f0 = 200 kHz and the time delay td = 1/f0 is a Ricker wavelet, and

h(x, z) =

{
1
πΣ2 exp

(
−x

2+z2

Σ2

)
if 0 ≤ x2 + z2 ≤ r2

0,

0 otherwise,

with radius r0 = 6.56×10−3 m and Σ = 3.28×10−3 m is a truncated Gaussian function. The computational
domain is Ω = [−0.15, 0.15]2 m2, which includes about 10 fast p waves and is partitioned with 247772
triangle elements. The total simulation time is 2.72× 10−5 s, including about 6 periods of the fast p wave.
The initial condition is set to be zero and the CFL number is set to be 0.3. No special care is paid to the
boundary condition since the waves will not reach the boundary during the simulation. For comparison,
we solve the Biot-DA model (8), where the relevant weights and abscissae are determined by solving a
nonlinear optimization problem.

The snapshot of the pressure at the final time is presented in Fig. 3 (a). Three waves of the fast p
wave, the slow p wave and the shear wave are observed, which are analogous to the results shown in
(31; 8). Meanwhile, we can see from Fig. 3 (b) and (c) that the pressure at z = −0.02 m of the rational
approximated Biot-JKD model and the Biot-DA model show excellent agreement.

6.3. Heterogeneous media with horizontal interfaces . In this example, heterogeneous media with
horizontal interfaces are considered to illustrate the ability of the proposed method for complex geometry.
We start with the the case that J1 and J2 separated by z = 0 m and then replace the interface by z = ±0.02
m, see Fig. 4 for the illustration. The computational domain is [−0.15, 0.15]2m2, which is discretized into
156330 and 223948 nonuniform triangle elements by refining the meshes around the interfaces respectively.
The source point (6.1) located at the center of the domain is used to emit cylindrical waves and is only
applied to τ13. The initial condition is set to be zero and the boundary condition is chosen to be outflow
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Figure 3. Results of the pressure for example 6.2. (a) Snapshot at the finial time, the
dash line denotes z=-0.02 m, (b) pressure along the line z=-0.02 m, (c) residuals at z=-0.02
m between the Biot-DA model and Biot-JKD model with the rational approximation.
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Figure 4. Results of the pressure for Example 6.3, the horizontal real lines in (a) and (d)
denote the interfaces, and the ◦ represents the locations of the receivers. Top: results for
the one line interface case, (a) snapshot of the pressure at the finial time, (b) time histories
of the receiver (0.01,0.02) m, (c) time histories of the receiver (0.01,-0.02) m. Bottom:
results for the two line interfaces case, (d) snapshot of the pressure at the finial time, (e)
time histories of the receiver (0.01,0.01) m, (f) time histories of the receiver (0.01,-0.03)
m.

boundary condition. The total simulation time is 2.53× 10−5s, the CFL number is set to be 0.3 and the
componentwise limiter (13) with M = 50 and ν = 1.5 is used in this test.

The snapshots of the pressure at the final time are presented in Fig. 4 (a) and (d) for the two cases
respectively. The reflected and transmitted waves are observed, enriching and complicating the structures
of the solution. In addition to the time-snapshot, we also record the time evolution of the pressure at two
receivers situated at (0.01,±0.02) m for the one interface case, and (0.01,0.01) m and (0.01,-0.03) m for
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the two interfaces case respectively. Again we use the RKDG method to solve the Biot-DA model as the
reference solution. The relevant results show that the solutions from the two methods are indistinguishable.

6.4. Heterogeneous media with circular interfaces . As the last example, we consider a more complex
geometry example that the heterogeneous media J3 and J4 are separated by circular interfaces. Two cases
of one circular interface x2 + z2 ≤ 0.05 and two circular interfaces x2 + z2 ≤ 0.05, x2 + z2 ≤ 0.03
are considered, see Fig. 5 for the illustration. The computational domain is [−0.15, 0.15]2m2, which is
divided into 132896 nonuniform triangle elements by refining the meshes around the interfaces. The system
is excited by the source point (6.1), which is located at the center of the domain and is only employed to
τ13. The initial condition is set to be zero and the boundary condition is chosen to be outflow boundary
condition. The the total simulation time is 2.53 × 10−5s and the CFL number is set to be 0.3. In the
implement of simulation, the componentwise limiter with M = 50 and ν = 1.5 is used in this test.

The receivers of (0.01,±0.025) m for the one interface case and (0.01, 0.025) m and (0.01, 0.04) m for the
two interfaces case are chosen to record the time evolution of the pressure. We present the snapshot of the
pressure at the final time and the time histories in Fig. 5, from which we can observe that the solutions
given by the rational approximated Biot-JKD model and Biot-DA model in the complex geometry are
consistent.
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Figure 5. Results of the pressure for example 6.4, the interfaces are mapped with the
circular real lines in (a) and (d), and the locations of the receivers are marked with ◦.
Top: results for the one line interface case, (a) snapshot of the pressure at the finial time,
(b) time histories of the receiver (0.01,0.025) m, (c) time histories of the receiver (0.01,-
0.025) m. Bottom: results for the two line interfaces case, (d) snapshot of the pressure at
the finial time, (e) time histories of the receiver (0.01,0.025) m, (f) time histories of the
receiver (0.01,0.04) m.

7. Conclusion and future works

In this work, we have derived an approximate Biot-JKD model and developed a DG method with
operator splitting to investigate wave propagation in orthotropic poroelastic media. The Biot-JKD model,
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containing the temporal convolution and stiff property, is challenging to be implemented numerically. To
avoid storage and integration of the entire variable histories, we propose a fast algorithm based on the
rational approximation in which the required poles and weights are calculated with high accuracy by using
the technique of the best relative Chebyshev approximation of the square-root function. For completeness,
we also present in the paper two competitive existing methods for computing the poles and weights. One
is based on the Stieltjes function (SF) formulation and the other on the diffusion approximation (DA).
In comparison with SF, the new method does not require any arbitrary precision arithmetic system for
computing the poles and weights; this is a big advantage. However, the SF approach is able to handle more
general cases where the memory kernels are not of square-root function type. Indeed, the SF approach only
require a finite set of interpolation points without demanding the kernel to be in any specific functional
form. For the JKD kernel, we do see the advantage of the new method over SF.

By splitting the temporal convolution into a sequence of continuum local ODEs with the auxiliary
variables, we derive a more tractable model with finite memory variables and zero components of the flux
for the auxiliary variables. The RKDG method with the Strang splitting method is used to solve the
approximated Biot-JKD equation. Both the homogeneous and heterogeneous cases are considered.

In the future, we will extend the idea of this paper to some other dissipative problems whose governing
equations contain fractional derivative with order 1/2. We will also consider the inverse problem of the
multiparameter full waveform inversion in poroelastic medium.
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Appendix A. The proof of Theorem 2.1

Proof. To begin with, we prove that the energy function E is positive definite. Clearly, both E2 and E3 are
positive definite. Since det(Mj) > 0, ρ > 0, µj > 0, we know that E1 is positive definite.

In the following, we prove that (2.18) holds. Multiplying (2.6) with vT and integrating on R, we obtain

0 =

∫
R2

(
ρvT

∂v

∂t
+ ρfv

T ∂q

∂t
− vT∇ · τ

)
dxdz.

By the Fourier transform, we have

(A.1) 0 =

∫
R2

(
ρv̂T sv̂T + ρf v̂

T sq̂− v̂T∇ · τ̂
)
dxdz.

Integrating by part and using v = ∂tu, εij = (∂iuj + ∂jui) /2, it is easy to check that

−
∫
R2

v̂T∇ · τ̂dxdz =

∫
R2

τ̂T sε̂dxdz,

which together with (2.4) leads to

−
∫
R2

v̂T∇ · τ̂dxdz =

∫
R2

τ̂TC−1sτ̂ + τ̂TC−1βsp dxdz.

With the above equation, (A.1) is reformulated as

(A.2) 0 =

∫
R2

(
ρv̂T sv̂T + ρf v̂

T sq̂ + τ̂TC−1sτ̂ + τ̂TC−1βsp
)
dxdz.

Multiplying (2.15) with qT and integrating on R gives

0 =

∫
R2

[
ρfq

T ∂v

∂t
+ qTdiag(µj)

∂q

∂t
+ qT∇p+ qTdiag

(
ϑj (∂t + λj)

1/2
)

q

]
dxdz, j = 1, 3.

Again by the Fourier transform, we have

(A.3) 0 =

∫
R2

[
ρf q̂

T sv̂ + q̂Tdiag(µj)sq̂ + q̂T∇p̂+ q̂Tdiag
(
ϑj (s+ λj)

1/2
)

q̂
]
dxdz,
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Integrating by part and using q = ∂tw, ζ = −∇ ·w as well as (2.4)-(2.5), we see∫
R2

q̂T∇p̂ dxdz = −
∫
R2

p∇ · q̂ dxdz =

∫
R2

p̂sζ̂ dxdz =

∫
R2

p̂s

(
1

M
p̂+ βT ε̂

)
dxdz

=

∫
R2

1

M
p̂sp̂ dxdz +

∫
R2

(
p̂sβTC−1τ̂ + p̂sβ̂TC−1βp̂

)
dxdz,

which together with (A.3) implies

(A.4)

−
∫
R2

q̂Tdiag
(
ϑj (s+ λj)

1/2
)

q̂ dxdz

=

∫
R2

[
ρf q̂

T sv̂ + q̂Tdiag(µj)sq̂ +
1

M
p̂sp̂+ βTC−1τ̂sp̂+ βTC−1βp̂sp̂

]
dxdz.

Summing up (A.2) and (A.4), and combining E1 and E2, we derive

(A.5) L
[
d(E1 + E2)

dt

]
= −

∫
R2

q̂Tdiag
(
ϑj (s+ λj)

1/2
)

q̂ dxdz = − 2

π

∫
R2

∫ ∞
0

q̂Tdiag (ϑj)ψ dydxdz,

where (2.16) is used and ψ = (ψ1, ψ3)T .

Multiplying (2.17) with (ψ − q)
T

and using the Fourier transform, we obtain

q̂Tdiag
(
y2 + 2λj

)
ψ̂ =

(
ψ̂ − q̂

)T
s
(
ψ̂ − q̂

)
+ ψ̂Tdiag

(
y2 + λj

)
ψ̂ + q̂Tdiag (λj) q̂,

which indicates

q̂Tdiag (ϑj) ψ̂ =
(
ψ̂ − q̂

)T
diag

(
ϑj

y2 + 2λj

)
s
(
ψ̂ − q̂

)
+ ψ̂Tdiag

(
y2 + λj
y2 + 2λj

ϑj

)
ψ̂ + q̂Tdiag

(
λjϑj

y2 + 2λj

)
q̂, j = 1, 3.

Combining the above equations and E3, we arrive at

L
[
dE
dt

]
= − 2

π

∫
R2

∫ ∞
0

[
ψ̂Tdiag

(
y2 + λj
y2 + 2λj

ϑj

)
ψ̂ + q̂Tdiag

(
λjϑj

y2 + 2λj

)
q̂

]
dydxdz ≤ 0.

Translating to time domain completes the proof.
�

Appendix B. The proof of Theorem 2.2

Proof. Let Q′ = (vx, qx, H
x
1 , · · · , Hx

m, vz, qz, H
z
1 , · · · , Hz

m, τxx, τzz, τxz, p)
T

, then the matrix of the
diffusive part is

H̃ =

 H̃1 0 0

0 H̃3 0
0 0 04×4

 ,
where

H̃j =



0
ρfϑj(λjω

j
m+1+ωj

m+2)
γj

−ρfϑjω
j
1

γj
−ρfϑjω

j
2

γj
· · · −ρfϑjω

j
m

γj

0 −ρϑj(λjω
j
m+1+ωj

m+2)
γj

ρϑjω
j
1

γj

ρϑjω
j
2

γj
· · · ρϑjω

j
m

γj

0 1 pj1 + λj 0 · · · 0

0 1 0 pj2 + λj · · · 0
...

...
...

...
. . .

...
0 1 0 0 0 pjm + λj


, j = 1, 3.

Clearly, the matrix H is similar to H̃. According to

det
(
λ̃I− H̃

)
= 0,

we derive

λ̃4 · det
(
λ̃I− H̃1

)
· det

(
λ̃I− H̃3

)
= 0.
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By straightforward computing, we have

P(λ̃) := det
(
λ̃I− H̃1

)
= λ̃

(λ̃− ρϑ1

(
λ1ω

1
m+1 + ω1

m+2

)
γ1

) ∏
k=1···m

(
λ̃− p1

k − λ1

)
− ρϑ1

γ1

m∑
k=1

ω1
k

∏
`=1···m, 6̀=k

(
λ̃− p1

` − λ1

) .
Consequently, we know zero with multiplicity 1 is an eigenvalue of P(λ̃). In addition, we obtain

P(p1
k + λ1) = −

(
p1
k + λ1

)
· ρϑ1

γ1
ω1
k

∏
`=1···m,` 6=k

(
p1
k − p1

`

)
,

which together with p1
1 < p1

2 · · · < p1
m and m = 2q − 1 gives

signP(p1
k + λ1) = −signP(p1

k+1 + λ1), k = 1, · · ·m− 1.

Particularly, we can check that

P(0) = 0, lim
λ̃→0+

P(λ̃) > 0, P(p1
1 + λ1) < 0, P(p1

m + λ1) < 0, lim
λ̃→+∞

P(λ̃) > 0.

Thus we infer that there exist eigenvalues λ̃1 in (0, p1
1 + λ1) and λ̃m+1 in (p1

m + λ1,+∞). Together the

above discussions, we know that the non-zero eigenvalues of H̃1 satisfy

0 < λ̃1
1 < p1

1 + λ1 < · · · < λ̃1
m < p1

m + λ1 < λ̃1
m+1.

By repeated application, we can obtain the non-zero eigenvalues of H̃3 satisfy

0 < λ̃3
1 < p3

1 + λ3 < · · · < λ̃3
m < p3

m + λ3 < λ̃3
m+1.

Recalling that H̃ is similar to H, we finish the proof. �
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